File size: 3,338 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from .module import Module
from .. import functional as F

from torch import Tensor

__all__ = ['PairwiseDistance', 'CosineSimilarity']

class PairwiseDistance(Module):
    r"""

    Computes the pairwise distance between input vectors, or between columns of input matrices.



    Distances are computed using ``p``-norm, with constant ``eps`` added to avoid division by zero

    if ``p`` is negative, i.e.:



    .. math ::

        \mathrm{dist}\left(x, y\right) = \left\Vert x-y + \epsilon e \right\Vert_p,



    where :math:`e` is the vector of ones and the ``p``-norm is given by.



    .. math ::

        \Vert x \Vert _p = \left( \sum_{i=1}^n  \vert x_i \vert ^ p \right) ^ {1/p}.



    Args:

        p (real, optional): the norm degree. Can be negative. Default: 2

        eps (float, optional): Small value to avoid division by zero.

            Default: 1e-6

        keepdim (bool, optional): Determines whether or not to keep the vector dimension.

            Default: False

    Shape:

        - Input1: :math:`(N, D)` or :math:`(D)` where `N = batch dimension` and `D = vector dimension`

        - Input2: :math:`(N, D)` or :math:`(D)`, same shape as the Input1

        - Output: :math:`(N)` or :math:`()` based on input dimension.

          If :attr:`keepdim` is ``True``, then :math:`(N, 1)` or :math:`(1)` based on input dimension.



    Examples::

        >>> pdist = nn.PairwiseDistance(p=2)

        >>> input1 = torch.randn(100, 128)

        >>> input2 = torch.randn(100, 128)

        >>> output = pdist(input1, input2)

    """

    __constants__ = ['norm', 'eps', 'keepdim']
    norm: float
    eps: float
    keepdim: bool

    def __init__(self, p: float = 2., eps: float = 1e-6, keepdim: bool = False) -> None:
        super().__init__()
        self.norm = p
        self.eps = eps
        self.keepdim = keepdim

    def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
        return F.pairwise_distance(x1, x2, self.norm, self.eps, self.keepdim)


class CosineSimilarity(Module):
    r"""Returns cosine similarity between :math:`x_1` and :math:`x_2`, computed along `dim`.



    .. math ::

        \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.



    Args:

        dim (int, optional): Dimension where cosine similarity is computed. Default: 1

        eps (float, optional): Small value to avoid division by zero.

            Default: 1e-8

    Shape:

        - Input1: :math:`(\ast_1, D, \ast_2)` where D is at position `dim`

        - Input2: :math:`(\ast_1, D, \ast_2)`, same number of dimensions as x1, matching x1 size at dimension `dim`,

              and broadcastable with x1 at other dimensions.

        - Output: :math:`(\ast_1, \ast_2)`

    Examples::

        >>> input1 = torch.randn(100, 128)

        >>> input2 = torch.randn(100, 128)

        >>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)

        >>> output = cos(input1, input2)

    """

    __constants__ = ['dim', 'eps']
    dim: int
    eps: float

    def __init__(self, dim: int = 1, eps: float = 1e-8) -> None:
        super().__init__()
        self.dim = dim
        self.eps = eps

    def forward(self, x1: Tensor, x2: Tensor) -> Tensor:
        return F.cosine_similarity(x1, x2, self.dim, self.eps)