File size: 93,438 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
import warnings

from .distance import PairwiseDistance
from .module import Module
from .. import functional as F
from .. import _reduction as _Reduction

from torch import Tensor
from typing import Callable, Optional

__all__ = ['L1Loss', 'NLLLoss', 'NLLLoss2d', 'PoissonNLLLoss', 'GaussianNLLLoss', 'KLDivLoss',
           'MSELoss', 'BCELoss', 'BCEWithLogitsLoss', 'HingeEmbeddingLoss', 'MultiLabelMarginLoss',
           'SmoothL1Loss', 'HuberLoss', 'SoftMarginLoss', 'CrossEntropyLoss', 'MultiLabelSoftMarginLoss',
           'CosineEmbeddingLoss', 'MarginRankingLoss', 'MultiMarginLoss', 'TripletMarginLoss',
           'TripletMarginWithDistanceLoss', 'CTCLoss']

class _Loss(Module):
    reduction: str

    def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__()
        if size_average is not None or reduce is not None:
            self.reduction: str = _Reduction.legacy_get_string(size_average, reduce)
        else:
            self.reduction = reduction


class _WeightedLoss(_Loss):
    def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)
        self.register_buffer('weight', weight)
        self.weight: Optional[Tensor]


class L1Loss(_Loss):
    r"""Creates a criterion that measures the mean absolute error (MAE) between each element in

    the input :math:`x` and target :math:`y`.



    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:



    .. math::

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad

        l_n = \left| x_n - y_n \right|,



    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``

    (default ``'mean'``), then:



    .. math::

        \ell(x, y) =

        \begin{cases}

            \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\

            \operatorname{sum}(L),  & \text{if reduction} = \text{`sum'.}

        \end{cases}



    :math:`x` and :math:`y` are tensors of arbitrary shapes with a total

    of :math:`n` elements each.



    The sum operation still operates over all the elements, and divides by :math:`n`.



    The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.



    Supports real-valued and complex-valued inputs.



    Args:

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then

          :math:`(*)`, same shape as the input.



    Examples::



        >>> loss = nn.L1Loss()

        >>> input = torch.randn(3, 5, requires_grad=True)

        >>> target = torch.randn(3, 5)

        >>> output = loss(input, target)

        >>> output.backward()

    """
    __constants__ = ['reduction']

    def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.l1_loss(input, target, reduction=self.reduction)


class NLLLoss(_WeightedLoss):
    r"""The negative log likelihood loss. It is useful to train a classification

    problem with `C` classes.



    If provided, the optional argument :attr:`weight` should be a 1D Tensor assigning

    weight to each of the classes. This is particularly useful when you have an

    unbalanced training set.



    The `input` given through a forward call is expected to contain

    log-probabilities of each class. `input` has to be a Tensor of size either

    :math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)`

    with :math:`K \geq 1` for the `K`-dimensional case. The latter is useful for

    higher dimension inputs, such as computing NLL loss per-pixel for 2D images.



    Obtaining log-probabilities in a neural network is easily achieved by

    adding a  `LogSoftmax`  layer in the last layer of your network.

    You may use `CrossEntropyLoss` instead, if you prefer not to add an extra

    layer.



    The `target` that this loss expects should be a class index in the range :math:`[0, C-1]`

    where `C = number of classes`; if `ignore_index` is specified, this loss also accepts

    this class index (this index may not necessarily be in the class range).



    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:



    .. math::

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad

        l_n = - w_{y_n} x_{n,y_n}, \quad

        w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore\_index}\},



    where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight, and

    :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``

    (default ``'mean'``), then



    .. math::

        \ell(x, y) = \begin{cases}

            \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &

            \text{if reduction} = \text{`mean';}\\

            \sum_{n=1}^N l_n,  &

            \text{if reduction} = \text{`sum'.}

        \end{cases}



    Args:

        weight (Tensor, optional): a manual rescaling weight given to each

            class. If given, it has to be a Tensor of size `C`. Otherwise, it is

            treated as if having all ones.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``None``

        ignore_index (int, optional): Specifies a target value that is ignored

            and does not contribute to the input gradient. When

            :attr:`size_average` is ``True``, the loss is averaged over

            non-ignored targets.

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``None``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will

            be applied, ``'mean'``: the weighted mean of the output is taken,

            ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in

            the meantime, specifying either of those two args will override

            :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(N, C)` or :math:`(C)`, where `C = number of classes`, or

          :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`

          in the case of `K`-dimensional loss.

        - Target: :math:`(N)` or :math:`()`, where each value is

          :math:`0 \leq \text{targets}[i] \leq C-1`, or

          :math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of

          K-dimensional loss.

        - Output: If :attr:`reduction` is ``'none'``, shape :math:`(N)` or

          :math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1` in the case of K-dimensional loss.

          Otherwise, scalar.



    Examples::



        >>> m = nn.LogSoftmax(dim=1)

        >>> loss = nn.NLLLoss()

        >>> # input is of size N x C = 3 x 5

        >>> input = torch.randn(3, 5, requires_grad=True)

        >>> # each element in target has to have 0 <= value < C

        >>> target = torch.tensor([1, 0, 4])

        >>> output = loss(m(input), target)

        >>> output.backward()

        >>>

        >>>

        >>> # 2D loss example (used, for example, with image inputs)

        >>> N, C = 5, 4

        >>> loss = nn.NLLLoss()

        >>> # input is of size N x C x height x width

        >>> data = torch.randn(N, 16, 10, 10)

        >>> conv = nn.Conv2d(16, C, (3, 3))

        >>> m = nn.LogSoftmax(dim=1)

        >>> # each element in target has to have 0 <= value < C

        >>> target = torch.empty(N, 8, 8, dtype=torch.long).random_(0, C)

        >>> output = loss(m(conv(data)), target)

        >>> output.backward()

    """
    __constants__ = ['ignore_index', 'reduction']
    ignore_index: int

    def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,

                 reduce=None, reduction: str = 'mean') -> None:
        super().__init__(weight, size_average, reduce, reduction)
        self.ignore_index = ignore_index

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.nll_loss(input, target, weight=self.weight, ignore_index=self.ignore_index, reduction=self.reduction)


class NLLLoss2d(NLLLoss):
    def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,

                 reduce=None, reduction: str = 'mean') -> None:
        warnings.warn("NLLLoss2d has been deprecated. "
                      "Please use NLLLoss instead as a drop-in replacement and see "
                      "https://pytorch.org/docs/master/nn.html#torch.nn.NLLLoss for more details.")
        super().__init__(weight, size_average, ignore_index, reduce, reduction)


class PoissonNLLLoss(_Loss):
    r"""Negative log likelihood loss with Poisson distribution of target.



    The loss can be described as:



    .. math::

        \text{target} \sim \mathrm{Poisson}(\text{input})



        \text{loss}(\text{input}, \text{target}) = \text{input} - \text{target} * \log(\text{input})

                                    + \log(\text{target!})



    The last term can be omitted or approximated with Stirling formula. The

    approximation is used for target values more than 1. For targets less or

    equal to 1 zeros are added to the loss.



    Args:

        log_input (bool, optional): if ``True`` the loss is computed as

            :math:`\exp(\text{input}) - \text{target}*\text{input}`, if ``False`` the loss is

            :math:`\text{input} - \text{target}*\log(\text{input}+\text{eps})`.

        full (bool, optional): whether to compute full loss, i. e. to add the

            Stirling approximation term



            .. math::

                \text{target}*\log(\text{target}) - \text{target} + 0.5 * \log(2\pi\text{target}).

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when

            :attr:`log_input = False`. Default: 1e-8

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Examples::



        >>> loss = nn.PoissonNLLLoss()

        >>> log_input = torch.randn(5, 2, requires_grad=True)

        >>> target = torch.randn(5, 2)

        >>> output = loss(log_input, target)

        >>> output.backward()



    Shape:

        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.

        - Output: scalar by default. If :attr:`reduction` is ``'none'``, then :math:`(*)`,

          the same shape as the input.

    """
    __constants__ = ['log_input', 'full', 'eps', 'reduction']
    log_input: bool
    full: bool
    eps: float

    def __init__(self, log_input: bool = True, full: bool = False, size_average=None,

                 eps: float = 1e-8, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)
        self.log_input = log_input
        self.full = full
        self.eps = eps

    def forward(self, log_input: Tensor, target: Tensor) -> Tensor:
        return F.poisson_nll_loss(log_input, target, log_input=self.log_input, full=self.full,
                                  eps=self.eps, reduction=self.reduction)


class GaussianNLLLoss(_Loss):
    r"""Gaussian negative log likelihood loss.



    The targets are treated as samples from Gaussian distributions with

    expectations and variances predicted by the neural network. For a

    ``target`` tensor modelled as having Gaussian distribution with a tensor

    of expectations ``input`` and a tensor of positive variances ``var`` the loss is:



    .. math::

        \text{loss} = \frac{1}{2}\left(\log\left(\text{max}\left(\text{var},

        \ \text{eps}\right)\right) + \frac{\left(\text{input} - \text{target}\right)^2}

        {\text{max}\left(\text{var}, \ \text{eps}\right)}\right) + \text{const.}



    where :attr:`eps` is used for stability. By default, the constant term of

    the loss function is omitted unless :attr:`full` is ``True``. If ``var`` is not the same

    size as ``input`` (due to a homoscedastic assumption), it must either have a final dimension

    of 1 or have one fewer dimension (with all other sizes being the same) for correct broadcasting.



    Args:

        full (bool, optional): include the constant term in the loss

            calculation. Default: ``False``.

        eps (float, optional): value used to clamp ``var`` (see note below), for

            stability. Default: 1e-6.

        reduction (str, optional): specifies the reduction to apply to the

            output:``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction

            will be applied, ``'mean'``: the output is the average of all batch

            member losses, ``'sum'``: the output is the sum of all batch member

            losses. Default: ``'mean'``.



    Shape:

        - Input: :math:`(N, *)` or :math:`(*)` where :math:`*` means any number of additional

          dimensions

        - Target: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input

          but with one dimension equal to 1 (to allow for broadcasting)

        - Var: :math:`(N, *)` or :math:`(*)`, same shape as the input, or same shape as the input but

          with one dimension equal to 1, or same shape as the input but with one fewer

          dimension (to allow for broadcasting)

        - Output: scalar if :attr:`reduction` is ``'mean'`` (default) or

          ``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N, *)`, same

          shape as the input



    Examples::

        >>> loss = nn.GaussianNLLLoss()

        >>> input = torch.randn(5, 2, requires_grad=True)

        >>> target = torch.randn(5, 2)

        >>> var = torch.ones(5, 2, requires_grad=True)  # heteroscedastic

        >>> output = loss(input, target, var)

        >>> output.backward()



        >>> loss = nn.GaussianNLLLoss()

        >>> input = torch.randn(5, 2, requires_grad=True)

        >>> target = torch.randn(5, 2)

        >>> var = torch.ones(5, 1, requires_grad=True)  # homoscedastic

        >>> output = loss(input, target, var)

        >>> output.backward()



    Note:

        The clamping of ``var`` is ignored with respect to autograd, and so the

        gradients are unaffected by it.



    Reference:

        Nix, D. A. and Weigend, A. S., "Estimating the mean and variance of the

        target probability distribution", Proceedings of 1994 IEEE International

        Conference on Neural Networks (ICNN'94), Orlando, FL, USA, 1994, pp. 55-60

        vol.1, doi: 10.1109/ICNN.1994.374138.

    """
    __constants__ = ['full', 'eps', 'reduction']
    full: bool
    eps: float

    def __init__(self, *, full: bool = False, eps: float = 1e-6, reduction: str = 'mean') -> None:
        super().__init__(None, None, reduction)
        self.full = full
        self.eps = eps

    def forward(self, input: Tensor, target: Tensor, var: Tensor) -> Tensor:
        return F.gaussian_nll_loss(input, target, var, full=self.full, eps=self.eps, reduction=self.reduction)


class KLDivLoss(_Loss):
    r"""The Kullback-Leibler divergence loss.



    For tensors of the same shape :math:`y_{\text{pred}},\ y_{\text{true}}`,

    where :math:`y_{\text{pred}}` is the :attr:`input` and :math:`y_{\text{true}}` is the

    :attr:`target`, we define the **pointwise KL-divergence** as



    .. math::



        L(y_{\text{pred}},\ y_{\text{true}})

            = y_{\text{true}} \cdot \log \frac{y_{\text{true}}}{y_{\text{pred}}}

            = y_{\text{true}} \cdot (\log y_{\text{true}} - \log y_{\text{pred}})



    To avoid underflow issues when computing this quantity, this loss expects the argument

    :attr:`input` in the log-space. The argument :attr:`target` may also be provided in the

    log-space if :attr:`log_target`\ `= True`.



    To summarise, this function is roughly equivalent to computing



    .. code-block:: python



        if not log_target: # default

            loss_pointwise = target * (target.log() - input)

        else:

            loss_pointwise = target.exp() * (target - input)



    and then reducing this result depending on the argument :attr:`reduction` as



    .. code-block:: python



        if reduction == "mean":  # default

            loss = loss_pointwise.mean()

        elif reduction == "batchmean":  # mathematically correct

            loss = loss_pointwise.sum() / input.size(0)

        elif reduction == "sum":

            loss = loss_pointwise.sum()

        else:  # reduction == "none"

            loss = loss_pointwise



    .. note::

        As all the other losses in PyTorch, this function expects the first argument,

        :attr:`input`, to be the output of the model (e.g. the neural network)

        and the second, :attr:`target`, to be the observations in the dataset.

        This differs from the standard mathematical notation :math:`KL(P\ ||\ Q)` where

        :math:`P` denotes the distribution of the observations and :math:`Q` denotes the model.



    .. warning::

        :attr:`reduction`\ `= "mean"` doesn't return the true KL divergence value, please use

        :attr:`reduction`\ `= "batchmean"` which aligns with the mathematical definition.



    Args:

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to `False`, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is `False`. Default: `True`

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is `False`, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: `True`

        reduction (str, optional): Specifies the reduction to apply to the output. Default: `"mean"`

        log_target (bool, optional): Specifies whether `target` is the log space. Default: `False`



    Shape:

        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.

        - Output: scalar by default. If :attr:`reduction` is `'none'`, then :math:`(*)`,

          same shape as the input.



    Examples::



        >>> import torch.nn.functional as F

        >>> kl_loss = nn.KLDivLoss(reduction="batchmean")

        >>> # input should be a distribution in the log space

        >>> input = F.log_softmax(torch.randn(3, 5, requires_grad=True), dim=1)

        >>> # Sample a batch of distributions. Usually this would come from the dataset

        >>> target = F.softmax(torch.rand(3, 5), dim=1)

        >>> output = kl_loss(input, target)



        >>> kl_loss = nn.KLDivLoss(reduction="batchmean", log_target=True)

        >>> log_target = F.log_softmax(torch.rand(3, 5), dim=1)

        >>> output = kl_loss(input, log_target)

    """
    __constants__ = ['reduction']

    def __init__(self, size_average=None, reduce=None, reduction: str = 'mean', log_target: bool = False) -> None:
        super().__init__(size_average, reduce, reduction)
        self.log_target = log_target

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.kl_div(input, target, reduction=self.reduction, log_target=self.log_target)


class MSELoss(_Loss):
    r"""Creates a criterion that measures the mean squared error (squared L2 norm) between

    each element in the input :math:`x` and target :math:`y`.



    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:



    .. math::

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad

        l_n = \left( x_n - y_n \right)^2,



    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``

    (default ``'mean'``), then:



    .. math::

        \ell(x, y) =

        \begin{cases}

            \operatorname{mean}(L), &  \text{if reduction} = \text{`mean';}\\

            \operatorname{sum}(L),  &  \text{if reduction} = \text{`sum'.}

        \end{cases}



    :math:`x` and :math:`y` are tensors of arbitrary shapes with a total

    of :math:`n` elements each.



    The mean operation still operates over all the elements, and divides by :math:`n`.



    The division by :math:`n` can be avoided if one sets ``reduction = 'sum'``.



    Args:

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.



    Examples::



        >>> loss = nn.MSELoss()

        >>> input = torch.randn(3, 5, requires_grad=True)

        >>> target = torch.randn(3, 5)

        >>> output = loss(input, target)

        >>> output.backward()

    """
    __constants__ = ['reduction']

    def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.mse_loss(input, target, reduction=self.reduction)


class BCELoss(_WeightedLoss):
    r"""Creates a criterion that measures the Binary Cross Entropy between the target and

    the input probabilities:



    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:



    .. math::

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad

        l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right],



    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``

    (default ``'mean'``), then



    .. math::

        \ell(x, y) = \begin{cases}

            \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\

            \operatorname{sum}(L),  & \text{if reduction} = \text{`sum'.}

        \end{cases}



    This is used for measuring the error of a reconstruction in for example

    an auto-encoder. Note that the targets :math:`y` should be numbers

    between 0 and 1.



    Notice that if :math:`x_n` is either 0 or 1, one of the log terms would be

    mathematically undefined in the above loss equation. PyTorch chooses to set

    :math:`\log (0) = -\infty`, since :math:`\lim_{x\to 0} \log (x) = -\infty`.

    However, an infinite term in the loss equation is not desirable for several reasons.



    For one, if either :math:`y_n = 0` or :math:`(1 - y_n) = 0`, then we would be

    multiplying 0 with infinity. Secondly, if we have an infinite loss value, then

    we would also have an infinite term in our gradient, since

    :math:`\lim_{x\to 0} \frac{d}{dx} \log (x) = \infty`.

    This would make BCELoss's backward method nonlinear with respect to :math:`x_n`,

    and using it for things like linear regression would not be straight-forward.



    Our solution is that BCELoss clamps its log function outputs to be greater than

    or equal to -100. This way, we can always have a finite loss value and a linear

    backward method.





    Args:

        weight (Tensor, optional): a manual rescaling weight given to the loss

            of each batch element. If given, has to be a Tensor of size `nbatch`.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same

          shape as input.



    Examples::



        >>> m = nn.Sigmoid()

        >>> loss = nn.BCELoss()

        >>> input = torch.randn(3, 2, requires_grad=True)

        >>> target = torch.rand(3, 2, requires_grad=False)

        >>> output = loss(m(input), target)

        >>> output.backward()

    """
    __constants__ = ['reduction']

    def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(weight, size_average, reduce, reduction)

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.binary_cross_entropy(input, target, weight=self.weight, reduction=self.reduction)


class BCEWithLogitsLoss(_Loss):
    r"""This loss combines a `Sigmoid` layer and the `BCELoss` in one single

    class. This version is more numerically stable than using a plain `Sigmoid`

    followed by a `BCELoss` as, by combining the operations into one layer,

    we take advantage of the log-sum-exp trick for numerical stability.



    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:



    .. math::

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad

        l_n = - w_n \left[ y_n \cdot \log \sigma(x_n)

        + (1 - y_n) \cdot \log (1 - \sigma(x_n)) \right],



    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``

    (default ``'mean'``), then



    .. math::

        \ell(x, y) = \begin{cases}

            \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\

            \operatorname{sum}(L),  & \text{if reduction} = \text{`sum'.}

        \end{cases}



    This is used for measuring the error of a reconstruction in for example

    an auto-encoder. Note that the targets `t[i]` should be numbers

    between 0 and 1.



    It's possible to trade off recall and precision by adding weights to positive examples.

    In the case of multi-label classification the loss can be described as:



    .. math::

        \ell_c(x, y) = L_c = \{l_{1,c},\dots,l_{N,c}\}^\top, \quad

        l_{n,c} = - w_{n,c} \left[ p_c y_{n,c} \cdot \log \sigma(x_{n,c})

        + (1 - y_{n,c}) \cdot \log (1 - \sigma(x_{n,c})) \right],



    where :math:`c` is the class number (:math:`c > 1` for multi-label binary classification,

    :math:`c = 1` for single-label binary classification),

    :math:`n` is the number of the sample in the batch and

    :math:`p_c` is the weight of the positive answer for the class :math:`c`.



    :math:`p_c > 1` increases the recall, :math:`p_c < 1` increases the precision.



    For example, if a dataset contains 100 positive and 300 negative examples of a single class,

    then ``pos_weight`` for the class should be equal to :math:`\frac{300}{100}=3`.

    The loss would act as if the dataset contains :math:`3\times 100=300` positive examples.



    Examples::



        >>> target = torch.ones([10, 64], dtype=torch.float32)  # 64 classes, batch size = 10

        >>> output = torch.full([10, 64], 1.5)  # A prediction (logit)

        >>> pos_weight = torch.ones([64])  # All weights are equal to 1

        >>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)

        >>> criterion(output, target)  # -log(sigmoid(1.5))

        tensor(0.20...)



    In the above example, the ``pos_weight`` tensor's elements correspond to the 64 distinct classes

    in a multi-label binary classification scenario. Each element in ``pos_weight`` is designed to adjust the

    loss function based on the imbalance between negative and positive samples for the respective class.

    This approach is useful in datasets with varying levels of class imbalance, ensuring that the loss

    calculation accurately accounts for the distribution in each class.



    Args:

        weight (Tensor, optional): a manual rescaling weight given to the loss

            of each batch element. If given, has to be a Tensor of size `nbatch`.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``

        pos_weight (Tensor, optional): a weight of positive examples to be broadcasted with target.

            Must be a tensor with equal size along the class dimension to the number of classes.

            Pay close attention to PyTorch's broadcasting semantics in order to achieve the desired

            operations. For a target of size [B, C, H, W] (where B is batch size) pos_weight of

            size [B, C, H, W] will apply different pos_weights to each element of the batch or

            [C, H, W] the same pos_weights across the batch. To apply the same positive weight

            along all spacial dimensions for a 2D multi-class target [C, H, W] use: [C, 1, 1].

            Default: ``None``



    Shape:

        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same

          shape as input.



     Examples::



        >>> loss = nn.BCEWithLogitsLoss()

        >>> input = torch.randn(3, requires_grad=True)

        >>> target = torch.empty(3).random_(2)

        >>> output = loss(input, target)

        >>> output.backward()

    """
    def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean',

                 pos_weight: Optional[Tensor] = None) -> None:
        super().__init__(size_average, reduce, reduction)
        self.register_buffer('weight', weight)
        self.register_buffer('pos_weight', pos_weight)
        self.weight: Optional[Tensor]
        self.pos_weight: Optional[Tensor]

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.binary_cross_entropy_with_logits(input, target,
                                                  self.weight,
                                                  pos_weight=self.pos_weight,
                                                  reduction=self.reduction)


class HingeEmbeddingLoss(_Loss):
    r"""Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`

    (containing 1 or -1).

    This is usually used for measuring whether two inputs are similar or

    dissimilar, e.g. using the L1 pairwise distance as :math:`x`, and is typically

    used for learning nonlinear embeddings or semi-supervised learning.



    The loss function for :math:`n`-th sample in the mini-batch is



    .. math::

        l_n = \begin{cases}

            x_n, & \text{if}\; y_n = 1,\\

            \max \{0, margin - x_n\}, & \text{if}\; y_n = -1,

        \end{cases}



    and the total loss functions is



    .. math::

        \ell(x, y) = \begin{cases}

            \operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\

            \operatorname{sum}(L),  & \text{if reduction} = \text{`sum'.}

        \end{cases}



    where :math:`L = \{l_1,\dots,l_N\}^\top`.



    Args:

        margin (float, optional): Has a default value of `1`.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(*)` where :math:`*` means, any number of dimensions. The sum operation

          operates over all the elements.

        - Target: :math:`(*)`, same shape as the input

        - Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input

    """
    __constants__ = ['margin', 'reduction']
    margin: float

    def __init__(self, margin: float = 1.0, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)
        self.margin = margin

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.hinge_embedding_loss(input, target, margin=self.margin, reduction=self.reduction)


class MultiLabelMarginLoss(_Loss):
    r"""Creates a criterion that optimizes a multi-class multi-classification

    hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)

    and output :math:`y` (which is a 2D `Tensor` of target class indices).

    For each sample in the mini-batch:



    .. math::

        \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}



    where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \

    :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \

    :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \

    and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.



    :math:`y` and :math:`x` must have the same size.



    The criterion only considers a contiguous block of non-negative targets that

    starts at the front.



    This allows for different samples to have variable amounts of target classes.



    Args:

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(C)` or :math:`(N, C)` where `N` is the batch size and `C`

          is the number of classes.

        - Target: :math:`(C)` or :math:`(N, C)`, label targets padded by -1 ensuring same shape as the input.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.



    Examples::



        >>> loss = nn.MultiLabelMarginLoss()

        >>> x = torch.FloatTensor([[0.1, 0.2, 0.4, 0.8]])

        >>> # for target y, only consider labels 3 and 0, not after label -1

        >>> y = torch.LongTensor([[3, 0, -1, 1]])

        >>> # 0.25 * ((1-(0.1-0.2)) + (1-(0.1-0.4)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))

        >>> loss(x, y)

        tensor(0.85...)



    """
    __constants__ = ['reduction']

    def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.multilabel_margin_loss(input, target, reduction=self.reduction)


class SmoothL1Loss(_Loss):
    r"""Creates a criterion that uses a squared term if the absolute

    element-wise error falls below beta and an L1 term otherwise.

    It is less sensitive to outliers than :class:`torch.nn.MSELoss` and in some cases

    prevents exploding gradients (e.g. see the paper `Fast R-CNN`_ by Ross Girshick).



    For a batch of size :math:`N`, the unreduced loss can be described as:



    .. math::

        \ell(x, y) = L = \{l_1, ..., l_N\}^T



    with



    .. math::

        l_n = \begin{cases}

        0.5 (x_n - y_n)^2 / beta, & \text{if } |x_n - y_n| < beta \\

        |x_n - y_n| - 0.5 * beta, & \text{otherwise }

        \end{cases}



    If `reduction` is not `none`, then:



    .. math::

        \ell(x, y) =

        \begin{cases}

            \operatorname{mean}(L), &  \text{if reduction} = \text{`mean';}\\

            \operatorname{sum}(L),  &  \text{if reduction} = \text{`sum'.}

        \end{cases}



    .. note::

        Smooth L1 loss can be seen as exactly :class:`L1Loss`, but with the :math:`|x - y| < beta`

        portion replaced with a quadratic function such that its slope is 1 at :math:`|x - y| = beta`.

        The quadratic segment smooths the L1 loss near :math:`|x - y| = 0`.



    .. note::

        Smooth L1 loss is closely related to :class:`HuberLoss`, being

        equivalent to :math:`huber(x, y) / beta` (note that Smooth L1's beta hyper-parameter is

        also known as delta for Huber). This leads to the following differences:



        * As beta -> 0, Smooth L1 loss converges to :class:`L1Loss`, while :class:`HuberLoss`

          converges to a constant 0 loss. When beta is 0, Smooth L1 loss is equivalent to L1 loss.

        * As beta -> :math:`+\infty`, Smooth L1 loss converges to a constant 0 loss, while

          :class:`HuberLoss` converges to :class:`MSELoss`.

        * For Smooth L1 loss, as beta varies, the L1 segment of the loss has a constant slope of 1.

          For :class:`HuberLoss`, the slope of the L1 segment is beta.



    .. _`Fast R-CNN`: https://arxiv.org/abs/1504.08083



    Args:

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``

        beta (float, optional): Specifies the threshold at which to change between L1 and L2 loss.

            The value must be non-negative. Default: 1.0



    Shape:

        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same shape as the input.

    """
    __constants__ = ['reduction']

    def __init__(self, size_average=None, reduce=None, reduction: str = 'mean', beta: float = 1.0) -> None:
        super().__init__(size_average, reduce, reduction)
        self.beta = beta

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.smooth_l1_loss(input, target, reduction=self.reduction, beta=self.beta)


class HuberLoss(_Loss):
    r"""Creates a criterion that uses a squared term if the absolute

    element-wise error falls below delta and a delta-scaled L1 term otherwise.

    This loss combines advantages of both :class:`L1Loss` and :class:`MSELoss`; the

    delta-scaled L1 region makes the loss less sensitive to outliers than :class:`MSELoss`,

    while the L2 region provides smoothness over :class:`L1Loss` near 0. See

    `Huber loss <https://en.wikipedia.org/wiki/Huber_loss>`_ for more information.



    For a batch of size :math:`N`, the unreduced loss can be described as:



    .. math::

        \ell(x, y) = L = \{l_1, ..., l_N\}^T



    with



    .. math::

        l_n = \begin{cases}

        0.5 (x_n - y_n)^2, & \text{if } |x_n - y_n| < delta \\

        delta * (|x_n - y_n| - 0.5 * delta), & \text{otherwise }

        \end{cases}



    If `reduction` is not `none`, then:



    .. math::

        \ell(x, y) =

        \begin{cases}

            \operatorname{mean}(L), &  \text{if reduction} = \text{`mean';}\\

            \operatorname{sum}(L),  &  \text{if reduction} = \text{`sum'.}

        \end{cases}



    .. note::

        When delta is set to 1, this loss is equivalent to :class:`SmoothL1Loss`.

        In general, this loss differs from :class:`SmoothL1Loss` by a factor of delta (AKA beta

        in Smooth L1).

        See :class:`SmoothL1Loss` for additional discussion on the differences in behavior

        between the two losses.



    Args:

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``

        delta (float, optional): Specifies the threshold at which to change between delta-scaled L1 and L2 loss.

            The value must be positive.  Default: 1.0



    Shape:

        - Input: :math:`(*)` where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same shape as the input.

    """
    __constants__ = ['reduction', 'delta']

    def __init__(self, reduction: str = 'mean', delta: float = 1.0) -> None:
        super().__init__(reduction=reduction)
        self.delta = delta

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.huber_loss(input, target, reduction=self.reduction, delta=self.delta)


class SoftMarginLoss(_Loss):
    r"""Creates a criterion that optimizes a two-class classification

    logistic loss between input tensor :math:`x` and target tensor :math:`y`

    (containing 1 or -1).



    .. math::

        \text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}



    Args:

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(*)`, where :math:`*` means any number of dimensions.

        - Target: :math:`(*)`, same shape as the input.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(*)`, same

          shape as input.



    """
    __constants__ = ['reduction']

    def __init__(self, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.soft_margin_loss(input, target, reduction=self.reduction)


class CrossEntropyLoss(_WeightedLoss):
    r"""This criterion computes the cross entropy loss between input logits

    and target.



    It is useful when training a classification problem with `C` classes.

    If provided, the optional argument :attr:`weight` should be a 1D `Tensor`

    assigning weight to each of the classes.

    This is particularly useful when you have an unbalanced training set.



    The `input` is expected to contain the unnormalized logits for each class (which do `not` need

    to be positive or sum to 1, in general).

    `input` has to be a Tensor of size :math:`(C)` for unbatched input,

    :math:`(minibatch, C)` or :math:`(minibatch, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1` for the

    `K`-dimensional case. The last being useful for higher dimension inputs, such

    as computing cross entropy loss per-pixel for 2D images.



    The `target` that this criterion expects should contain either:



    - Class indices in the range :math:`[0, C)` where :math:`C` is the number of classes; if

      `ignore_index` is specified, this loss also accepts this class index (this index

      may not necessarily be in the class range). The unreduced (i.e. with :attr:`reduction`

      set to ``'none'``) loss for this case can be described as:



      .. math::

          \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad

          l_n = - w_{y_n} \log \frac{\exp(x_{n,y_n})}{\sum_{c=1}^C \exp(x_{n,c})}

          \cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\}



      where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight,

      :math:`C` is the number of classes, and :math:`N` spans the minibatch dimension as well as

      :math:`d_1, ..., d_k` for the `K`-dimensional case. If

      :attr:`reduction` is not ``'none'`` (default ``'mean'``), then



      .. math::

          \ell(x, y) = \begin{cases}

              \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n} \cdot \mathbb{1}\{y_n \not= \text{ignore\_index}\}} l_n, &

               \text{if reduction} = \text{`mean';}\\

                \sum_{n=1}^N l_n,  &

                \text{if reduction} = \text{`sum'.}

            \end{cases}



      Note that this case is equivalent to applying :class:`~torch.nn.LogSoftmax`

      on an input, followed by :class:`~torch.nn.NLLLoss`.



    - Probabilities for each class; useful when labels beyond a single class per minibatch item

      are required, such as for blended labels, label smoothing, etc. The unreduced (i.e. with

      :attr:`reduction` set to ``'none'``) loss for this case can be described as:



      .. math::

          \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad

          l_n = - \sum_{c=1}^C w_c \log \frac{\exp(x_{n,c})}{\sum_{i=1}^C \exp(x_{n,i})} y_{n,c}



      where :math:`x` is the input, :math:`y` is the target, :math:`w` is the weight,

      :math:`C` is the number of classes, and :math:`N` spans the minibatch dimension as well as

      :math:`d_1, ..., d_k` for the `K`-dimensional case. If

      :attr:`reduction` is not ``'none'`` (default ``'mean'``), then



      .. math::

          \ell(x, y) = \begin{cases}

              \frac{\sum_{n=1}^N l_n}{N}, &

               \text{if reduction} = \text{`mean';}\\

                \sum_{n=1}^N l_n,  &

                \text{if reduction} = \text{`sum'.}

            \end{cases}



    .. note::

        The performance of this criterion is generally better when `target` contains class

        indices, as this allows for optimized computation. Consider providing `target` as

        class probabilities only when a single class label per minibatch item is too restrictive.



    Args:

        weight (Tensor, optional): a manual rescaling weight given to each class.

            If given, has to be a Tensor of size `C` and floating point dtype

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        ignore_index (int, optional): Specifies a target value that is ignored

            and does not contribute to the input gradient. When :attr:`size_average` is

            ``True``, the loss is averaged over non-ignored targets. Note that

            :attr:`ignore_index` is only applicable when the target contains class indices.

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will

            be applied, ``'mean'``: the weighted mean of the output is taken,

            ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in

            the meantime, specifying either of those two args will override

            :attr:`reduction`. Default: ``'mean'``

        label_smoothing (float, optional): A float in [0.0, 1.0]. Specifies the amount

            of smoothing when computing the loss, where 0.0 means no smoothing. The targets

            become a mixture of the original ground truth and a uniform distribution as described in

            `Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.



    Shape:

        - Input: Shape :math:`(C)`, :math:`(N, C)` or :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`

          in the case of `K`-dimensional loss.

        - Target: If containing class indices, shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with

          :math:`K \geq 1` in the case of K-dimensional loss where each value should be between :math:`[0, C)`.

          If containing class probabilities, same shape as the input and each value should be between :math:`[0, 1]`.

        - Output: If reduction is 'none', shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with :math:`K \geq 1`

          in the case of K-dimensional loss, depending on the shape of the input. Otherwise, scalar.





        where:



        .. math::

            \begin{aligned}

                C ={} & \text{number of classes} \\

                N ={} & \text{batch size} \\

            \end{aligned}



    Examples::



        >>> # Example of target with class indices

        >>> loss = nn.CrossEntropyLoss()

        >>> input = torch.randn(3, 5, requires_grad=True)

        >>> target = torch.empty(3, dtype=torch.long).random_(5)

        >>> output = loss(input, target)

        >>> output.backward()

        >>>

        >>> # Example of target with class probabilities

        >>> input = torch.randn(3, 5, requires_grad=True)

        >>> target = torch.randn(3, 5).softmax(dim=1)

        >>> output = loss(input, target)

        >>> output.backward()

    """
    __constants__ = ['ignore_index', 'reduction', 'label_smoothing']
    ignore_index: int
    label_smoothing: float

    def __init__(self, weight: Optional[Tensor] = None, size_average=None, ignore_index: int = -100,

                 reduce=None, reduction: str = 'mean', label_smoothing: float = 0.0) -> None:
        super().__init__(weight, size_average, reduce, reduction)
        self.ignore_index = ignore_index
        self.label_smoothing = label_smoothing

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.cross_entropy(input, target, weight=self.weight,
                               ignore_index=self.ignore_index, reduction=self.reduction,
                               label_smoothing=self.label_smoothing)


class MultiLabelSoftMarginLoss(_WeightedLoss):
    r"""Creates a criterion that optimizes a multi-label one-versus-all

    loss based on max-entropy, between input :math:`x` and target :math:`y` of size

    :math:`(N, C)`.

    For each sample in the minibatch:



    .. math::

        loss(x, y) = - \frac{1}{C} * \sum_i y[i] * \log((1 + \exp(-x[i]))^{-1})

                         + (1-y[i]) * \log\left(\frac{\exp(-x[i])}{(1 + \exp(-x[i]))}\right)



    where :math:`i \in \left\{0, \; \cdots , \; \text{x.nElement}() - 1\right\}`,

    :math:`y[i] \in \left\{0, \; 1\right\}`.



    Args:

        weight (Tensor, optional): a manual rescaling weight given to each

            class. If given, it has to be a Tensor of size `C`. Otherwise, it is

            treated as if having all ones.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(N, C)` where `N` is the batch size and `C` is the number of classes.

        - Target: :math:`(N, C)`, label targets must have the same shape as the input.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then :math:`(N)`.

    """
    __constants__ = ['reduction']

    def __init__(self, weight: Optional[Tensor] = None, size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(weight, size_average, reduce, reduction)

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.multilabel_soft_margin_loss(input, target, weight=self.weight, reduction=self.reduction)


class CosineEmbeddingLoss(_Loss):
    r"""Creates a criterion that measures the loss given input tensors

    :math:`x_1`, :math:`x_2` and a `Tensor` label :math:`y` with values 1 or -1.

    Use (:math:`y=1`) to maximize the cosine similarity of two inputs, and (:math:`y=-1`) otherwise.

    This is typically used for learning nonlinear

    embeddings or semi-supervised learning.



    The loss function for each sample is:



    .. math::

        \text{loss}(x, y) =

        \begin{cases}

        1 - \cos(x_1, x_2), & \text{if } y = 1 \\

        \max(0, \cos(x_1, x_2) - \text{margin}), & \text{if } y = -1

        \end{cases}



    Args:

        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,

            :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the

            default value is :math:`0`.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input1: :math:`(N, D)` or :math:`(D)`, where `N` is the batch size and `D` is the embedding dimension.

        - Input2: :math:`(N, D)` or :math:`(D)`, same shape as Input1.

        - Target: :math:`(N)` or :math:`()`.

        - Output: If :attr:`reduction` is ``'none'``, then :math:`(N)`, otherwise scalar.



    Examples::



        >>> loss = nn.CosineEmbeddingLoss()

        >>> input1 = torch.randn(3, 5, requires_grad=True)

        >>> input2 = torch.randn(3, 5, requires_grad=True)

        >>> target = torch.ones(3)

        >>> output = loss(input1, input2, target)

        >>> output.backward()

    """
    __constants__ = ['margin', 'reduction']
    margin: float

    def __init__(self, margin: float = 0., size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)
        self.margin = margin

    def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor:
        return F.cosine_embedding_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)


class MarginRankingLoss(_Loss):
    r"""Creates a criterion that measures the loss given

    inputs :math:`x1`, :math:`x2`, two 1D mini-batch or 0D `Tensors`,

    and a label 1D mini-batch or 0D `Tensor` :math:`y` (containing 1 or -1).



    If :math:`y = 1` then it assumed the first input should be ranked higher

    (have a larger value) than the second input, and vice-versa for :math:`y = -1`.



    The loss function for each pair of samples in the mini-batch is:



    .. math::

        \text{loss}(x1, x2, y) = \max(0, -y * (x1 - x2) + \text{margin})



    Args:

        margin (float, optional): Has a default value of :math:`0`.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input1: :math:`(N)` or :math:`()` where `N` is the batch size.

        - Input2: :math:`(N)` or :math:`()`, same shape as the Input1.

        - Target: :math:`(N)` or :math:`()`, same shape as the inputs.

        - Output: scalar. If :attr:`reduction` is ``'none'`` and Input size is not :math:`()`, then :math:`(N)`.



    Examples::



        >>> loss = nn.MarginRankingLoss()

        >>> input1 = torch.randn(3, requires_grad=True)

        >>> input2 = torch.randn(3, requires_grad=True)

        >>> target = torch.randn(3).sign()

        >>> output = loss(input1, input2, target)

        >>> output.backward()

    """
    __constants__ = ['margin', 'reduction']
    margin: float

    def __init__(self, margin: float = 0., size_average=None, reduce=None, reduction: str = 'mean') -> None:
        super().__init__(size_average, reduce, reduction)
        self.margin = margin

    def forward(self, input1: Tensor, input2: Tensor, target: Tensor) -> Tensor:
        return F.margin_ranking_loss(input1, input2, target, margin=self.margin, reduction=self.reduction)


class MultiMarginLoss(_WeightedLoss):
    r"""Creates a criterion that optimizes a multi-class classification hinge

    loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`) and

    output :math:`y` (which is a 1D tensor of target class indices,

    :math:`0 \leq y \leq \text{x.size}(1)-1`):



    For each mini-batch sample, the loss in terms of the 1D input :math:`x` and scalar

    output :math:`y` is:



    .. math::

        \text{loss}(x, y) = \frac{\sum_i \max(0, \text{margin} - x[y] + x[i])^p}{\text{x.size}(0)}



    where :math:`i \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`

    and :math:`i \neq y`.



    Optionally, you can give non-equal weighting on the classes by passing

    a 1D :attr:`weight` tensor into the constructor.



    The loss function then becomes:



    .. math::

        \text{loss}(x, y) = \frac{\sum_i w[y] * \max(0, \text{margin} - x[y] + x[i])^p}{\text{x.size}(0)}



    Args:

        p (int, optional): Has a default value of :math:`1`. :math:`1` and :math:`2`

            are the only supported values.

        margin (float, optional): Has a default value of :math:`1`.

        weight (Tensor, optional): a manual rescaling weight given to each

            class. If given, it has to be a Tensor of size `C`. Otherwise, it is

            treated as if having all ones.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(N, C)` or :math:`(C)`, where :math:`N` is the batch size and :math:`C` is the number of classes.

        - Target: :math:`(N)` or :math:`()`, where each value is :math:`0 \leq \text{targets}[i] \leq C-1`.

        - Output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the target.



    Examples::



        >>> loss = nn.MultiMarginLoss()

        >>> x = torch.tensor([[0.1, 0.2, 0.4, 0.8]])

        >>> y = torch.tensor([3])

        >>> # 0.25 * ((1-(0.8-0.1)) + (1-(0.8-0.2)) + (1-(0.8-0.4)))

        >>> loss(x, y)

        tensor(0.32...)

    """
    __constants__ = ['p', 'margin', 'reduction']
    margin: float
    p: int

    def __init__(self, p: int = 1, margin: float = 1., weight: Optional[Tensor] = None, size_average=None,

                 reduce=None, reduction: str = 'mean') -> None:
        super().__init__(weight, size_average, reduce, reduction)
        if p != 1 and p != 2:
            raise ValueError("only p == 1 and p == 2 supported")
        if weight is not None and weight.dim() != 1 :
            raise ValueError(
                f"MultiMarginLoss: expected weight to be None or 1D tensor, got {weight.dim()}D instead"
            )
        self.p = p
        self.margin = margin

    def forward(self, input: Tensor, target: Tensor) -> Tensor:
        return F.multi_margin_loss(input, target, p=self.p, margin=self.margin,
                                   weight=self.weight, reduction=self.reduction)


class TripletMarginLoss(_Loss):
    r"""Creates a criterion that measures the triplet loss given an input

    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.

    This is used for measuring a relative similarity between samples. A triplet

    is composed by `a`, `p` and `n` (i.e., `anchor`, `positive examples` and `negative

    examples` respectively). The shapes of all input tensors should be

    :math:`(N, D)`.



    The distance swap is described in detail in the paper `Learning shallow

    convolutional feature descriptors with triplet losses`_ by

    V. Balntas, E. Riba et al.



    The loss function for each sample in the mini-batch is:



    .. math::

        L(a, p, n) = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}





    where



    .. math::

        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p



    The norm is calculated using the specified p value and a small constant :math:`\varepsilon` is

    added for numerical stability.



    See also :class:`~torch.nn.TripletMarginWithDistanceLoss`, which computes the

    triplet margin loss for input tensors using a custom distance function.



    Args:

        margin (float, optional): Default: :math:`1`.

        p (int, optional): The norm degree for pairwise distance. Default: :math:`2`.

        eps (float, optional): Small constant for numerical stability. Default: :math:`1e-6`.

        swap (bool, optional): The distance swap is described in detail in the paper

            `Learning shallow convolutional feature descriptors with triplet losses` by

            V. Balntas, E. Riba et al. Default: ``False``.

        size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,

            the losses are averaged over each loss element in the batch. Note that for

            some losses, there are multiple elements per sample. If the field :attr:`size_average`

            is set to ``False``, the losses are instead summed for each minibatch. Ignored

            when :attr:`reduce` is ``False``. Default: ``True``

        reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the

            losses are averaged or summed over observations for each minibatch depending

            on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per

            batch element instead and ignores :attr:`size_average`. Default: ``True``

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`

            and :attr:`reduce` are in the process of being deprecated, and in the meantime,

            specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``



    Shape:

        - Input: :math:`(N, D)` or :math:`(D)` where :math:`D` is the vector dimension.

        - Output: A Tensor of shape :math:`(N)` if :attr:`reduction` is ``'none'`` and

          input shape is :math:`(N, D)`; a scalar otherwise.



    Examples::



    >>> triplet_loss = nn.TripletMarginLoss(margin=1.0, p=2, eps=1e-7)

    >>> anchor = torch.randn(100, 128, requires_grad=True)

    >>> positive = torch.randn(100, 128, requires_grad=True)

    >>> negative = torch.randn(100, 128, requires_grad=True)

    >>> output = triplet_loss(anchor, positive, negative)

    >>> output.backward()



    .. _Learning shallow convolutional feature descriptors with triplet losses:

        http://www.bmva.org/bmvc/2016/papers/paper119/index.html

    """
    __constants__ = ['margin', 'p', 'eps', 'swap', 'reduction']
    margin: float
    p: float
    eps: float
    swap: bool

    def __init__(self, margin: float = 1.0, p: float = 2., eps: float = 1e-6, swap: bool = False, size_average=None,

                 reduce=None, reduction: str = 'mean'):
        super().__init__(size_average, reduce, reduction)
        self.margin = margin
        self.p = p
        self.eps = eps
        self.swap = swap

    def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor:
        return F.triplet_margin_loss(anchor, positive, negative, margin=self.margin, p=self.p,
                                     eps=self.eps, swap=self.swap, reduction=self.reduction)


class TripletMarginWithDistanceLoss(_Loss):
    r"""Creates a criterion that measures the triplet loss given input

    tensors :math:`a`, :math:`p`, and :math:`n` (representing anchor,

    positive, and negative examples, respectively), and a nonnegative,

    real-valued function ("distance function") used to compute the relationship

    between the anchor and positive example ("positive distance") and the

    anchor and negative example ("negative distance").



    The unreduced loss (i.e., with :attr:`reduction` set to ``'none'``)

    can be described as:



    .. math::

        \ell(a, p, n) = L = \{l_1,\dots,l_N\}^\top, \quad

        l_i = \max \{d(a_i, p_i) - d(a_i, n_i) + {\rm margin}, 0\}



    where :math:`N` is the batch size; :math:`d` is a nonnegative, real-valued function

    quantifying the closeness of two tensors, referred to as the :attr:`distance_function`;

    and :math:`margin` is a nonnegative margin representing the minimum difference

    between the positive and negative distances that is required for the loss to

    be 0.  The input tensors have :math:`N` elements each and can be of any shape

    that the distance function can handle.



    If :attr:`reduction` is not ``'none'``

    (default ``'mean'``), then:



    .. math::

        \ell(x, y) =

        \begin{cases}

            \operatorname{mean}(L), &  \text{if reduction} = \text{`mean';}\\

            \operatorname{sum}(L),  &  \text{if reduction} = \text{`sum'.}

        \end{cases}



    See also :class:`~torch.nn.TripletMarginLoss`, which computes the triplet

    loss for input tensors using the :math:`l_p` distance as the distance function.



    Args:

        distance_function (Callable, optional): A nonnegative, real-valued function that

            quantifies the closeness of two tensors. If not specified,

            `nn.PairwiseDistance` will be used.  Default: ``None``

        margin (float, optional): A nonnegative margin representing the minimum difference

            between the positive and negative distances required for the loss to be 0. Larger

            margins penalize cases where the negative examples are not distant enough from the

            anchors, relative to the positives. Default: :math:`1`.

        swap (bool, optional): Whether to use the distance swap described in the paper

            `Learning shallow convolutional feature descriptors with triplet losses` by

            V. Balntas, E. Riba et al. If True, and if the positive example is closer to the

            negative example than the anchor is, swaps the positive example and the anchor in

            the loss computation. Default: ``False``.

        reduction (str, optional): Specifies the (optional) reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the sum of the output will be divided by the number of

            elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'``





    Shape:

        - Input: :math:`(N, *)` where :math:`*` represents any number of additional dimensions

          as supported by the distance function.

        - Output: A Tensor of shape :math:`(N)` if :attr:`reduction` is ``'none'``, or a scalar

          otherwise.



    Examples::



    >>> # Initialize embeddings

    >>> embedding = nn.Embedding(1000, 128)

    >>> anchor_ids = torch.randint(0, 1000, (1,))

    >>> positive_ids = torch.randint(0, 1000, (1,))

    >>> negative_ids = torch.randint(0, 1000, (1,))

    >>> anchor = embedding(anchor_ids)

    >>> positive = embedding(positive_ids)

    >>> negative = embedding(negative_ids)

    >>>

    >>> # Built-in Distance Function

    >>> triplet_loss = \

    >>>     nn.TripletMarginWithDistanceLoss(distance_function=nn.PairwiseDistance())

    >>> output = triplet_loss(anchor, positive, negative)

    >>> output.backward()

    >>>

    >>> # Custom Distance Function

    >>> def l_infinity(x1, x2):

    >>>     return torch.max(torch.abs(x1 - x2), dim=1).values

    >>>

    >>> # xdoctest: +SKIP("FIXME: Would call backwards a second time")

    >>> triplet_loss = (

    >>>     nn.TripletMarginWithDistanceLoss(distance_function=l_infinity, margin=1.5))

    >>> output = triplet_loss(anchor, positive, negative)

    >>> output.backward()

    >>>

    >>> # Custom Distance Function (Lambda)

    >>> triplet_loss = (

    >>>     nn.TripletMarginWithDistanceLoss(

    >>>         distance_function=lambda x, y: 1.0 - F.cosine_similarity(x, y)))

    >>> output = triplet_loss(anchor, positive, negative)

    >>> output.backward()



    Reference:

        V. Balntas, et al.: Learning shallow convolutional feature descriptors with triplet losses:

        http://www.bmva.org/bmvc/2016/papers/paper119/index.html

    """
    __constants__ = ['margin', 'swap', 'reduction']
    margin: float
    swap: bool

    def __init__(self, *, distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None,

                 margin: float = 1.0, swap: bool = False, reduction: str = 'mean'):
        super().__init__(size_average=None, reduce=None, reduction=reduction)
        self.distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = \
            distance_function if distance_function is not None else PairwiseDistance()
        self.margin = margin
        self.swap = swap

    def forward(self, anchor: Tensor, positive: Tensor, negative: Tensor) -> Tensor:
        return F.triplet_margin_with_distance_loss(anchor, positive, negative,
                                                   distance_function=self.distance_function,
                                                   margin=self.margin, swap=self.swap, reduction=self.reduction)


class CTCLoss(_Loss):
    r"""The Connectionist Temporal Classification loss.



    Calculates loss between a continuous (unsegmented) time series and a target sequence. CTCLoss sums over the

    probability of possible alignments of input to target, producing a loss value which is differentiable

    with respect to each input node. The alignment of input to target is assumed to be "many-to-one", which

    limits the length of the target sequence such that it must be :math:`\leq` the input length.



    Args:

        blank (int, optional): blank label. Default :math:`0`.

        reduction (str, optional): Specifies the reduction to apply to the output:

            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,

            ``'mean'``: the output losses will be divided by the target lengths and

            then the mean over the batch is taken, ``'sum'``: the output losses will be summed.

            Default: ``'mean'``

        zero_infinity (bool, optional):

            Whether to zero infinite losses and the associated gradients.

            Default: ``False``

            Infinite losses mainly occur when the inputs are too short

            to be aligned to the targets.



    Shape:

        - Log_probs: Tensor of size :math:`(T, N, C)` or :math:`(T, C)`,

          where :math:`T = \text{input length}`,

          :math:`N = \text{batch size}`, and

          :math:`C = \text{number of classes (including blank)}`.

          The logarithmized probabilities of the outputs (e.g. obtained with

          :func:`torch.nn.functional.log_softmax`).

        - Targets: Tensor of size :math:`(N, S)` or

          :math:`(\operatorname{sum}(\text{target\_lengths}))`,

          where :math:`N = \text{batch size}` and

          :math:`S = \text{max target length, if shape is } (N, S)`.

          It represent the target sequences. Each element in the target

          sequence is a class index. And the target index cannot be blank (default=0).

          In the :math:`(N, S)` form, targets are padded to the

          length of the longest sequence, and stacked.

          In the :math:`(\operatorname{sum}(\text{target\_lengths}))` form,

          the targets are assumed to be un-padded and

          concatenated within 1 dimension.

        - Input_lengths: Tuple or tensor of size :math:`(N)` or :math:`()`,

          where :math:`N = \text{batch size}`. It represent the lengths of the

          inputs (must each be :math:`\leq T`). And the lengths are specified

          for each sequence to achieve masking under the assumption that sequences

          are padded to equal lengths.

        - Target_lengths: Tuple or tensor of size :math:`(N)` or :math:`()`,

          where :math:`N = \text{batch size}`. It represent lengths of the targets.

          Lengths are specified for each sequence to achieve masking under the

          assumption that sequences are padded to equal lengths. If target shape is

          :math:`(N,S)`, target_lengths are effectively the stop index

          :math:`s_n` for each target sequence, such that ``target_n = targets[n,0:s_n]`` for

          each target in a batch. Lengths must each be :math:`\leq S`

          If the targets are given as a 1d tensor that is the concatenation of individual

          targets, the target_lengths must add up to the total length of the tensor.

        - Output: scalar if :attr:`reduction` is ``'mean'`` (default) or

          ``'sum'``. If :attr:`reduction` is ``'none'``, then :math:`(N)` if input is batched or

          :math:`()` if input is unbatched, where :math:`N = \text{batch size}`.



    Examples::



        >>> # Target are to be padded

        >>> T = 50      # Input sequence length

        >>> C = 20      # Number of classes (including blank)

        >>> N = 16      # Batch size

        >>> S = 30      # Target sequence length of longest target in batch (padding length)

        >>> S_min = 10  # Minimum target length, for demonstration purposes

        >>>

        >>> # Initialize random batch of input vectors, for *size = (T,N,C)

        >>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()

        >>>

        >>> # Initialize random batch of targets (0 = blank, 1:C = classes)

        >>> target = torch.randint(low=1, high=C, size=(N, S), dtype=torch.long)

        >>>

        >>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)

        >>> target_lengths = torch.randint(low=S_min, high=S, size=(N,), dtype=torch.long)

        >>> ctc_loss = nn.CTCLoss()

        >>> loss = ctc_loss(input, target, input_lengths, target_lengths)

        >>> loss.backward()

        >>>

        >>>

        >>> # Target are to be un-padded

        >>> T = 50      # Input sequence length

        >>> C = 20      # Number of classes (including blank)

        >>> N = 16      # Batch size

        >>>

        >>> # Initialize random batch of input vectors, for *size = (T,N,C)

        >>> input = torch.randn(T, N, C).log_softmax(2).detach().requires_grad_()

        >>> input_lengths = torch.full(size=(N,), fill_value=T, dtype=torch.long)

        >>>

        >>> # Initialize random batch of targets (0 = blank, 1:C = classes)

        >>> target_lengths = torch.randint(low=1, high=T, size=(N,), dtype=torch.long)

        >>> target = torch.randint(low=1, high=C, size=(sum(target_lengths),), dtype=torch.long)

        >>> ctc_loss = nn.CTCLoss()

        >>> loss = ctc_loss(input, target, input_lengths, target_lengths)

        >>> loss.backward()

        >>>

        >>>

        >>> # Target are to be un-padded and unbatched (effectively N=1)

        >>> T = 50      # Input sequence length

        >>> C = 20      # Number of classes (including blank)

        >>>

        >>> # Initialize random batch of input vectors, for *size = (T,C)

        >>> # xdoctest: +SKIP("FIXME: error in doctest")

        >>> input = torch.randn(T, C).log_softmax(1).detach().requires_grad_()

        >>> input_lengths = torch.tensor(T, dtype=torch.long)

        >>>

        >>> # Initialize random batch of targets (0 = blank, 1:C = classes)

        >>> target_lengths = torch.randint(low=1, high=T, size=(), dtype=torch.long)

        >>> target = torch.randint(low=1, high=C, size=(target_lengths,), dtype=torch.long)

        >>> ctc_loss = nn.CTCLoss()

        >>> loss = ctc_loss(input, target, input_lengths, target_lengths)

        >>> loss.backward()



    Reference:

        A. Graves et al.: Connectionist Temporal Classification:

        Labelling Unsegmented Sequence Data with Recurrent Neural Networks:

        https://www.cs.toronto.edu/~graves/icml_2006.pdf



    Note:

        In order to use CuDNN, the following must be satisfied: :attr:`targets` must be

        in concatenated format, all :attr:`input_lengths` must be `T`.  :math:`blank=0`,

        :attr:`target_lengths` :math:`\leq 256`, the integer arguments must be of

        dtype :attr:`torch.int32`.



        The regular implementation uses the (more common in PyTorch) `torch.long` dtype.





    Note:

        In some circumstances when using the CUDA backend with CuDNN, this operator

        may select a nondeterministic algorithm to increase performance. If this is

        undesirable, you can try to make the operation deterministic (potentially at

        a performance cost) by setting ``torch.backends.cudnn.deterministic =

        True``.

        Please see the notes on :doc:`/notes/randomness` for background.

    """
    __constants__ = ['blank', 'reduction']
    blank: int
    zero_infinity: bool

    def __init__(self, blank: int = 0, reduction: str = 'mean', zero_infinity: bool = False):
        super().__init__(reduction=reduction)
        self.blank = blank
        self.zero_infinity = zero_infinity

    def forward(self, log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor) -> Tensor:
        return F.ctc_loss(log_probs, targets, input_lengths, target_lengths, self.blank, self.reduction,
                          self.zero_infinity)

# TODO: L1HingeEmbeddingCriterion
# TODO: MSECriterion weight
# TODO: ClassSimplexCriterion