Spaces:
Sleeping
Sleeping
File size: 1,489 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from .module import Module
from .. import functional as F
from torch import Tensor
__all__ = ['ChannelShuffle']
class ChannelShuffle(Module):
r"""Divides and rearranges the channels in a tensor.
This operation divides the channels in a tensor of shape :math:`(*, C , H, W)`
into g groups and rearranges them as :math:`(*, \frac{C}{g}, g, H, W)`,
while keeping the original tensor shape.
Args:
groups (int): number of groups to divide channels in.
Examples::
>>> # xdoctest: +IGNORE_WANT("FIXME: incorrect want")
>>> channel_shuffle = nn.ChannelShuffle(2)
>>> input = torch.randn(1, 4, 2, 2)
>>> print(input)
[[[[1, 2],
[3, 4]],
[[5, 6],
[7, 8]],
[[9, 10],
[11, 12]],
[[13, 14],
[15, 16]],
]]
>>> output = channel_shuffle(input)
>>> print(output)
[[[[1, 2],
[3, 4]],
[[9, 10],
[11, 12]],
[[5, 6],
[7, 8]],
[[13, 14],
[15, 16]],
]]
"""
__constants__ = ['groups']
groups: int
def __init__(self, groups: int) -> None:
super().__init__()
self.groups = groups
def forward(self, input: Tensor) -> Tensor:
return F.channel_shuffle(input, self.groups)
def extra_repr(self) -> str:
return f'groups={self.groups}'
|