File size: 67,096 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

import warnings

# A workaround to support both TorchScript and MyPy:
from typing import Any, List, Optional, Tuple, TYPE_CHECKING, Union

import torch
from torch import Tensor
from torch.masked import as_masked_tensor, is_masked_tensor, MaskedTensor
from . import _docs
from torch._prims_common import corresponding_real_dtype
from torch import sym_float

if TYPE_CHECKING:
    from torch.types import _dtype as DType

    DimOrDims = Optional[Union[int, Tuple[int], List[int]]]
else:
    # The JIT doesn't understand Union, nor torch.dtype here
    DType = int
    DimOrDims = Optional[Tuple[int]]


__all__: List[str] = []

# All masked reduction/normalization operations have the same
# signatures. Here we introduce docstring templates that are applied
# to docstrings of reduction/normalization functions via
# _apply_docstring_templates decorator.


def _apply_docstring_templates(func):
    """Decorator that applies docstring templates to function docstring

    and returns the function instance.

    """

    doc_string = getattr(_docs, f"{func.__name__}_docstring", None)
    if doc_string is None:
        warnings.warn(
            f"No documentation string available for {func.__name__}."
            " PyTorch team should run `python tools/update_masked_docs.py`"
            " to generate the missing docstrings."
        )
    else:
        func.__doc__ = doc_string

    # Expose function as public symbol
    __all__.append(func.__name__)

    return func


def _generate_docstring(func):
    """A utility function called from tools/update_masked_docs.py

    script to update the module torch.masked._docs.py

    """
    docstring_templates = dict(
        reduction_signature="""\

{function_name}(input, {operation_args}, *, {operation_kwargs}) -> Tensor""",
        reduction_descr="""\

Returns {operation name} of all the elements in the :attr:`input`

tensor along the given dimension(s) :attr:`dim` while the :attr:`input`

elements are masked out according to the boolean tensor

:attr:`mask`.""",
        reduction_args="""\

If :attr:`keepdim` is ``True``, the output tensor is of the same size

as :attr:`input` except in the dimension(s) :attr:`dim` where it is of

size 1. Otherwise, :attr:`dim` is squeezed (see

:func:`torch.squeeze`), resulting in the output tensor having 1 (or

``len(dim)``) fewer dimension(s).



The boolean tensor :attr:`mask` defines the "validity" of

:attr:`input` tensor elements: if :attr:`mask` element is True

then the corresponding element in :attr:`input` tensor will be

included in {operation name} computation, otherwise the element is

ignored.



When all elements of :attr:`input` along the given dimension

:attr:`dim` are ignored (fully masked-out), the corresponding element

of the output tensor will have undefined value: it may or may not

correspond to the identity value of {operation name} operation; the

choice may correspond to the value that leads to the most efficient

storage of :attr:`output` tensor.



The mask of the output tensor can be computed as

``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,

dtype=torch.bool)``.



The shapes of the :attr:`mask` tensor and the :attr:`input` tensor

don't need to match, but they must be :ref:`broadcastable

<broadcasting-semantics>` and the dimensionality of the :attr:`mask`

tensor must not be greater than of the :attr:`input` tensor.



Args:

    input (Tensor): the input tensor

    {args_declarations}



Keyword args:

    {kwargs_declarations}""",
        reduction_example="""\

Example::



    >>> input = {example_input}

    >>> input

    {indent_example_input}

    >>> mask = {example_mask}

    >>> mask

    {indent_example_mask}

    >>> {full_function_name}(input, {example_args}, mask=mask)

    {indent_example_output}

""",
        reduction_identity="""\

The identity value of {operation name} operation, which is used to start the reduction, is ``{identity_int32}``.""",
        reduction_identity_dtype="""\

The identity value of {operation name} operation, which is used to start the

reduction, depends on input dtype. For instance, for float32, uint8,

and int32 dtypes, the identity values are ``{identity_float32}``, ``{identity_uint8}``, and ``{identity_int32}``, respectively.""",
        normalization_signature="""\

{function_name}(input, {operation_args}, *, {operation_kwargs}) -> Tensor""",
        normalization_descr="""\

Returns {operation name} of all the slices in the :attr:`input` tensor

along :attr:`dim` while the :attr:`input` elements are masked out

according to the boolean tensor :attr:`mask`.



{definition}""",
        normalization_args="""\

The boolean tensor :attr:`mask` defines the "validity" of

:attr:`input` tensor elements: if :attr:`mask` element is True then

the corresponding element in :attr:`input` tensor will be included in

{operation name} computation, otherwise the element is ignored.



The values of masked-out elements of the output tensor have undefined

value: it may or may not be set to zero or nan; the choice may correspond to

the value that leads to the most efficient storage of :attr:`output`

tensor.



The mask of the {operation name} output tensor can be computed as

``torch.broadcast_to(mask, input.shape)``.



The shapes of the :attr:`mask` tensor and the :attr:`input` tensor

don't need to match, but they must be :ref:`broadcastable

<broadcasting-semantics>` and the dimensionality of the :attr:`mask`

tensor must not be greater than of the :attr:`input` tensor.



Args:

    input (Tensor): the input tensor

    {args_declarations}



Keyword args:

    {kwargs_declarations}""",
        normalization_example="""\

Example::



    >>> input = {example_input}

    >>> input

    {indent_example_input}

    >>> mask = {example_mask}

    >>> mask

    {indent_example_mask}

    >>> {full_function_name}(input, {example_args}, mask=mask)

    {indent_example_output}

""",
    )

    args_and_kwargs = dict(
        # argument name sufficies separated by double underscore will
        # be removed in the final documentation string.
        sum=(("dim",), ("keepdim=False", "dtype=None", "mask=None")),
        prod=(("dim",), ("keepdim=False", "dtype=None", "mask=None")),
        cumsum=(("dim__as_int",), ("dtype=None", "mask=None")),
        cumprod=(("dim__as_int",), ("dtype=None", "mask=None")),
        amin=(("dim",), ("keepdim=False", "dtype=None", "mask=None")),
        amax=(("dim",), ("keepdim=False", "dtype=None", "mask=None")),
        argmin=(("dim__as_int",), ("keepdim=False", "dtype=None", "mask=None")),
        argmax=(("dim__as_int",), ("keepdim=False", "dtype=None", "mask=None")),
        mean=(("dim",), ("keepdim=False", "dtype=None", "mask=None")),
        median=(("dim__as_int",), ("keepdim=False", "dtype=None", "mask=None")),
        norm=(
            (
                "ord",
                "dim",
            ),
            ("keepdim=False", "dtype=None", "mask=None"),
        ),
        var=(("dim", "unbiased"), ("keepdim=False", "dtype=None", "mask=None")),
        std=(("dim", "unbiased"), ("keepdim=False", "dtype=None", "mask=None")),
        logsumexp=(("dim",), ("keepdim=False", "dtype=None", "mask=None")),
        softmax=(("dim__as_int",), ("dtype=None", "mask=None")),
        log_softmax=(("dim__as_int",), ("dtype=None", "mask=None")),
        softmin=(("dim__as_int",), ("dtype=None", "mask=None")),
        normalize=(
            (
                "ord__required",
                "dim__as_int",
            ),
            ("eps=1e-12", "dtype=None", "mask=None"),
        ),
    )

    argument_declarations = dict(
        dim="""\

dim (int or tuple of ints, optional): the dimension or dimensions to reduce.

  Default: None that is equivalent to ``tuple(range(input.ndim))``.""",
        dim__as_int="""\

dim (int): the dimension along which {operation name} is computed.""",
        ord="""\

ord (int, float, optional): the order of vector norm. Default: 2.

  See :func:`torch.linalg.vector_norm` for a list of supported norms.""",
        ord__required="""\

ord (int, float): the order of vector norm. Default: 2.

  See :func:`torch.linalg.vector_norm` for a list of supported norms.""",
        unbiased="""\

unbiased (bool): when True, use Bessel’s correction, otherwise, compute

  the uncorrected sample variance.""",
        eps="""\

eps (float, optional): small value to avoid division by zero. Default: {default}.""",
        keepdim="""\

keepdim (bool, optional): whether the output tensor has

  :attr:`dim` retained or not. Default: {default}.""",
        dtype="""\

dtype (:class:`torch.dtype`, optional): the desired data type

  of returned tensor.  If specified, the input tensor is

  casted to :attr:`dtype` before the operation is

  performed. Default: {default}.""",
        mask="""\

mask (:class:`torch.Tensor`, optional): the boolean tensor

  containing the binary mask of validity of input tensor

  elements.

  Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.""",
    )

    definitions = dict(
        softmax="""\

Let ``x`` be a sequence of unmasked elements of one-dimensional slice

of the :attr:`input` tensor. Softmax of i-th element in ``x`` is

defined as ``exp(x[i])/sum(exp(x))``.""",
        log_softmax="""\

Let ``x`` be a sequence of unmasked elements of one-dimensional slice

of the :attr:`input` tensor. LogSoftmax of i-th element in ``x`` is

defined as ``log(exp(x[i])/sum(exp(x)))``.""",
        softmin="""\

Let ``x`` be a sequence of unmasked elements of one-dimensional slice

of the :attr:`input` tensor. Softmin of i-th element in ``x`` is

defined as ``exp(-x[i])/sum(exp(-x))``.""",
        normalize="""\

Let ``x`` be a sequence of unmasked elements of one-dimensional slice

of the :attr:`input` tensor. Normalize of i-th element in ``x`` is

defined as ``x[i]/max(norm(x, p), eps)``.""",
        cumsum="""\

Let ``x`` be a sequence of unmasked elements of one-dimensional slice

of the :attr:`input` tensor. Cumsum of i-th element in ``x`` is

defined as ``sum(x[:i])``.""",
        cumprod="""\

Let ``x`` be a sequence of unmasked elements of one-dimensional slice

of the :attr:`input` tensor. Cumsum of i-th element in ``x`` is

defined as ``prod(x[:i])``.""",
    )

    reduction_names = dict(
        sum="sum",
        prod="product",
        amax="maximum",
        amin="minimum",
        argmax="argmax",
        argmin="argmin",
        mean="mean",
        median="median",
        norm="norm",
        var="variance",
        std="standard_deviation",
        logsumexp="logsumexp",
    )

    normalization_names = dict(
        softmax="softmax",
        log_softmax="log_softmax",
        softmin="softmin",
        normalize="normalize",
        cumsum="cumulative_sum",
        cumprod="cumulative_prod",
    )

    operation_names = {}
    operation_names.update(reduction_names)
    operation_names.update(normalization_names)

    # Default example data:
    example_dim = 1
    example_input = torch.tensor([[-3, -2, -1], [0, 1, 2]])
    example_mask = torch.tensor([[True, False, True], [False, False, False]])
    example_args: Tuple[Any, ...]
    if func.__name__ in {"norm", "normalize"}:
        example_args = (2.0, example_dim)
        example_input = example_input.to(dtype=torch.float32)
    elif func.__name__ in {"var", "std"}:
        example_args = (example_dim, False)
    elif func.__name__ == "median":
        example_args = (example_dim,)
        example_input = example_input.to(dtype=torch.float32)
    else:
        example_args = (example_dim,)

    operation_args: Tuple[str, ...]
    operation_kwargs: Tuple[str, ...]
    operation_args, operation_kwargs = args_and_kwargs[func.__name__]
    arg_declarations = [
        "\n    ".join(
            argument_declarations.get(a, f'{a.split("__", 1)[0]}: TBD.').splitlines()
        )
        for a in operation_args
    ]
    kwarg_declarations = [
        "\n    ".join(
            argument_declarations.get(
                a.split("=", 1)[0], f'{a.split("__", 1)[0]}: TBD.'
            )
            .format(default=a.split("=", 1)[1])
            .splitlines()
        )
        for a in operation_kwargs
    ]

    if func.__name__ in reduction_names:
        op_kind = "reduction"
        doc_sections = ["signature", "descr", "identity", "args", "example"]
    elif func.__name__ in normalization_names:
        op_kind = "normalization"
        doc_sections = ["signature", "descr", "args", "example"]
        example_input = example_input.to(dtype=torch.float32)
    else:
        assert 0  # add function name to operation names dictionaries
    example_output = func(example_input, *example_args, mask=example_mask)

    template_data = {
        "function_name": func.__name__,
        "full_function_name": func.__module__ + "." + func.__name__,
        "operation name": operation_names[func.__name__],
        "operation_args": ", ".join(a.split("__", 1)[0] for a in operation_args),
        "operation_kwargs": ", ".join(a.split("__", 1)[0] for a in operation_kwargs),
        # one-line representation of a tensor:
        "example_input": " ".join(str(example_input).split()),
        "example_args": ", ".join(map(str, example_args)),
        "example_mask": " ".join(str(example_mask).split()),
        # multi-line representation of a tensor with indent
        "indent_example_input": ("\n    ").join(str(example_input).splitlines()),
        "indent_example_mask": ("\n    ").join(str(example_mask).splitlines()),
        "indent_example_output": ("\n    ").join(str(example_output).splitlines()),
    }

    if func.__name__ in reduction_names:
        template_data.update(
            identity_uint8=_reduction_identity(
                func.__name__, torch.tensor(0, dtype=torch.uint8)
            ),
            identity_int32=_reduction_identity(
                func.__name__, torch.tensor(0, dtype=torch.int32)
            ),
            identity_float32=_reduction_identity(
                func.__name__, torch.tensor(0, dtype=torch.float32)
            ),
        )
        if func.__name__ == "norm":
            template_data.update(
                identity_ord_ninf=_reduction_identity(
                    func.__name__, torch.tensor(0, dtype=torch.float32), float("-inf")
                )
            )
    elif func.__name__ in normalization_names:
        template_data.update(definition=definitions[func.__name__])
    else:
        assert 0  # add function name to operation names dictionaries
    template_data.update(
        args_declarations=("\n    ".join(arg_declarations)).format_map(template_data)
    )
    template_data.update(
        kwargs_declarations=("\n    ".join(kwarg_declarations)).format_map(
            template_data
        )
    )

    # Apply function name info to docstring templates:
    templates = {
        k: v.format_map(template_data)
        for k, v in docstring_templates.items()
        if k.startswith(op_kind)
    }
    templates.update(
        (k, v.format_map(template_data) if isinstance(v, str) else v)
        for k, v in template_data.items()
    )

    # Apply docstring templates to function doctring:
    if func.__doc__ is None:
        doc_template = "\n\n".join([f"{{{op_kind}_{sec}}}" for sec in doc_sections])
    else:
        doc_template = func.__doc__
    return doc_template.format_map(templates)


def _reduction_identity(op_name: str, input: Tensor, *args):
    """Return identity value as scalar tensor of a reduction operation on

    given input, or None, if the identity value cannot be uniquely

    defined for the given input.



    The identity value of the operation is defined as the initial

    value to reduction operation that has a property ``op(op_identity,

    value) == value`` for any value in the domain of the operation.

    Or put it another way, including or excluding the identity value in

    a list of operands will not change the reduction result.



    See https://github.com/pytorch/rfcs/pull/27 for more information.



    """
    dtype: DType = input.dtype
    device = input.device
    op_name = op_name.rsplit(".", 1)[-1]  # lstrip module name when present
    if op_name in {"sum", "cumsum"}:
        return torch.tensor(0, dtype=dtype, device=device)
    elif op_name in {"prod", "cumprod"}:
        return torch.tensor(1, dtype=dtype, device=device)
    elif op_name in {"amax", "argmax", "logsumexp"}:
        if torch.is_floating_point(input):
            return torch.tensor(-torch.inf, dtype=dtype, device=device)
        elif torch.is_signed(input) or dtype == torch.uint8:
            return torch.tensor(torch.iinfo(dtype).min, dtype=dtype, device=device)
    elif op_name in {"amin", "argmin"}:
        if torch.is_floating_point(input):
            return torch.tensor(torch.inf, dtype=dtype, device=device)
        elif torch.is_signed(input) or dtype == torch.uint8:
            return torch.tensor(torch.iinfo(dtype).max, dtype=dtype, device=device)
    elif op_name == "mean":
        # Strictly speaking, the identity value of the mean operation
        # is the mean of the input. Since the mean value depends on
        # the dim argument and it may be a non-scalar tensor, we
        # consider the identity value of the mean operation ambiguous.
        # Moreover, the mean value of empty input is undefined.
        return None
    elif op_name == "norm":
        ord = args[0] if args else 2
        if ord == float("-inf"):
            assert torch.is_floating_point(input), input.dtype
            return torch.tensor(torch.inf, dtype=dtype, device=device)
        return torch.tensor(0, dtype=dtype, device=device)
    elif op_name == "median":
        # We use NaN for now because the implementation is currently using torch.nanmedian
        # and NaN is the identity for that function since it gets ignored
        dtype = input.dtype if torch.is_floating_point(input) else torch.float
        return torch.tensor(torch.nan, dtype=dtype, device=device)
    elif op_name in {"var", "std"}:
        return None
    raise NotImplementedError(f"identity of {op_name} on {dtype} input")


def _canonical_dim(dim: DimOrDims, ndim: int) -> Tuple[int, ...]:
    """Return dim argument as a tuple of sorted dim values."""
    dims: List[int] = []
    if dim == ():
        # Currently, `dim=()` in reductions operations means "reduce
        # over all dimensions" while in future, it will read "no
        # reduce". See https://github.com/pytorch/pytorch/issues/29137
        # When gh-29137 is resolved, this if-block must be deleted.
        dim = None
    if dim is None:
        return tuple(range(ndim))
    ndim = max(ndim, 1)
    dim_ = (dim,) if isinstance(dim, (int, torch.SymInt)) else dim
    for d in dim_:
        if d in dims:
            raise RuntimeError(f"dim={d} appears multiple times in the list of dims")
        if d >= ndim or d < -ndim:
            raise IndexError(
                f"Dimension out of range (expected to be in range of [{-ndim}, {ndim-1}], but got {d})"
            )
        dims.append(d % ndim)
    return tuple(sorted(dims))


def _sparse_coo_flatten_indices(indices: Tensor, shape: tuple):
    # Flatted N-D indices to 1-D indices
    flat_indices = indices.new_zeros(indices.size(1))
    for d, sz in enumerate(shape):
        flat_indices.mul_(sz)
        flat_indices.add_(indices[d])
    return flat_indices


def _any(input: Tensor, dim: tuple, keepdim: bool):
    # Support torch.any with tuple dim argument.
    # Workaround of https://github.com/pytorch/pytorch/issues/56586
    r = input
    for d in reversed(dim):
        r = r.any(dim=d, keepdim=keepdim)
    return r


def _sparse_coo_where(mask: Tensor, input: Tensor, fill_value: Tensor) -> Tensor:
    """Sparse variant of torch.where. Supports sparse COO and hybrid sparse COO tensors.



    _sparse_coo_where implements the following invariant:



      _sparse_coo_where(mask, input, fill_value).to_dense(fill_value) ==

        torch.where(mask.to_dense(), input.to_dense(), torch.full(input.shape, fill_value))



    where `a == b` means `assertEqual(a, b)`, mask is boolean sparse

    tensor, and `to_dense(fill_value)` is like `to_dense()` except

    that the unspecified elements are mapped to `fill_value` rather

    than to `0`.



    Returns a sparse COO tensor with the following features:



    - all specified elements correspond to masked-in elements that

      have the values of the input tensor. If there exists a masked-in

      element (as specified by mask) that is not specified in the

      input, in the result tensor, the corresponding element has value

      0. In the dense part of the sparse tensor, the masked-out

      elements are replaced with fill_value.



    - all unspecified elements correspond to masked-out elements.

    """

    assert input.layout == torch.sparse_coo
    assert mask.layout == input.layout
    assert mask.shape == input.shape
    assert mask.dense_dim() == input.dense_dim()  # TODO: eliminate this restriction

    input = input.coalesce()

    # For set operations on sparse tensor indices, we'll convert
    # multi-dimensional indices to 1-D indices for efficiency.
    input_flat_indices = _sparse_coo_flatten_indices(
        input.indices(), input.shape[: input.sparse_dim()]
    )
    mask_flat_indices = _sparse_coo_flatten_indices(
        mask.indices(), mask.shape[: mask.sparse_dim()]
    )

    # the set of mask flat indices that define masked-in elements:
    if mask.dense_dim() > 0:
        mask_values = _any(
            mask.values(), tuple(range(1, input.sparse_dim() + 1)), False
        )
    else:
        mask_values = mask.values()
    maskin_flat_indices = mask_flat_indices[mask_values.nonzero()[:, 0]]

    def intersection(i1, i2):
        union, counts = torch.cat([i1, i2]).unique(return_counts=True)
        return union, torch.where(counts.gt(1))

    def minus(i1, i2):
        union, counts = torch.cat([i1, i2]).unique(return_counts=True)
        return intersection(union[torch.where(counts.eq(1))], i1)

    def _apply(a):
        obj, w = a
        return obj[w]

    # the set of input flat indices of specified and masked-in elements:
    maskin_input_flat_indices = _apply(
        intersection(maskin_flat_indices, input_flat_indices)
    )
    _, w = intersection(input_flat_indices, maskin_input_flat_indices)

    # the indices and values of masked-in elements
    where_input_indices = input.indices()[(slice(None),) + w]
    where_input_values = input.values()[w]

    if mask.dense_dim() > 0:
        # apply mask to the dense part of the input values:
        _, w1 = intersection(mask_flat_indices, maskin_input_flat_indices)
        where_mask_values = mask.values()[w1]
        where_input_values = torch.where(
            where_mask_values, where_input_values, fill_value
        )

    # the set of flat indices of unspecified input and masked-in elements:
    maskin_zero_flat_indices = _apply(
        minus(maskin_flat_indices, maskin_input_flat_indices)
    )

    # the indices of masked-in zero elements
    _, w = intersection(mask_flat_indices, maskin_zero_flat_indices)
    where_zero_indices = mask.indices()[(slice(None),) + w]

    # construct result
    n = where_zero_indices.size(1)
    if n == 0:
        # the input is coalesced, hence input_flat_indices are ordered
        # and the result is guaranteed to be coalesced:
        result = torch.sparse_coo_tensor(
            where_input_indices, where_input_values, input.shape
        )
        return result._coalesced_(True)

    where_indices = torch.cat([where_input_indices, where_zero_indices], dim=1)
    where_values = torch.cat(
        [
            where_input_values,
            where_input_values.new_zeros((n,) + where_input_values.shape[1:]),
        ]
    )
    result = torch.sparse_coo_tensor(where_indices, where_values, input.shape)

    # appending zero elements leads to uncoalesced sparse tensor
    return result.coalesce()


def _sparse_coo_scatter_reduction_helper(

    op,

    mask_input: Tensor,

    dims: Tuple[int, ...],

    keepdim: bool,

    dtype: Optional[DType] = None,

) -> Tensor:
    reduce = op.__name__
    valid_reductions = ["sum", "prod", "amax", "amin"]
    if reduce not in valid_reductions:
        raise ValueError(
            f"op must be one of {' '.join(valid_reductions)}, but got {reduce} instead"
        )

    output_dtype = dtype
    values, indices = mask_input._values(), mask_input._indices()
    input_dims = mask_input.dim()
    num_sparse_dims = mask_input.sparse_dim()
    reduced_sparse_dims = []
    retained_sparse_dims = []
    reduced_dense_dims = []

    # promote dtype if specified
    if values.dtype != output_dtype:
        values = values.to(output_dtype)

    if keepdim:
        output_shape = tuple(
            1 if i in dims else si for (i, si) in enumerate(mask_input.shape)
        )
    else:
        output_shape = tuple(
            si for (i, si) in enumerate(mask_input.shape) if i not in dims
        )

    for d in dims:
        if d >= input_dims:
            continue

        if d < num_sparse_dims:
            reduced_sparse_dims.append(d)
        else:
            reduced_dense_dims.append(d + 1 - num_sparse_dims)

    # Reduce dense dimensions
    if len(reduced_dense_dims) > 0:
        if reduce == "sum":
            new_values = values
            new_values = op(new_values, dim=reduced_dense_dims, keepdim=bool(keepdim))
        else:
            # FIXME: Implement reductions for dense dimensions for ops with non-zero reduction identities
            return NotImplemented
    else:
        new_values = values.clone()

    # Reduce sparse dimensions
    if len(reduced_sparse_dims) == num_sparse_dims:
        if reduce in {"amax", "amin"} and new_values.size(0) == 0:
            # IndexError: amax(): Expected reduction dim 0 to have non-zero size.
            # sum()/prod() return the reduction identity when dim has size 0 but amax()/amin() do not
            # See https://github.com/pytorch/pytorch/issues/61901
            new_values = _reduction_identity(reduce, new_values)
        else:
            new_values = op(new_values, dim=0)
        if keepdim:
            for _ in range(num_sparse_dims):
                new_values = new_values.unsqueeze(0)
        return new_values.to(dtype=output_dtype).to_sparse()
    else:
        new_indices = indices.clone()
        if keepdim:
            # zero out reduced sparse dimensions if keepdim = True
            # ensures that the call to torch.unique folds duplicated indices together while preserving the dimension
            new_indices[reduced_sparse_dims, :] = 0
        else:
            # remove reduced sparse dimensions if keepdim = False
            if len(reduced_sparse_dims) > 0:
                retained_sparse_dims = [
                    i
                    for i in range(num_sparse_dims)
                    if i not in set(reduced_sparse_dims)
                ]
                new_indices = new_indices.index_select(
                    0, torch.tensor(retained_sparse_dims).to(mask_input.device)
                )

    # Use scatter_reduce to reduce items in the new_values tensor that correspond to the same indices in new_indices
    if new_indices.numel() > 0:
        # lexsort indices and get index tensor for scatter reduction
        new_indices, inverse_indices = torch.unique(
            new_indices, return_inverse=True, dim=1
        )
        out_shape = list(new_values.shape)
        out_shape[0] = new_indices.shape[1]
        for _ in range(new_values.ndim - 1):
            inverse_indices = inverse_indices.unsqueeze(-1)
        scatter_indices = inverse_indices.expand(new_values.shape)
        # FIXME: temporary workaround for issue with bfloat16/float16 remove when acctype is implemented for scatter_reduce
        if output_dtype in {torch.bfloat16, torch.float16}:
            new_values = new_values.to(torch.float)
            out = new_values.new_empty(out_shape)
            new_values = out.scatter_reduce_(
                0, scatter_indices, new_values, reduce=reduce, include_self=False
            )
            new_values = new_values.to(dtype=output_dtype)
        else:
            out = new_values.new_empty(out_shape)
            new_values = out.scatter_reduce_(
                0, scatter_indices, new_values, reduce=reduce, include_self=False
            )

    return torch.sparse_coo_tensor(
        new_indices,
        new_values,
        output_shape,
        dtype=output_dtype,
        device=mask_input.device,
    )


def _sparse_csr_segment_reduction_helper(

    op,

    mask_input: Tensor,

    dims: Tuple[int, ...],

    keepdim: bool,

    dtype: Optional[DType] = None,

) -> Tensor:
    # Currently, while sparse CSR is always 2D with no dense dimensions keepdim must be True
    # FIXME: when dense dimensions are implemented for CSR tensors
    assert (
        keepdim
    ), "reduction operations on CSR tensors with keepdim=False is unsupported"
    reduce = op.__name__
    valid_reductions = ["sum", "prod", "mean", "amax", "amin"]
    if reduce not in valid_reductions:
        raise ValueError(
            f"op must be one of {' '.join(valid_reductions)}, but got {reduce} instead"
        )
    device = mask_input.device
    output_dtype = dtype
    values, crow_indices, col_indices = (
        mask_input.values(),
        mask_input.crow_indices(),
        mask_input.col_indices(),
    )

    # promote dtype if specified
    if values.dtype != output_dtype:
        values = values.to(output_dtype)

    if len(dims) == 0:
        return mask_input
    if len(dims) == 1:
        if dims[0] == 0:
            new_col_indices, scatter_indices = torch.unique(
                col_indices, return_inverse=True
            )
            new_nnz = new_col_indices.shape[0]
            new_crow_indices = torch.tensor([0, new_nnz])
            new_values = values.new_empty(new_col_indices.shape)
            new_values.scatter_reduce_(
                0, scatter_indices, values, reduce, include_self=False
            )
            new_shape = [1, mask_input.size(1)]
        else:
            assert (
                dims[0] == 1
            ), "Sparse CSR tensors are 2D and only support reduction along dim 0 or 1."
            # all intervals new_crow_indices[i] - new_crow_indices[i-1] are 1
            # except for where crow_indices[i] == crow_indices[i-1] where the interval remains as 0
            new_crow_indices = torch.cat(
                (
                    crow_indices.new_zeros(1),
                    torch.cumsum(torch.diff(crow_indices) != 0, 0),
                ),
                0,
            )
            new_nnz = new_crow_indices[-1]
            new_col_indices = col_indices.new_zeros(new_nnz)
            new_values = torch._segment_reduce(values, reduce, offsets=crow_indices)  # type: ignore[attr-defined]
            new_shape = [mask_input.size(0), 1]
    else:
        assert len(dims) == 2
        nnz = min(1, values.numel())
        if nnz == 1:
            op_kwargs = {"keepdim": True, "dtype": output_dtype}
            # amax and amin do not support dtype kwarg
            if reduce in ["amax", "amin"]:
                del op_kwargs["dtype"]
            new_values = op(values, 0, **op_kwargs)
        else:
            new_values = torch.empty(0, dtype=output_dtype)
        new_col_indices = col_indices.new_zeros(nnz)
        new_crow_indices = torch.tensor([0, nnz])
        new_shape = [1, nnz]

    return torch.sparse_csr_tensor(
        new_crow_indices,
        new_col_indices,
        new_values,
        new_shape,
        dtype=output_dtype,
        device=device,
    )


def _sparse_csr_where(mask: Tensor, input: Tensor, fill_value: Tensor) -> Tensor:
    """Sparse variant of torch.where. Supports sparse CSR tensors."""
    # TODO: implement sparse CSR specific where operator for efficiency
    return _sparse_coo_where(
        mask.to_sparse_coo(), input.to_sparse_coo(), fill_value
    ).to_sparse_csr()


def _where(mask: Tensor, input: Tensor, fill_value: Tensor) -> Tensor:
    """torch.where with sparse inputs support.



    _where implements the following invariant:



      _where(mask, input, fill_value).to_dense(fill_value) ==

        torch.where(mask.to_dense(), input.to_dense(), torch.full(input.shape, fill_value))



    where `a == b` means `assertEqual(a, b)`, mask is boolean sparse

    tensor, and `to_dense(fill_value)` is like `to_dense()` except

    that the unspecified elements are mapped to `fill_value` rather

    than to `0`.



    Returns a sparse tensor with the following features:



    - all specified elements correspond to masked-in elements that

      have the values of the input tensor. If there exists a masked-in

      element (as specified by mask) that is not specified in the

      input, in the result tensor, the corresponding element has value

      0. In the dense part of the sparse tensor, the masked-out

      elements are replaced with fill_value.



    - all unspecified elements correspond to masked-out elements.

    """
    if mask.layout == torch.strided:
        return torch.where(mask, input, fill_value)
    elif mask.layout == torch.sparse_coo:
        return _sparse_coo_where(mask, input, fill_value)
    elif mask.layout == torch.sparse_csr:
        return _sparse_csr_where(mask, input, fill_value)
    else:
        raise ValueError(
            f"_where expects strided or sparse COO or sparse CSR tensor but got {mask.layout}"
        )


def _input_mask(input: Union[Tensor, MaskedTensor], *args, **kwargs) -> Tensor:
    """Return canonical input mask.



    A canonical input mask is defined as a boolean mask tensor that

    shape and layout matches with the shape and the layout of the

    input.



    The canonical input mask is computed from the :attr:`mask` tensor

    content to meet the following criteria:



    1. The shape of the canonical input mask is the same as the shape

       of :attr:`input` tensor. If the mask tensor has a smaller shape

       than the shape of the :attr:`input`, broadcasting rules will be

       applied. Downcasting of mask is not supported.



    2. The layout of the canonical input mask is the same as the

       layout of the :attr:`input` tensor. If the mask has different

       layout, it will be converted to the expected layout.  In the

       case of sparse COO layout, the canonical input mask will be

       coalesced.



    3. The dtype of the canonical input mask is torch.bool. If the

       mask dtype is not bool then it will be converted to bool dtype

       using `.to(dtype=bool)` method call.



    4. The elements of the canonical input mask have boolean values

       copied from the content of the :attr:`mask` tensor (after

       possible broadcasting and dtype conversion transforms).  In

       general, the sparsity pattern of the sparse canonical input

       mask need not to be the same as the sparsity pattern of the

       sparse :attr:`input` tensor.



    """
    if input.layout not in {torch.strided, torch.sparse_coo, torch.sparse_csr}:
        raise ValueError(
            f"_input_mask expects strided or sparse COO or sparse CSR tensor but got {input.layout}"
        )

    mask = kwargs.get("mask")

    # default mask
    if mask is None:
        raise ValueError("_input_mask requires explicit mask")

    # mask shape must match with input shape
    if mask.shape != input.shape:
        if mask.ndim > input.ndim:
            raise IndexError(
                "_input_mask expected broadcastable mask (got mask dimensionality higher than of the input)"
            )
        if mask.layout == torch.strided:
            mask = torch.broadcast_to(mask.clone(), input.shape).to(dtype=torch.bool)
        elif mask.layout == torch.sparse_coo:
            mask = torch._sparse_broadcast_to(mask, input.shape)
        else:
            assert mask.layout == torch.sparse_csr
            # Broadcasting of CSR tensors is not implemented. Working
            # around by using COO layout.
            mask = torch._sparse_broadcast_to(
                mask.to_sparse(), input.shape
            ).to_sparse_csr()

    # mask layout must match with input layout
    if mask.layout != input.layout:
        if input.layout == torch.strided:
            mask = mask.to_dense()
        elif input.layout == torch.sparse_coo:
            if mask.layout == torch.strided:
                mask = mask.to_sparse(input.sparse_dim())
            else:
                mask = mask.to_sparse()
        else:
            assert input.layout == torch.sparse_csr
            mask = mask.to_sparse_csr()

    # sparse mask must be coalesced
    if mask.layout == torch.sparse_coo:
        mask = mask.coalesce()

    # mask is a boolean tensor
    mask = mask.to(dtype=torch.bool)

    return mask


def _output_mask(op, input: Tensor, *args, **kwargs) -> Tensor:
    """Return output mask of masked operation applied to given arguments."""
    if callable(op):
        is_reduction = op.__name__ in {
            "sum",
            "prod",
            "amax",
            "amin",
            "argmax",
            "argmin",
            "mean",
            "median",
            "norm",
            "var",
            "std",
            "logsumexp",
        }
        is_normalization = op.__name__ in {
            "softmax",
            "log_softmax",
            "softmin",
            "normalize",
            "cumsum",
            "cumprod",
        }
        if is_reduction:
            if op.__name__ == "norm":
                if args:
                    args = args[1:]  # lstrip ord argument
            dim = args[0] if args else kwargs.get("dim")
            outmask = _input_mask(input, *args, **kwargs)
            keepdim = kwargs.get("keepdim", False)
            dim_ = _canonical_dim(dim, input.ndim)
            return _any(outmask, dim_, bool(keepdim))
        elif is_normalization:
            return _input_mask(input, *args, **kwargs)
        else:
            raise ValueError(
                f"_output_mask expected masked operation (got callable {op.__module__}.{op.__name__})"
            )
    else:
        raise ValueError(
            f"_output_mask expected masked operation (got {type(op).__name__} object)"
        )


def _combine_input_and_mask(

    op, input: Union[MaskedTensor, Tensor], mask, *args

) -> Tensor:
    def helper(input, mask):
        if mask is None:
            return input
        canonical_mask = _input_mask(input, mask=mask)
        if callable(op):
            fill_value = _reduction_identity(op.__name__, input, *args)
            return _where(canonical_mask, input, fill_value)
        else:
            raise ValueError(
                f"_combine_input_and_mask expected masked operation (got {type(op).__name__} object)"
            )

    class Combine(torch.autograd.Function):
        @staticmethod
        def forward(ctx, input, mask):
            """Return input with masked-out elements eliminated for the given operations."""
            ctx.save_for_backward(mask)

            if mask is not None:
                ctx.mark_non_differentiable(mask)

            return helper(input, mask)

        @staticmethod
        def backward(ctx, grad_output):
            (mask,) = ctx.saved_tensors
            grad_data = (
                grad_output.get_data() if is_masked_tensor(grad_output) else grad_output
            )
            result = as_masked_tensor(grad_data, mask)
            return result, None

    return (
        Combine.apply(input.get_data(), input.get_mask())  # type: ignore[union-attr]
        if is_masked_tensor(input)
        else helper(input, mask)
    )


@_apply_docstring_templates
def sum(

    input: Union[Tensor, MaskedTensor],

    dim: DimOrDims = None,

    *,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    # __doc__ is generated by _apply_docstring_templates decorator
    if dtype is None:
        # promote integer types to int64 when output dtype is not specified
        if input.layout == torch.sparse_csr:
            if input.dtype in {
                torch.uint8,
                torch.bool,
                torch.int8,
                torch.int16,
                torch.int32,
            }:
                # csr.to(dtype=torch.int64) is not implemented, so
                # using coo.to on input to ensure the promoted dtype
                input = input.to_sparse_coo().to(dtype=torch.int64).to_sparse_csr()
            else:
                dtype = input.dtype
        else:
            dtype = input.dtype
            if input.dtype in {
                torch.uint8,
                torch.bool,
                torch.int8,
                torch.int16,
                torch.int32,
            }:
                dtype = torch.int64
    dim_ = _canonical_dim(dim, input.ndim)
    mask_input = _combine_input_and_mask(sum, input, mask)
    if mask_input.layout == torch.strided:
        return torch.sum(mask_input, dim_, bool(keepdim), dtype=dtype)
    elif mask_input.layout == torch.sparse_coo:
        return _sparse_coo_scatter_reduction_helper(
            torch.sum, mask_input, dim_, bool(keepdim), dtype
        )
    elif mask_input.layout == torch.sparse_csr:
        return torch._sparse_csr_sum(
            mask_input, dim=list(dim_), keepdim=bool(keepdim), dtype=dtype
        )
    else:
        raise ValueError(
            f"masked sum expects strided, sparse_coo or sparse_csr tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def prod(

    input: Union[Tensor, MaskedTensor],

    dim: DimOrDims = None,

    *,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    # __doc__ is generated by _apply_docstring_templates decorator
    if dtype is None:
        # promote integer types to int64 when output dtype is not specified
        if input.layout == torch.sparse_csr:
            if input.dtype in {
                torch.uint8,
                torch.bool,
                torch.int8,
                torch.int16,
                torch.int32,
            }:
                # csr.to(dtype=torch.int64) is not implemented, so
                # using coo.to on input to ensure the promoted dtype
                input = input.to_sparse_coo().to(dtype=torch.int64).to_sparse_csr()
            else:
                dtype = input.dtype
        else:
            dtype = input.dtype
            if input.dtype in {
                torch.uint8,
                torch.bool,
                torch.int8,
                torch.int16,
                torch.int32,
            }:
                dtype = torch.int64
    dim_ = _canonical_dim(dim, input.ndim)
    mask_input = _combine_input_and_mask(prod, input, mask)
    if mask_input.layout == torch.strided:
        # Workaround https://github.com/pytorch/pytorch/issues/56586
        result = mask_input
        result = result.to(dtype=dtype)
        for d in reversed(dim_):
            result = result.prod(dim=d, keepdim=bool(keepdim))
        return result
    elif mask_input.layout == torch.sparse_coo:
        if mask is None:
            # See comment in the sparse_csr branch, the same issue arises for sparse_coo tensors
            raise ValueError(
                "masked prod expects explicit mask for sparse_coo tensor input"
            )
        return _sparse_coo_scatter_reduction_helper(
            torch.prod, mask_input, dim_, bool(keepdim), dtype
        )
    elif mask_input.layout == torch.sparse_csr:
        if mask is None:
            # mask is None corresponds to all-True mask. The
            # unspecified elements in the CSR tensor correspond to
            # zero values. Hence, the prod reduction result is
            # automatically zero unless all elements are specified.
            # A semi-optimal way to take this into account is to use:
            #
            #   masked_prod(csr, ..., mask=None) == torch._sparse_csr_prod(csr, ...) * all(csr.nonzero(), ...)
            #
            # but that requires implementing `all` and `nonzero`
            # support for sparse csr tensors.
            raise ValueError(
                "masked prod expects explicit mask for sparse_csr tensor input"
            )
        return torch._sparse_csr_prod(
            mask_input, dim=list(dim_), keepdim=bool(keepdim), dtype=dtype
        )
    else:
        raise ValueError(
            f"masked prod expects strided, sparse_coo or sparse_csr tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def cumsum(

    input: Tensor,

    dim: int,

    *,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    if dtype is None:
        dtype = input.dtype
    dim_ = _canonical_dim(dim, input.ndim)[0]
    mask_input = _combine_input_and_mask(sum, input, mask)
    if mask_input.layout == torch.strided:
        return torch.cumsum(mask_input, dim_, dtype=dtype).to(dtype=dtype)
    else:
        raise ValueError(
            f"masked cumsum expects strided tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def cumprod(

    input: Tensor,

    dim: int,

    *,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    if dtype is None:
        dtype = input.dtype
    dim_ = _canonical_dim(dim, input.ndim)[0]
    mask_input = _combine_input_and_mask(prod, input, mask)
    if mask_input.layout == torch.strided:
        return torch.cumprod(mask_input, dim_, dtype=dtype).to(dtype=dtype)
    else:
        raise ValueError(
            f"masked cumprod expects strided tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def amax(

    input: Union[Tensor, MaskedTensor],

    dim: DimOrDims = None,

    *,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    """\

{reduction_signature}



{reduction_descr}



{reduction_identity_dtype}



{reduction_args}



{reduction_example}"""
    if dtype is None:
        dtype = input.dtype

    mask_input = _combine_input_and_mask(amax, input, mask)
    dim_ = _canonical_dim(dim, mask_input.ndim)
    if mask_input.layout == torch.strided:
        return torch.amax(mask_input, dim_, bool(keepdim)).to(dtype=dtype)
    elif mask_input.layout == torch.sparse_coo:
        if mask is None:
            # See comment in the sparse_csr branch of prod, a similar issue arises here
            # where unspecified elements along a dimension may need to be reduced with the result
            raise ValueError(
                "masked amax expects explicit mask for sparse_coo tensor input"
            )
        return _sparse_coo_scatter_reduction_helper(
            torch.amax, mask_input, dim_, bool(keepdim), dtype
        )
    elif mask_input.layout == torch.sparse_csr:
        if mask is None:
            raise ValueError(
                "masked amax expects explicit mask for sparse_csr tensor input"
            )
        return _sparse_csr_segment_reduction_helper(
            torch.amax, mask_input, dim_, bool(keepdim), dtype
        )
    else:
        raise ValueError(
            f"masked amax expects strided, sparse_coo or sparse_csr tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def amin(

    input: Union[Tensor, MaskedTensor],

    dim: DimOrDims = None,

    *,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    """\

{reduction_signature}



{reduction_descr}



{reduction_identity_dtype}



{reduction_args}



{reduction_example}"""
    if dtype is None:
        dtype = input.dtype

    mask_input = _combine_input_and_mask(amin, input, mask)
    dim_ = _canonical_dim(dim, mask_input.ndim)
    if mask_input.layout == torch.strided:
        return torch.amin(mask_input, dim_, bool(keepdim)).to(dtype=dtype)
    elif mask_input.layout == torch.sparse_coo:
        if mask is None:
            # See comment in the sparse_csr branch of prod, a similar issue arises here
            # where unspecified elements along a dimension may need to be reduced with the result
            raise ValueError(
                "masked amax expects explicit mask for sparse_coo tensor input"
            )
        return _sparse_coo_scatter_reduction_helper(
            torch.amin, mask_input, dim_, bool(keepdim), dtype
        )
    elif mask_input.layout == torch.sparse_csr:
        if mask is None:
            raise ValueError(
                "masked amin expects explicit mask for sparse_csr tensor input"
            )
        return _sparse_csr_segment_reduction_helper(
            torch.amin, mask_input, dim_, bool(keepdim), dtype
        )
    else:
        raise ValueError(
            f"masked amin expects strided, sparse_coo or sparse_csr tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def argmax(

    input: Union[Tensor, MaskedTensor],

    dim: Optional[int] = None,

    *,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    """\

{reduction_signature}

{reduction_descr}

{reduction_identity_dtype}

{reduction_args}

{reduction_example}"""
    if dtype is None:
        dtype = input.dtype
    mask_input = _combine_input_and_mask(argmax, input, mask)
    if mask_input.layout == torch.strided:
        return torch.argmax(mask_input, dim, bool(keepdim)).to(dtype=dtype)
    else:
        raise ValueError(
            f"masked argmax expects strided tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def argmin(

    input: Union[Tensor, MaskedTensor],

    dim: Optional[int] = None,

    *,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    """\

{reduction_signature}

{reduction_descr}

{reduction_identity_dtype}

{reduction_args}

{reduction_example}"""
    if dtype is None:
        dtype = input.dtype
    mask_input = _combine_input_and_mask(argmin, input, mask)
    if mask_input.layout == torch.strided:
        return torch.argmin(mask_input, dim, bool(keepdim)).to(dtype=dtype)
    else:
        raise ValueError(
            f"masked argmin expects strided tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def mean(

    input: Union[Tensor, MaskedTensor],

    dim: DimOrDims = None,

    *,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    """\

{reduction_signature}



{reduction_descr}



By definition, the identity value of a mean operation is the mean

value of the tensor. If all elements of the input tensor along given

dimension(s) :attr:`dim` are masked-out, the identity value of the

mean is undefined.  Due to this ambiguity, the elements of output

tensor with strided layout, that correspond to fully masked-out

elements, have ``nan`` values.



{reduction_args}



{reduction_example}"""
    if dtype is None:
        dtype = input.dtype
    if input.layout == torch.strided:
        if mask is None:
            # TODO: compute count analytically
            count = sum(
                torch.ones(input.shape, dtype=torch.int64, device=input.device),
                dim,
                keepdim=keepdim,
            )
            total = sum(input, dim, keepdim=keepdim, dtype=dtype)
        else:
            inmask = _input_mask(input, mask=mask)
            count = sum(
                inmask.new_ones(input.shape, dtype=torch.int64),
                dim,
                keepdim=keepdim,
                mask=inmask,
            )
            total = sum(input, dim, keepdim=keepdim, dtype=dtype, mask=inmask)
        return total / count
    elif input.layout == torch.sparse_csr:
        mask_input = _combine_input_and_mask(mean, input, mask)
        dim_ = _canonical_dim(dim, mask_input.ndim)
        if mask is None:
            raise ValueError(
                "masked mean expects explicit mask for sparse_csr tensor input"
            )
        return _sparse_csr_segment_reduction_helper(
            torch.mean, mask_input, dim_, bool(keepdim), dtype
        )
    else:
        raise ValueError(
            f"masked mean expects strided or sparse_csr tensor (got {input.layout} tensor)"
        )


@_apply_docstring_templates
def median(

    input: Union[Tensor, MaskedTensor],

    dim: int = -1,

    *,

    keepdim: bool = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:

    """\

{reduction_signature}

{reduction_descr}

By definition, the identity value of a median operation is the median

value of the tensor. If all elements of the input tensor along given

dimension(s) :attr:`dim` are masked-out, the identity value of the

median is undefined.  Due to this ambiguity, the elements of output

tensor with strided layout, that correspond to fully masked-out

elements, have ``nan`` values.

{reduction_args}

{reduction_example}"""
    if dtype is None:
        dtype = input.dtype
    dim_ = _canonical_dim(dim, input.ndim)[0]
    is_float = torch.is_floating_point(input)
    if not is_float:
        input = input.to(dtype=torch.float)
    mask_input = _combine_input_and_mask(median, input, mask)
    if mask_input.layout == torch.strided:
        output = torch.nanmedian(mask_input, dim_, keepdim).values
        if is_float:
            return output
        elif not is_float and not torch.isnan(output).any():
            return output.to(dtype=dtype)
        else:
            raise ValueError(
                "masked median expects no fully masked out rows if dtype is not floating point"
            )
    else:
        raise ValueError(
            f"masked median expects strided tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def logsumexp(

    input: Tensor,

    dim: DimOrDims = None,

    *,

    keepdim: bool = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    if dtype is None:
        dtype = input.dtype
    dim_ = _canonical_dim(dim, input.ndim)
    mask_input = _combine_input_and_mask(logsumexp, input, mask)
    if mask_input.layout == torch.strided:
        return torch.logsumexp(mask_input, dim_, keepdim=keepdim).to(dtype=dtype)
    else:
        raise ValueError(
            f"masked logsumexp expects strided tensor (got {mask_input.layout} tensor)"
        )


# Cannot use _apply_docstring_templates as it is only set up for reductions and normalizations
def logaddexp(

    input: Union[Tensor, MaskedTensor],

    other: Union[Tensor, MaskedTensor],

    *,

    dtype: Optional[DType] = None,

    input_mask: Optional[Tensor] = None,

    other_mask: Optional[Tensor] = None,

) -> Tensor:
    """logaddexp(input, other, *, dtype=None, input_mask=None, other_mask=None) -> Tensor



Returns logaddexp of all the elements in the :attr:`input` and the :attr:`other`

tensor. The :attr:`input` elements are masked out according to the boolean tensor

:attr:`input_mask` and the attr:`other` elements are masked out according to the boolean tensor

:attr:`other_mask`.



The shapes of a mask tensor and the tensor to be masked

don't need to match, but they must be :ref:`broadcastable

<broadcasting-semantics>` and the dimensionality of the mask

tensor must not be greater than of the tensor to be masked.



Args:

    input (Tensor): the input tensor

    other (Tensor): the second input tensor



Keyword args:

    dtype (:class:`torch.dtype`, optional): the desired data type

      of returned tensor.  If specified, the output tensor is

      casted to :attr:`dtype` after the operation is

      performed. Default: None.

    input_mask (:class:`torch.Tensor`, optional): the boolean tensor

      containing the binary mask of validity of :attr:`input` tensor elements.

      Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.

    other_mask (:class:`torch.Tensor`, optional): the boolean tensor

      containing the binary mask of validity of :attr:`other` tensor elements.

      Default: None that is equivalent to ``torch.ones(other.shape, dtype=torch.bool)``.



Example::



    >>> input = torch.tensor([-100.0, -200, -300])

    >>> input

    tensor([-100., -200., -300.])

    >>> other = torch.tensor([-1.0, -2, -3])

    >>> other

    tensor([-1., -2., -3.])

    >>> mask = torch.tensor([True, False, True])

    >>> mask

    tensor([ True, False,  True])

    >>> torch.masked._ops.logaddexp(input, other, input_mask=mask, other_mask=mask)

    tensor([-1., -inf, -3.])

"""
    if dtype is None:
        dtype = input.dtype
    if input.layout == torch.strided and other.layout == torch.strided:
        mask_input = _combine_input_and_mask(logsumexp, input, input_mask)
        mask_other = _combine_input_and_mask(logsumexp, other, other_mask)
        return torch.logaddexp(mask_input, mask_other).to(dtype=dtype)
    else:
        raise ValueError(
            f"masked logaddexp expects strided tensors (got {input.layout} tensor for input, {other.layout} for other)"
        )


@_apply_docstring_templates
def norm(

    input: Union[Tensor, MaskedTensor],

    ord: Optional[float] = 2.0,

    dim: DimOrDims = None,

    *,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    """\

{reduction_signature}



{reduction_descr}



The identity value of norm operation, which is used to start the

reduction, is ``{identity_float32}``, except for ``ord=-inf`` it is

``{identity_ord_ninf}``.



{reduction_args}



{reduction_example}"""
    if dtype is None:
        dtype = input.dtype
    mask_input = _combine_input_and_mask(norm, input, mask, ord)
    if mask_input.layout == torch.strided:
        dim_ = _canonical_dim(dim, input.ndim)
        return torch.linalg.vector_norm(
            mask_input, ord, dim_, bool(keepdim), dtype=dtype
        )
    else:
        raise ValueError(
            f"masked norm expects strided tensor (got {mask_input.layout} tensor)"
        )


def _std_var(

    input: Union[Tensor, MaskedTensor],

    dim: DimOrDims,

    unbiased: Optional[bool],

    *,

    correction_opt: Optional[Union[int, float]],

    keepdim: Optional[bool],

    dtype: Optional[DType],

    mask: Optional[Tensor],

    take_sqrt: Optional[bool],

) -> Tensor:
    assert (unbiased is None or correction_opt is None), "Only one of unbiased and correction may be given"
    correction = 1.0
    if unbiased is not None:
        correction = 1.0 if unbiased else 0.0
    if correction_opt is not None:
        correction = sym_float(correction_opt)

    if dtype is None:
        dtype = input.dtype
        if not (dtype.is_floating_point or dtype.is_complex):
            dtype = torch.float32
    compute_dtype = dtype
    if not (compute_dtype.is_floating_point or compute_dtype.is_complex):
        compute_dtype = torch.float32
    if input.layout == torch.strided:
        if mask is None:
            # TODO: compute count analytically
            count = sum(
                torch.ones(input.shape, dtype=torch.int64, device=input.device),
                dim,
                keepdim=True,
            )
            sample_total = sum(input, dim, keepdim=True, dtype=dtype)
        else:
            inmask = _input_mask(input, mask=mask)
            count = sum(
                inmask.new_ones(input.shape, dtype=torch.int64),
                dim,
                keepdim=True,
                mask=inmask,
            )
            sample_total = sum(input, dim, keepdim=True, dtype=dtype, mask=inmask)
        # TODO: replace torch.subtract/divide/square/maximum with
        # masked subtract/divide/square/maximum when these will be
        # available.
        sample_mean = torch.divide(sample_total, count)
        x = torch.subtract(input, sample_mean)
        if mask is None:
            total = sum(x * x.conj(), dim, keepdim=keepdim, dtype=compute_dtype)
        else:
            total = sum(
                x * x.conj(), dim, keepdim=keepdim, dtype=compute_dtype, mask=inmask  # type: ignore[possibly-undefined]
            )
        if not keepdim:
            count = count.reshape(total.shape)
        if correction != 0:
            real_dtype = (corresponding_real_dtype(compute_dtype)
                          if compute_dtype.is_complex else compute_dtype)
            count = count.to(real_dtype)
            count = torch.subtract(count, correction)
            count = torch.maximum(count, count.new_zeros([]))
        output = torch.divide(total, count).to(dtype=dtype)
        if take_sqrt:
            output = torch.sqrt(output)
        return output
    else:
        raise ValueError(
            f"masked std/var expects strided tensor (got {input.layout} tensor)"
        )


@_apply_docstring_templates
def var(

    input: Union[Tensor, MaskedTensor],

    dim: DimOrDims = None,

    unbiased: Optional[bool] = None,

    *,

    correction: Optional[Union[int, float]] = None,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    """\

{reduction_signature}

{reduction_descr}

The identity value of sample variance operation is undefined. The

elements of output tensor with strided layout, that correspond to

fully masked-out elements, have ``nan`` values.

{reduction_args}

{reduction_example}"""
    return _std_var(
        input=input,
        dim=dim,
        unbiased=unbiased,
        correction_opt=correction,
        keepdim=keepdim,
        dtype=dtype,
        mask=mask,
        take_sqrt=False,
    )


@_apply_docstring_templates
def std(

    input: Union[Tensor, MaskedTensor],

    dim: DimOrDims = None,

    unbiased: Optional[bool] = None,

    *,

    correction: Optional[int] = None,

    keepdim: Optional[bool] = False,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    """\

{reduction_signature}

{reduction_descr}

The identity value of sample standard deviation operation is undefined. The

elements of output tensor with strided layout, that correspond to

fully masked-out elements, have ``nan`` values.

{reduction_args}

{reduction_example}"""
    return _std_var(
        input=input,
        dim=dim,
        unbiased=unbiased,
        correction_opt=correction,
        keepdim=keepdim,
        dtype=dtype,
        mask=mask,
        take_sqrt=True,
    )


@_apply_docstring_templates
def softmax(

    input: Union[Tensor, MaskedTensor],

    dim: int,

    *,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    if dtype is None:
        dtype = input.dtype
    dim_ = _canonical_dim(dim, input.ndim)[0]
    mask_input = _combine_input_and_mask(amax, input, mask)
    if mask_input.layout == torch.strided:
        return torch.nn.functional.softmax(mask_input, dim_, dtype=dtype)
    else:
        raise ValueError(
            f"masked softmax expects strided tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def log_softmax(

    input: Union[Tensor, MaskedTensor],

    dim: int,

    *,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    if dtype is None:
        dtype = input.dtype
    dim_ = _canonical_dim(dim, input.ndim)[0]
    mask_input = _combine_input_and_mask(amax, input, mask)
    if mask_input.layout == torch.strided:
        return torch.nn.functional.log_softmax(mask_input, dim_, dtype=dtype)
    else:
        raise ValueError(
            f"masked log_softmax expects strided tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def softmin(

    input: Union[Tensor, MaskedTensor],

    dim: int,

    *,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    if dtype is None:
        dtype = input.dtype
    dim_ = _canonical_dim(dim, input.ndim)[0]
    mask_input = _combine_input_and_mask(amin, input, mask)
    if mask_input.layout == torch.strided:
        return torch.nn.functional.softmin(mask_input, dim_, dtype=dtype)
    else:
        raise ValueError(
            f"masked softmin expects strided tensor (got {mask_input.layout} tensor)"
        )


@_apply_docstring_templates
def normalize(

    input: Union[Tensor, MaskedTensor],

    ord: float,

    dim: int,

    *,

    eps: float = 1e-12,

    dtype: Optional[DType] = None,

    mask: Optional[Tensor] = None,

) -> Tensor:
    if dtype is None:
        dtype = input.dtype
    dim_ = _canonical_dim(dim, input.ndim)[0]
    # TODO: eliminate mask_input as unnecessary when using masked divide.
    mask_input = _combine_input_and_mask(sum, input, mask)
    if mask_input.layout == torch.strided:
        nrm_ = norm(input, ord, dim, keepdim=True, dtype=dtype, mask=mask)
        # TODO: replace torch.maximum with masked maximum when available.
        denom = torch.maximum(nrm_, nrm_.new_full([], eps))
        # TODO: replace torch.divide with masked divide when available.
        return torch.divide(mask_input, denom)
    else:
        raise ValueError(
            f"masked normalize expects strided tensor (got {mask_input.layout} tensor)"
        )