Spaces:
Sleeping
Sleeping
File size: 86,376 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 |
/*
pybind11/numpy.h: Basic NumPy support, vectorize() wrapper
Copyright (c) 2016 Wenzel Jakob <[email protected]>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "pybind11.h"
#include "detail/common.h"
#include "complex.h"
#include "gil_safe_call_once.h"
#include "pytypes.h"
#include <algorithm>
#include <array>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <numeric>
#include <sstream>
#include <string>
#include <type_traits>
#include <typeindex>
#include <utility>
#include <vector>
#if defined(PYBIND11_NUMPY_1_ONLY) && !defined(PYBIND11_INTERNAL_NUMPY_1_ONLY_DETECTED)
# error PYBIND11_NUMPY_1_ONLY must be defined before any pybind11 header is included.
#endif
/* This will be true on all flat address space platforms and allows us to reduce the
whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size
and dimension types (e.g. shape, strides, indexing), instead of inflicting this
upon the library user.
Note that NumPy 2 now uses ssize_t for `npy_intp` to simplify this. */
static_assert(sizeof(::pybind11::ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t");
static_assert(std::is_signed<Py_intptr_t>::value, "Py_intptr_t must be signed");
// We now can reinterpret_cast between py::ssize_t and Py_intptr_t (MSVC + PyPy cares)
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_WARNING_DISABLE_MSVC(4127)
class dtype; // Forward declaration
class array; // Forward declaration
PYBIND11_NAMESPACE_BEGIN(detail)
template <>
struct handle_type_name<dtype> {
static constexpr auto name = const_name("numpy.dtype");
};
template <>
struct handle_type_name<array> {
static constexpr auto name = const_name("numpy.ndarray");
};
template <typename type, typename SFINAE = void>
struct npy_format_descriptor;
/* NumPy 1 proxy (always includes legacy fields) */
struct PyArrayDescr1_Proxy {
PyObject_HEAD
PyObject *typeobj;
char kind;
char type;
char byteorder;
char flags;
int type_num;
int elsize;
int alignment;
char *subarray;
PyObject *fields;
PyObject *names;
};
#ifndef PYBIND11_NUMPY_1_ONLY
struct PyArrayDescr_Proxy {
PyObject_HEAD
PyObject *typeobj;
char kind;
char type;
char byteorder;
char _former_flags;
int type_num;
/* Additional fields are NumPy version specific. */
};
#else
/* NumPy 1.x only, we can expose all fields */
using PyArrayDescr_Proxy = PyArrayDescr1_Proxy;
#endif
/* NumPy 2 proxy, including legacy fields */
struct PyArrayDescr2_Proxy {
PyObject_HEAD
PyObject *typeobj;
char kind;
char type;
char byteorder;
char _former_flags;
int type_num;
std::uint64_t flags;
ssize_t elsize;
ssize_t alignment;
PyObject *metadata;
Py_hash_t hash;
void *reserved_null[2];
/* The following fields only exist if 0 <= type_num < 2056 */
char *subarray;
PyObject *fields;
PyObject *names;
};
struct PyArray_Proxy {
PyObject_HEAD
char *data;
int nd;
ssize_t *dimensions;
ssize_t *strides;
PyObject *base;
PyObject *descr;
int flags;
};
struct PyVoidScalarObject_Proxy {
PyObject_VAR_HEAD char *obval;
PyArrayDescr_Proxy *descr;
int flags;
PyObject *base;
};
struct numpy_type_info {
PyObject *dtype_ptr;
std::string format_str;
};
struct numpy_internals {
std::unordered_map<std::type_index, numpy_type_info> registered_dtypes;
numpy_type_info *get_type_info(const std::type_info &tinfo, bool throw_if_missing = true) {
auto it = registered_dtypes.find(std::type_index(tinfo));
if (it != registered_dtypes.end()) {
return &(it->second);
}
if (throw_if_missing) {
pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name());
}
return nullptr;
}
template <typename T>
numpy_type_info *get_type_info(bool throw_if_missing = true) {
return get_type_info(typeid(typename std::remove_cv<T>::type), throw_if_missing);
}
};
PYBIND11_NOINLINE void load_numpy_internals(numpy_internals *&ptr) {
ptr = &get_or_create_shared_data<numpy_internals>("_numpy_internals");
}
inline numpy_internals &get_numpy_internals() {
static numpy_internals *ptr = nullptr;
if (!ptr) {
load_numpy_internals(ptr);
}
return *ptr;
}
PYBIND11_NOINLINE module_ import_numpy_core_submodule(const char *submodule_name) {
module_ numpy = module_::import("numpy");
str version_string = numpy.attr("__version__");
module_ numpy_lib = module_::import("numpy.lib");
object numpy_version = numpy_lib.attr("NumpyVersion")(version_string);
int major_version = numpy_version.attr("major").cast<int>();
#ifdef PYBIND11_NUMPY_1_ONLY
if (major_version >= 2) {
throw std::runtime_error(
"This extension was built with PYBIND11_NUMPY_1_ONLY defined, "
"but NumPy 2 is used in this process. For NumPy2 compatibility, "
"this extension needs to be rebuilt without the PYBIND11_NUMPY_1_ONLY define.");
}
#endif
/* `numpy.core` was renamed to `numpy._core` in NumPy 2.0 as it officially
became a private module. */
std::string numpy_core_path = major_version >= 2 ? "numpy._core" : "numpy.core";
return module_::import((numpy_core_path + "." + submodule_name).c_str());
}
template <typename T>
struct same_size {
template <typename U>
using as = bool_constant<sizeof(T) == sizeof(U)>;
};
template <typename Concrete>
constexpr int platform_lookup() {
return -1;
}
// Lookup a type according to its size, and return a value corresponding to the NumPy typenum.
template <typename Concrete, typename T, typename... Ts, typename... Ints>
constexpr int platform_lookup(int I, Ints... Is) {
return sizeof(Concrete) == sizeof(T) ? I : platform_lookup<Concrete, Ts...>(Is...);
}
struct npy_api {
enum constants {
NPY_ARRAY_C_CONTIGUOUS_ = 0x0001,
NPY_ARRAY_F_CONTIGUOUS_ = 0x0002,
NPY_ARRAY_OWNDATA_ = 0x0004,
NPY_ARRAY_FORCECAST_ = 0x0010,
NPY_ARRAY_ENSUREARRAY_ = 0x0040,
NPY_ARRAY_ALIGNED_ = 0x0100,
NPY_ARRAY_WRITEABLE_ = 0x0400,
NPY_BOOL_ = 0,
NPY_BYTE_,
NPY_UBYTE_,
NPY_SHORT_,
NPY_USHORT_,
NPY_INT_,
NPY_UINT_,
NPY_LONG_,
NPY_ULONG_,
NPY_LONGLONG_,
NPY_ULONGLONG_,
NPY_FLOAT_,
NPY_DOUBLE_,
NPY_LONGDOUBLE_,
NPY_CFLOAT_,
NPY_CDOUBLE_,
NPY_CLONGDOUBLE_,
NPY_OBJECT_ = 17,
NPY_STRING_,
NPY_UNICODE_,
NPY_VOID_,
// Platform-dependent normalization
NPY_INT8_ = NPY_BYTE_,
NPY_UINT8_ = NPY_UBYTE_,
NPY_INT16_ = NPY_SHORT_,
NPY_UINT16_ = NPY_USHORT_,
// `npy_common.h` defines the integer aliases. In order, it checks:
// NPY_BITSOF_LONG, NPY_BITSOF_LONGLONG, NPY_BITSOF_INT, NPY_BITSOF_SHORT, NPY_BITSOF_CHAR
// and assigns the alias to the first matching size, so we should check in this order.
NPY_INT32_
= platform_lookup<std::int32_t, long, int, short>(NPY_LONG_, NPY_INT_, NPY_SHORT_),
NPY_UINT32_ = platform_lookup<std::uint32_t, unsigned long, unsigned int, unsigned short>(
NPY_ULONG_, NPY_UINT_, NPY_USHORT_),
NPY_INT64_
= platform_lookup<std::int64_t, long, long long, int>(NPY_LONG_, NPY_LONGLONG_, NPY_INT_),
NPY_UINT64_
= platform_lookup<std::uint64_t, unsigned long, unsigned long long, unsigned int>(
NPY_ULONG_, NPY_ULONGLONG_, NPY_UINT_),
};
unsigned int PyArray_RUNTIME_VERSION_;
struct PyArray_Dims {
Py_intptr_t *ptr;
int len;
};
static npy_api &get() {
PYBIND11_CONSTINIT static gil_safe_call_once_and_store<npy_api> storage;
return storage.call_once_and_store_result(lookup).get_stored();
}
bool PyArray_Check_(PyObject *obj) const {
return PyObject_TypeCheck(obj, PyArray_Type_) != 0;
}
bool PyArrayDescr_Check_(PyObject *obj) const {
return PyObject_TypeCheck(obj, PyArrayDescr_Type_) != 0;
}
unsigned int (*PyArray_GetNDArrayCFeatureVersion_)();
PyObject *(*PyArray_DescrFromType_)(int);
PyObject *(*PyArray_NewFromDescr_)(PyTypeObject *,
PyObject *,
int,
Py_intptr_t const *,
Py_intptr_t const *,
void *,
int,
PyObject *);
// Unused. Not removed because that affects ABI of the class.
PyObject *(*PyArray_DescrNewFromType_)(int);
int (*PyArray_CopyInto_)(PyObject *, PyObject *);
PyObject *(*PyArray_NewCopy_)(PyObject *, int);
PyTypeObject *PyArray_Type_;
PyTypeObject *PyVoidArrType_Type_;
PyTypeObject *PyArrayDescr_Type_;
PyObject *(*PyArray_DescrFromScalar_)(PyObject *);
PyObject *(*PyArray_FromAny_)(PyObject *, PyObject *, int, int, int, PyObject *);
int (*PyArray_DescrConverter_)(PyObject *, PyObject **);
bool (*PyArray_EquivTypes_)(PyObject *, PyObject *);
#ifdef PYBIND11_NUMPY_1_ONLY
int (*PyArray_GetArrayParamsFromObject_)(PyObject *,
PyObject *,
unsigned char,
PyObject **,
int *,
Py_intptr_t *,
PyObject **,
PyObject *);
#endif
PyObject *(*PyArray_Squeeze_)(PyObject *);
// Unused. Not removed because that affects ABI of the class.
int (*PyArray_SetBaseObject_)(PyObject *, PyObject *);
PyObject *(*PyArray_Resize_)(PyObject *, PyArray_Dims *, int, int);
PyObject *(*PyArray_Newshape_)(PyObject *, PyArray_Dims *, int);
PyObject *(*PyArray_View_)(PyObject *, PyObject *, PyObject *);
private:
enum functions {
API_PyArray_GetNDArrayCFeatureVersion = 211,
API_PyArray_Type = 2,
API_PyArrayDescr_Type = 3,
API_PyVoidArrType_Type = 39,
API_PyArray_DescrFromType = 45,
API_PyArray_DescrFromScalar = 57,
API_PyArray_FromAny = 69,
API_PyArray_Resize = 80,
// CopyInto was slot 82 and 50 was effectively an alias. NumPy 2 removed 82.
API_PyArray_CopyInto = 50,
API_PyArray_NewCopy = 85,
API_PyArray_NewFromDescr = 94,
API_PyArray_DescrNewFromType = 96,
API_PyArray_Newshape = 135,
API_PyArray_Squeeze = 136,
API_PyArray_View = 137,
API_PyArray_DescrConverter = 174,
API_PyArray_EquivTypes = 182,
#ifdef PYBIND11_NUMPY_1_ONLY
API_PyArray_GetArrayParamsFromObject = 278,
#endif
API_PyArray_SetBaseObject = 282
};
static npy_api lookup() {
module_ m = detail::import_numpy_core_submodule("multiarray");
auto c = m.attr("_ARRAY_API");
void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), nullptr);
if (api_ptr == nullptr) {
raise_from(PyExc_SystemError, "FAILURE obtaining numpy _ARRAY_API pointer.");
throw error_already_set();
}
npy_api api;
#define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func];
DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion);
api.PyArray_RUNTIME_VERSION_ = api.PyArray_GetNDArrayCFeatureVersion_();
if (api.PyArray_RUNTIME_VERSION_ < 0x7) {
pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0");
}
DECL_NPY_API(PyArray_Type);
DECL_NPY_API(PyVoidArrType_Type);
DECL_NPY_API(PyArrayDescr_Type);
DECL_NPY_API(PyArray_DescrFromType);
DECL_NPY_API(PyArray_DescrFromScalar);
DECL_NPY_API(PyArray_FromAny);
DECL_NPY_API(PyArray_Resize);
DECL_NPY_API(PyArray_CopyInto);
DECL_NPY_API(PyArray_NewCopy);
DECL_NPY_API(PyArray_NewFromDescr);
DECL_NPY_API(PyArray_DescrNewFromType);
DECL_NPY_API(PyArray_Newshape);
DECL_NPY_API(PyArray_Squeeze);
DECL_NPY_API(PyArray_View);
DECL_NPY_API(PyArray_DescrConverter);
DECL_NPY_API(PyArray_EquivTypes);
#ifdef PYBIND11_NUMPY_1_ONLY
DECL_NPY_API(PyArray_GetArrayParamsFromObject);
#endif
DECL_NPY_API(PyArray_SetBaseObject);
#undef DECL_NPY_API
return api;
}
};
inline PyArray_Proxy *array_proxy(void *ptr) { return reinterpret_cast<PyArray_Proxy *>(ptr); }
inline const PyArray_Proxy *array_proxy(const void *ptr) {
return reinterpret_cast<const PyArray_Proxy *>(ptr);
}
inline PyArrayDescr_Proxy *array_descriptor_proxy(PyObject *ptr) {
return reinterpret_cast<PyArrayDescr_Proxy *>(ptr);
}
inline const PyArrayDescr_Proxy *array_descriptor_proxy(const PyObject *ptr) {
return reinterpret_cast<const PyArrayDescr_Proxy *>(ptr);
}
inline const PyArrayDescr1_Proxy *array_descriptor1_proxy(const PyObject *ptr) {
return reinterpret_cast<const PyArrayDescr1_Proxy *>(ptr);
}
inline const PyArrayDescr2_Proxy *array_descriptor2_proxy(const PyObject *ptr) {
return reinterpret_cast<const PyArrayDescr2_Proxy *>(ptr);
}
inline bool check_flags(const void *ptr, int flag) {
return (flag == (array_proxy(ptr)->flags & flag));
}
template <typename T>
struct is_std_array : std::false_type {};
template <typename T, size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename T>
struct is_complex : std::false_type {};
template <typename T>
struct is_complex<std::complex<T>> : std::true_type {};
template <typename T>
struct array_info_scalar {
using type = T;
static constexpr bool is_array = false;
static constexpr bool is_empty = false;
static constexpr auto extents = const_name("");
static void append_extents(list & /* shape */) {}
};
// Computes underlying type and a comma-separated list of extents for array
// types (any mix of std::array and built-in arrays). An array of char is
// treated as scalar because it gets special handling.
template <typename T>
struct array_info : array_info_scalar<T> {};
template <typename T, size_t N>
struct array_info<std::array<T, N>> {
using type = typename array_info<T>::type;
static constexpr bool is_array = true;
static constexpr bool is_empty = (N == 0) || array_info<T>::is_empty;
static constexpr size_t extent = N;
// appends the extents to shape
static void append_extents(list &shape) {
shape.append(N);
array_info<T>::append_extents(shape);
}
static constexpr auto extents = const_name<array_info<T>::is_array>(
::pybind11::detail::concat(const_name<N>(), array_info<T>::extents), const_name<N>());
};
// For numpy we have special handling for arrays of characters, so we don't include
// the size in the array extents.
template <size_t N>
struct array_info<char[N]> : array_info_scalar<char[N]> {};
template <size_t N>
struct array_info<std::array<char, N>> : array_info_scalar<std::array<char, N>> {};
template <typename T, size_t N>
struct array_info<T[N]> : array_info<std::array<T, N>> {};
template <typename T>
using remove_all_extents_t = typename array_info<T>::type;
template <typename T>
using is_pod_struct
= all_of<std::is_standard_layout<T>, // since we're accessing directly in memory
// we need a standard layout type
#if defined(__GLIBCXX__) \
&& (__GLIBCXX__ < 20150422 || __GLIBCXX__ == 20150426 || __GLIBCXX__ == 20150623 \
|| __GLIBCXX__ == 20150626 || __GLIBCXX__ == 20160803)
// libstdc++ < 5 (including versions 4.8.5, 4.9.3 and 4.9.4 which were released after
// 5) don't implement is_trivially_copyable, so approximate it
std::is_trivially_destructible<T>,
satisfies_any_of<T, std::has_trivial_copy_constructor, std::has_trivial_copy_assign>,
#else
std::is_trivially_copyable<T>,
#endif
satisfies_none_of<T,
std::is_reference,
std::is_array,
is_std_array,
std::is_arithmetic,
is_complex,
std::is_enum>>;
// Replacement for std::is_pod (deprecated in C++20)
template <typename T>
using is_pod = all_of<std::is_standard_layout<T>, std::is_trivial<T>>;
template <ssize_t Dim = 0, typename Strides>
ssize_t byte_offset_unsafe(const Strides &) {
return 0;
}
template <ssize_t Dim = 0, typename Strides, typename... Ix>
ssize_t byte_offset_unsafe(const Strides &strides, ssize_t i, Ix... index) {
return i * strides[Dim] + byte_offset_unsafe<Dim + 1>(strides, index...);
}
/**
* Proxy class providing unsafe, unchecked const access to array data. This is constructed through
* the `unchecked<T, N>()` method of `array` or the `unchecked<N>()` method of `array_t<T>`. `Dims`
* will be -1 for dimensions determined at runtime.
*/
template <typename T, ssize_t Dims>
class unchecked_reference {
protected:
static constexpr bool Dynamic = Dims < 0;
const unsigned char *data_;
// Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to
// make large performance gains on big, nested loops, but requires compile-time dimensions
conditional_t<Dynamic, const ssize_t *, std::array<ssize_t, (size_t) Dims>> shape_, strides_;
const ssize_t dims_;
friend class pybind11::array;
// Constructor for compile-time dimensions:
template <bool Dyn = Dynamic>
unchecked_reference(const void *data,
const ssize_t *shape,
const ssize_t *strides,
enable_if_t<!Dyn, ssize_t>)
: data_{reinterpret_cast<const unsigned char *>(data)}, dims_{Dims} {
for (size_t i = 0; i < (size_t) dims_; i++) {
shape_[i] = shape[i];
strides_[i] = strides[i];
}
}
// Constructor for runtime dimensions:
template <bool Dyn = Dynamic>
unchecked_reference(const void *data,
const ssize_t *shape,
const ssize_t *strides,
enable_if_t<Dyn, ssize_t> dims)
: data_{reinterpret_cast<const unsigned char *>(data)}, shape_{shape}, strides_{strides},
dims_{dims} {}
public:
/**
* Unchecked const reference access to data at the given indices. For a compile-time known
* number of dimensions, this requires the correct number of arguments; for run-time
* dimensionality, this is not checked (and so is up to the caller to use safely).
*/
template <typename... Ix>
const T &operator()(Ix... index) const {
static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
"Invalid number of indices for unchecked array reference");
return *reinterpret_cast<const T *>(data_
+ byte_offset_unsafe(strides_, ssize_t(index)...));
}
/**
* Unchecked const reference access to data; this operator only participates if the reference
* is to a 1-dimensional array. When present, this is exactly equivalent to `obj(index)`.
*/
template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
const T &operator[](ssize_t index) const {
return operator()(index);
}
/// Pointer access to the data at the given indices.
template <typename... Ix>
const T *data(Ix... ix) const {
return &operator()(ssize_t(ix)...);
}
/// Returns the item size, i.e. sizeof(T)
constexpr static ssize_t itemsize() { return sizeof(T); }
/// Returns the shape (i.e. size) of dimension `dim`
ssize_t shape(ssize_t dim) const { return shape_[(size_t) dim]; }
/// Returns the number of dimensions of the array
ssize_t ndim() const { return dims_; }
/// Returns the total number of elements in the referenced array, i.e. the product of the
/// shapes
template <bool Dyn = Dynamic>
enable_if_t<!Dyn, ssize_t> size() const {
return std::accumulate(
shape_.begin(), shape_.end(), (ssize_t) 1, std::multiplies<ssize_t>());
}
template <bool Dyn = Dynamic>
enable_if_t<Dyn, ssize_t> size() const {
return std::accumulate(shape_, shape_ + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
}
/// Returns the total number of bytes used by the referenced data. Note that the actual span
/// in memory may be larger if the referenced array has non-contiguous strides (e.g. for a
/// slice).
ssize_t nbytes() const { return size() * itemsize(); }
};
template <typename T, ssize_t Dims>
class unchecked_mutable_reference : public unchecked_reference<T, Dims> {
friend class pybind11::array;
using ConstBase = unchecked_reference<T, Dims>;
using ConstBase::ConstBase;
using ConstBase::Dynamic;
public:
// Bring in const-qualified versions from base class
using ConstBase::operator();
using ConstBase::operator[];
/// Mutable, unchecked access to data at the given indices.
template <typename... Ix>
T &operator()(Ix... index) {
static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
"Invalid number of indices for unchecked array reference");
return const_cast<T &>(ConstBase::operator()(index...));
}
/**
* Mutable, unchecked access data at the given index; this operator only participates if the
* reference is to a 1-dimensional array (or has runtime dimensions). When present, this is
* exactly equivalent to `obj(index)`.
*/
template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
T &operator[](ssize_t index) {
return operator()(index);
}
/// Mutable pointer access to the data at the given indices.
template <typename... Ix>
T *mutable_data(Ix... ix) {
return &operator()(ssize_t(ix)...);
}
};
template <typename T, ssize_t Dim>
struct type_caster<unchecked_reference<T, Dim>> {
static_assert(Dim == 0 && Dim > 0 /* always fail */,
"unchecked array proxy object is not castable");
};
template <typename T, ssize_t Dim>
struct type_caster<unchecked_mutable_reference<T, Dim>>
: type_caster<unchecked_reference<T, Dim>> {};
PYBIND11_NAMESPACE_END(detail)
class dtype : public object {
public:
PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_)
explicit dtype(const buffer_info &info) {
dtype descr(_dtype_from_pep3118()(pybind11::str(info.format)));
// If info.itemsize == 0, use the value calculated from the format string
m_ptr = descr.strip_padding(info.itemsize != 0 ? info.itemsize : descr.itemsize())
.release()
.ptr();
}
explicit dtype(const pybind11::str &format) : dtype(from_args(format)) {}
explicit dtype(const std::string &format) : dtype(pybind11::str(format)) {}
explicit dtype(const char *format) : dtype(pybind11::str(format)) {}
dtype(list names, list formats, list offsets, ssize_t itemsize) {
dict args;
args["names"] = std::move(names);
args["formats"] = std::move(formats);
args["offsets"] = std::move(offsets);
args["itemsize"] = pybind11::int_(itemsize);
m_ptr = from_args(args).release().ptr();
}
/// Return dtype for the given typenum (one of the NPY_TYPES).
/// https://numpy.org/devdocs/reference/c-api/array.html#c.PyArray_DescrFromType
explicit dtype(int typenum)
: object(detail::npy_api::get().PyArray_DescrFromType_(typenum), stolen_t{}) {
if (m_ptr == nullptr) {
throw error_already_set();
}
}
/// This is essentially the same as calling numpy.dtype(args) in Python.
static dtype from_args(const object &args) {
PyObject *ptr = nullptr;
if ((detail::npy_api::get().PyArray_DescrConverter_(args.ptr(), &ptr) == 0) || !ptr) {
throw error_already_set();
}
return reinterpret_steal<dtype>(ptr);
}
/// Return dtype associated with a C++ type.
template <typename T>
static dtype of() {
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype();
}
/// Size of the data type in bytes.
#ifdef PYBIND11_NUMPY_1_ONLY
ssize_t itemsize() const { return detail::array_descriptor_proxy(m_ptr)->elsize; }
#else
ssize_t itemsize() const {
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) {
return detail::array_descriptor1_proxy(m_ptr)->elsize;
}
return detail::array_descriptor2_proxy(m_ptr)->elsize;
}
#endif
/// Returns true for structured data types.
#ifdef PYBIND11_NUMPY_1_ONLY
bool has_fields() const { return detail::array_descriptor_proxy(m_ptr)->names != nullptr; }
#else
bool has_fields() const {
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) {
return detail::array_descriptor1_proxy(m_ptr)->names != nullptr;
}
const auto *proxy = detail::array_descriptor2_proxy(m_ptr);
if (proxy->type_num < 0 || proxy->type_num >= 2056) {
return false;
}
return proxy->names != nullptr;
}
#endif
/// Single-character code for dtype's kind.
/// For example, floating point types are 'f' and integral types are 'i'.
char kind() const { return detail::array_descriptor_proxy(m_ptr)->kind; }
/// Single-character for dtype's type.
/// For example, ``float`` is 'f', ``double`` 'd', ``int`` 'i', and ``long`` 'l'.
char char_() const {
// Note: The signature, `dtype::char_` follows the naming of NumPy's
// public Python API (i.e., ``dtype.char``), rather than its internal
// C API (``PyArray_Descr::type``).
return detail::array_descriptor_proxy(m_ptr)->type;
}
/// type number of dtype.
int num() const {
// Note: The signature, `dtype::num` follows the naming of NumPy's public
// Python API (i.e., ``dtype.num``), rather than its internal
// C API (``PyArray_Descr::type_num``).
return detail::array_descriptor_proxy(m_ptr)->type_num;
}
/// Single character for byteorder
char byteorder() const { return detail::array_descriptor_proxy(m_ptr)->byteorder; }
/// Alignment of the data type
#ifdef PYBIND11_NUMPY_1_ONLY
int alignment() const { return detail::array_descriptor_proxy(m_ptr)->alignment; }
#else
ssize_t alignment() const {
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) {
return detail::array_descriptor1_proxy(m_ptr)->alignment;
}
return detail::array_descriptor2_proxy(m_ptr)->alignment;
}
#endif
/// Flags for the array descriptor
#ifdef PYBIND11_NUMPY_1_ONLY
char flags() const { return detail::array_descriptor_proxy(m_ptr)->flags; }
#else
std::uint64_t flags() const {
if (detail::npy_api::get().PyArray_RUNTIME_VERSION_ < 0x12) {
return (unsigned char) detail::array_descriptor1_proxy(m_ptr)->flags;
}
return detail::array_descriptor2_proxy(m_ptr)->flags;
}
#endif
private:
static object &_dtype_from_pep3118() {
PYBIND11_CONSTINIT static gil_safe_call_once_and_store<object> storage;
return storage
.call_once_and_store_result([]() {
return detail::import_numpy_core_submodule("_internal")
.attr("_dtype_from_pep3118");
})
.get_stored();
}
dtype strip_padding(ssize_t itemsize) {
// Recursively strip all void fields with empty names that are generated for
// padding fields (as of NumPy v1.11).
if (!has_fields()) {
return *this;
}
struct field_descr {
pybind11::str name;
object format;
pybind11::int_ offset;
field_descr(pybind11::str &&name, object &&format, pybind11::int_ &&offset)
: name{std::move(name)}, format{std::move(format)}, offset{std::move(offset)} {};
};
auto field_dict = attr("fields").cast<dict>();
std::vector<field_descr> field_descriptors;
field_descriptors.reserve(field_dict.size());
for (auto field : field_dict.attr("items")()) {
auto spec = field.cast<tuple>();
auto name = spec[0].cast<pybind11::str>();
auto spec_fo = spec[1].cast<tuple>();
auto format = spec_fo[0].cast<dtype>();
auto offset = spec_fo[1].cast<pybind11::int_>();
if ((len(name) == 0u) && format.kind() == 'V') {
continue;
}
field_descriptors.emplace_back(
std::move(name), format.strip_padding(format.itemsize()), std::move(offset));
}
std::sort(field_descriptors.begin(),
field_descriptors.end(),
[](const field_descr &a, const field_descr &b) {
return a.offset.cast<int>() < b.offset.cast<int>();
});
list names, formats, offsets;
for (auto &descr : field_descriptors) {
names.append(std::move(descr.name));
formats.append(std::move(descr.format));
offsets.append(std::move(descr.offset));
}
return dtype(std::move(names), std::move(formats), std::move(offsets), itemsize);
}
};
class array : public buffer {
public:
PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array)
enum {
c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_,
f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_,
forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_
};
array() : array(0, static_cast<const double *>(nullptr)) {}
using ShapeContainer = detail::any_container<ssize_t>;
using StridesContainer = detail::any_container<ssize_t>;
// Constructs an array taking shape/strides from arbitrary container types
array(const pybind11::dtype &dt,
ShapeContainer shape,
StridesContainer strides,
const void *ptr = nullptr,
handle base = handle()) {
if (strides->empty()) {
*strides = detail::c_strides(*shape, dt.itemsize());
}
auto ndim = shape->size();
if (ndim != strides->size()) {
pybind11_fail("NumPy: shape ndim doesn't match strides ndim");
}
auto descr = dt;
int flags = 0;
if (base && ptr) {
if (isinstance<array>(base)) {
/* Copy flags from base (except ownership bit) */
flags = reinterpret_borrow<array>(base).flags()
& ~detail::npy_api::NPY_ARRAY_OWNDATA_;
} else {
/* Writable by default, easy to downgrade later on if needed */
flags = detail::npy_api::NPY_ARRAY_WRITEABLE_;
}
}
auto &api = detail::npy_api::get();
auto tmp = reinterpret_steal<object>(api.PyArray_NewFromDescr_(
api.PyArray_Type_,
descr.release().ptr(),
(int) ndim,
// Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1)
reinterpret_cast<Py_intptr_t *>(shape->data()),
reinterpret_cast<Py_intptr_t *>(strides->data()),
const_cast<void *>(ptr),
flags,
nullptr));
if (!tmp) {
throw error_already_set();
}
if (ptr) {
if (base) {
api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr());
} else {
tmp = reinterpret_steal<object>(
api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */));
}
}
m_ptr = tmp.release().ptr();
}
array(const pybind11::dtype &dt,
ShapeContainer shape,
const void *ptr = nullptr,
handle base = handle())
: array(dt, std::move(shape), {}, ptr, base) {}
template <typename T,
typename
= detail::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>>
array(const pybind11::dtype &dt, T count, const void *ptr = nullptr, handle base = handle())
: array(dt, {{count}}, ptr, base) {}
template <typename T>
array(ShapeContainer shape, StridesContainer strides, const T *ptr, handle base = handle())
: array(pybind11::dtype::of<T>(), std::move(shape), std::move(strides), ptr, base) {}
template <typename T>
array(ShapeContainer shape, const T *ptr, handle base = handle())
: array(std::move(shape), {}, ptr, base) {}
template <typename T>
explicit array(ssize_t count, const T *ptr, handle base = handle())
: array({count}, {}, ptr, base) {}
explicit array(const buffer_info &info, handle base = handle())
: array(pybind11::dtype(info), info.shape, info.strides, info.ptr, base) {}
/// Array descriptor (dtype)
pybind11::dtype dtype() const {
return reinterpret_borrow<pybind11::dtype>(detail::array_proxy(m_ptr)->descr);
}
/// Total number of elements
ssize_t size() const {
return std::accumulate(shape(), shape() + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
}
/// Byte size of a single element
ssize_t itemsize() const { return dtype().itemsize(); }
/// Total number of bytes
ssize_t nbytes() const { return size() * itemsize(); }
/// Number of dimensions
ssize_t ndim() const { return detail::array_proxy(m_ptr)->nd; }
/// Base object
object base() const { return reinterpret_borrow<object>(detail::array_proxy(m_ptr)->base); }
/// Dimensions of the array
const ssize_t *shape() const { return detail::array_proxy(m_ptr)->dimensions; }
/// Dimension along a given axis
ssize_t shape(ssize_t dim) const {
if (dim >= ndim()) {
fail_dim_check(dim, "invalid axis");
}
return shape()[dim];
}
/// Strides of the array
const ssize_t *strides() const { return detail::array_proxy(m_ptr)->strides; }
/// Stride along a given axis
ssize_t strides(ssize_t dim) const {
if (dim >= ndim()) {
fail_dim_check(dim, "invalid axis");
}
return strides()[dim];
}
/// Return the NumPy array flags
int flags() const { return detail::array_proxy(m_ptr)->flags; }
/// If set, the array is writeable (otherwise the buffer is read-only)
bool writeable() const {
return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_);
}
/// If set, the array owns the data (will be freed when the array is deleted)
bool owndata() const {
return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_);
}
/// Pointer to the contained data. If index is not provided, points to the
/// beginning of the buffer. May throw if the index would lead to out of bounds access.
template <typename... Ix>
const void *data(Ix... index) const {
return static_cast<const void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
}
/// Mutable pointer to the contained data. If index is not provided, points to the
/// beginning of the buffer. May throw if the index would lead to out of bounds access.
/// May throw if the array is not writeable.
template <typename... Ix>
void *mutable_data(Ix... index) {
check_writeable();
return static_cast<void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
}
/// Byte offset from beginning of the array to a given index (full or partial).
/// May throw if the index would lead to out of bounds access.
template <typename... Ix>
ssize_t offset_at(Ix... index) const {
if ((ssize_t) sizeof...(index) > ndim()) {
fail_dim_check(sizeof...(index), "too many indices for an array");
}
return byte_offset(ssize_t(index)...);
}
ssize_t offset_at() const { return 0; }
/// Item count from beginning of the array to a given index (full or partial).
/// May throw if the index would lead to out of bounds access.
template <typename... Ix>
ssize_t index_at(Ix... index) const {
return offset_at(index...) / itemsize();
}
/**
* Returns a proxy object that provides access to the array's data without bounds or
* dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with
* care: the array must not be destroyed or reshaped for the duration of the returned object,
* and the caller must take care not to access invalid dimensions or dimension indices.
*/
template <typename T, ssize_t Dims = -1>
detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
if (Dims >= 0 && ndim() != Dims) {
throw std::domain_error("array has incorrect number of dimensions: "
+ std::to_string(ndim()) + "; expected "
+ std::to_string(Dims));
}
return detail::unchecked_mutable_reference<T, Dims>(
mutable_data(), shape(), strides(), ndim());
}
/**
* Returns a proxy object that provides const access to the array's data without bounds or
* dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the
* underlying array have the `writable` flag. Use with care: the array must not be destroyed
* or reshaped for the duration of the returned object, and the caller must take care not to
* access invalid dimensions or dimension indices.
*/
template <typename T, ssize_t Dims = -1>
detail::unchecked_reference<T, Dims> unchecked() const & {
if (Dims >= 0 && ndim() != Dims) {
throw std::domain_error("array has incorrect number of dimensions: "
+ std::to_string(ndim()) + "; expected "
+ std::to_string(Dims));
}
return detail::unchecked_reference<T, Dims>(data(), shape(), strides(), ndim());
}
/// Return a new view with all of the dimensions of length 1 removed
array squeeze() {
auto &api = detail::npy_api::get();
return reinterpret_steal<array>(api.PyArray_Squeeze_(m_ptr));
}
/// Resize array to given shape
/// If refcheck is true and more that one reference exist to this array
/// then resize will succeed only if it makes a reshape, i.e. original size doesn't change
void resize(ShapeContainer new_shape, bool refcheck = true) {
detail::npy_api::PyArray_Dims d
= {// Use reinterpret_cast for PyPy on Windows (remove if fixed, checked on 7.3.1)
reinterpret_cast<Py_intptr_t *>(new_shape->data()),
int(new_shape->size())};
// try to resize, set ordering param to -1 cause it's not used anyway
auto new_array = reinterpret_steal<object>(
detail::npy_api::get().PyArray_Resize_(m_ptr, &d, int(refcheck), -1));
if (!new_array) {
throw error_already_set();
}
if (isinstance<array>(new_array)) {
*this = std::move(new_array);
}
}
/// Optional `order` parameter omitted, to be added as needed.
array reshape(ShapeContainer new_shape) {
detail::npy_api::PyArray_Dims d
= {reinterpret_cast<Py_intptr_t *>(new_shape->data()), int(new_shape->size())};
auto new_array
= reinterpret_steal<array>(detail::npy_api::get().PyArray_Newshape_(m_ptr, &d, 0));
if (!new_array) {
throw error_already_set();
}
return new_array;
}
/// Create a view of an array in a different data type.
/// This function may fundamentally reinterpret the data in the array.
/// It is the responsibility of the caller to ensure that this is safe.
/// Only supports the `dtype` argument, the `type` argument is omitted,
/// to be added as needed.
array view(const std::string &dtype) {
auto &api = detail::npy_api::get();
auto new_view = reinterpret_steal<array>(api.PyArray_View_(
m_ptr, dtype::from_args(pybind11::str(dtype)).release().ptr(), nullptr));
if (!new_view) {
throw error_already_set();
}
return new_view;
}
/// Ensure that the argument is a NumPy array
/// In case of an error, nullptr is returned and the Python error is cleared.
static array ensure(handle h, int ExtraFlags = 0) {
auto result = reinterpret_steal<array>(raw_array(h.ptr(), ExtraFlags));
if (!result) {
PyErr_Clear();
}
return result;
}
protected:
template <typename, typename>
friend struct detail::npy_format_descriptor;
void fail_dim_check(ssize_t dim, const std::string &msg) const {
throw index_error(msg + ": " + std::to_string(dim) + " (ndim = " + std::to_string(ndim())
+ ')');
}
template <typename... Ix>
ssize_t byte_offset(Ix... index) const {
check_dimensions(index...);
return detail::byte_offset_unsafe(strides(), ssize_t(index)...);
}
void check_writeable() const {
if (!writeable()) {
throw std::domain_error("array is not writeable");
}
}
template <typename... Ix>
void check_dimensions(Ix... index) const {
check_dimensions_impl(ssize_t(0), shape(), ssize_t(index)...);
}
void check_dimensions_impl(ssize_t, const ssize_t *) const {}
template <typename... Ix>
void check_dimensions_impl(ssize_t axis, const ssize_t *shape, ssize_t i, Ix... index) const {
if (i >= *shape) {
throw index_error(std::string("index ") + std::to_string(i)
+ " is out of bounds for axis " + std::to_string(axis)
+ " with size " + std::to_string(*shape));
}
check_dimensions_impl(axis + 1, shape + 1, index...);
}
/// Create array from any object -- always returns a new reference
static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) {
if (ptr == nullptr) {
set_error(PyExc_ValueError, "cannot create a pybind11::array from a nullptr");
return nullptr;
}
return detail::npy_api::get().PyArray_FromAny_(
ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr);
}
};
template <typename T, int ExtraFlags = array::forcecast>
class array_t : public array {
private:
struct private_ctor {};
// Delegating constructor needed when both moving and accessing in the same constructor
array_t(private_ctor,
ShapeContainer &&shape,
StridesContainer &&strides,
const T *ptr,
handle base)
: array(std::move(shape), std::move(strides), ptr, base) {}
public:
static_assert(!detail::array_info<T>::is_array, "Array types cannot be used with array_t");
using value_type = T;
array_t() : array(0, static_cast<const T *>(nullptr)) {}
array_t(handle h, borrowed_t) : array(h, borrowed_t{}) {}
array_t(handle h, stolen_t) : array(h, stolen_t{}) {}
PYBIND11_DEPRECATED("Use array_t<T>::ensure() instead")
array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen_t{}) {
if (!m_ptr) {
PyErr_Clear();
}
if (!is_borrowed) {
Py_XDECREF(h.ptr());
}
}
// NOLINTNEXTLINE(google-explicit-constructor)
array_t(const object &o) : array(raw_array_t(o.ptr()), stolen_t{}) {
if (!m_ptr) {
throw error_already_set();
}
}
explicit array_t(const buffer_info &info, handle base = handle()) : array(info, base) {}
array_t(ShapeContainer shape,
StridesContainer strides,
const T *ptr = nullptr,
handle base = handle())
: array(std::move(shape), std::move(strides), ptr, base) {}
explicit array_t(ShapeContainer shape, const T *ptr = nullptr, handle base = handle())
: array_t(private_ctor{},
std::move(shape),
(ExtraFlags & f_style) != 0 ? detail::f_strides(*shape, itemsize())
: detail::c_strides(*shape, itemsize()),
ptr,
base) {}
explicit array_t(ssize_t count, const T *ptr = nullptr, handle base = handle())
: array({count}, {}, ptr, base) {}
constexpr ssize_t itemsize() const { return sizeof(T); }
template <typename... Ix>
ssize_t index_at(Ix... index) const {
return offset_at(index...) / itemsize();
}
template <typename... Ix>
const T *data(Ix... index) const {
return static_cast<const T *>(array::data(index...));
}
template <typename... Ix>
T *mutable_data(Ix... index) {
return static_cast<T *>(array::mutable_data(index...));
}
// Reference to element at a given index
template <typename... Ix>
const T &at(Ix... index) const {
if ((ssize_t) sizeof...(index) != ndim()) {
fail_dim_check(sizeof...(index), "index dimension mismatch");
}
return *(static_cast<const T *>(array::data())
+ byte_offset(ssize_t(index)...) / itemsize());
}
// Mutable reference to element at a given index
template <typename... Ix>
T &mutable_at(Ix... index) {
if ((ssize_t) sizeof...(index) != ndim()) {
fail_dim_check(sizeof...(index), "index dimension mismatch");
}
return *(static_cast<T *>(array::mutable_data())
+ byte_offset(ssize_t(index)...) / itemsize());
}
/**
* Returns a proxy object that provides access to the array's data without bounds or
* dimensionality checking. Will throw if the array is missing the `writeable` flag. Use with
* care: the array must not be destroyed or reshaped for the duration of the returned object,
* and the caller must take care not to access invalid dimensions or dimension indices.
*/
template <ssize_t Dims = -1>
detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
return array::mutable_unchecked<T, Dims>();
}
/**
* Returns a proxy object that provides const access to the array's data without bounds or
* dimensionality checking. Unlike `mutable_unchecked()`, this does not require that the
* underlying array have the `writable` flag. Use with care: the array must not be destroyed
* or reshaped for the duration of the returned object, and the caller must take care not to
* access invalid dimensions or dimension indices.
*/
template <ssize_t Dims = -1>
detail::unchecked_reference<T, Dims> unchecked() const & {
return array::unchecked<T, Dims>();
}
/// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert
/// it). In case of an error, nullptr is returned and the Python error is cleared.
static array_t ensure(handle h) {
auto result = reinterpret_steal<array_t>(raw_array_t(h.ptr()));
if (!result) {
PyErr_Clear();
}
return result;
}
static bool check_(handle h) {
const auto &api = detail::npy_api::get();
return api.PyArray_Check_(h.ptr())
&& api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr,
dtype::of<T>().ptr())
&& detail::check_flags(h.ptr(), ExtraFlags & (array::c_style | array::f_style));
}
protected:
/// Create array from any object -- always returns a new reference
static PyObject *raw_array_t(PyObject *ptr) {
if (ptr == nullptr) {
set_error(PyExc_ValueError, "cannot create a pybind11::array_t from a nullptr");
return nullptr;
}
return detail::npy_api::get().PyArray_FromAny_(ptr,
dtype::of<T>().release().ptr(),
0,
0,
detail::npy_api::NPY_ARRAY_ENSUREARRAY_
| ExtraFlags,
nullptr);
}
};
template <typename T>
struct format_descriptor<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
static std::string format() {
return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::format();
}
};
template <size_t N>
struct format_descriptor<char[N]> {
static std::string format() { return std::to_string(N) + 's'; }
};
template <size_t N>
struct format_descriptor<std::array<char, N>> {
static std::string format() { return std::to_string(N) + 's'; }
};
template <typename T>
struct format_descriptor<T, detail::enable_if_t<std::is_enum<T>::value>> {
static std::string format() {
return format_descriptor<
typename std::remove_cv<typename std::underlying_type<T>::type>::type>::format();
}
};
template <typename T>
struct format_descriptor<T, detail::enable_if_t<detail::array_info<T>::is_array>> {
static std::string format() {
using namespace detail;
static constexpr auto extents = const_name("(") + array_info<T>::extents + const_name(")");
return extents.text + format_descriptor<remove_all_extents_t<T>>::format();
}
};
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename T, int ExtraFlags>
struct pyobject_caster<array_t<T, ExtraFlags>> {
using type = array_t<T, ExtraFlags>;
bool load(handle src, bool convert) {
if (!convert && !type::check_(src)) {
return false;
}
value = type::ensure(src);
return static_cast<bool>(value);
}
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
return src.inc_ref();
}
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
};
template <typename T>
struct compare_buffer_info<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
static bool compare(const buffer_info &b) {
return npy_api::get().PyArray_EquivTypes_(dtype::of<T>().ptr(), dtype(b).ptr());
}
};
template <typename T, typename = void>
struct npy_format_descriptor_name;
template <typename T>
struct npy_format_descriptor_name<T, enable_if_t<std::is_integral<T>::value>> {
static constexpr auto name = const_name<std::is_same<T, bool>::value>(
const_name("bool"),
const_name<std::is_signed<T>::value>("numpy.int", "numpy.uint")
+ const_name<sizeof(T) * 8>());
};
template <typename T>
struct npy_format_descriptor_name<T, enable_if_t<std::is_floating_point<T>::value>> {
static constexpr auto name = const_name < std::is_same<T, float>::value
|| std::is_same<T, const float>::value
|| std::is_same<T, double>::value
|| std::is_same<T, const double>::value
> (const_name("numpy.float") + const_name<sizeof(T) * 8>(),
const_name("numpy.longdouble"));
};
template <typename T>
struct npy_format_descriptor_name<T, enable_if_t<is_complex<T>::value>> {
static constexpr auto name = const_name < std::is_same<typename T::value_type, float>::value
|| std::is_same<typename T::value_type, const float>::value
|| std::is_same<typename T::value_type, double>::value
|| std::is_same<typename T::value_type, const double>::value
> (const_name("numpy.complex")
+ const_name<sizeof(typename T::value_type) * 16>(),
const_name("numpy.longcomplex"));
};
template <typename T>
struct npy_format_descriptor<
T,
enable_if_t<satisfies_any_of<T, std::is_arithmetic, is_complex>::value>>
: npy_format_descriptor_name<T> {
private:
// NB: the order here must match the one in common.h
constexpr static const int values[15] = {npy_api::NPY_BOOL_,
npy_api::NPY_BYTE_,
npy_api::NPY_UBYTE_,
npy_api::NPY_INT16_,
npy_api::NPY_UINT16_,
npy_api::NPY_INT32_,
npy_api::NPY_UINT32_,
npy_api::NPY_INT64_,
npy_api::NPY_UINT64_,
npy_api::NPY_FLOAT_,
npy_api::NPY_DOUBLE_,
npy_api::NPY_LONGDOUBLE_,
npy_api::NPY_CFLOAT_,
npy_api::NPY_CDOUBLE_,
npy_api::NPY_CLONGDOUBLE_};
public:
static constexpr int value = values[detail::is_fmt_numeric<T>::index];
static pybind11::dtype dtype() { return pybind11::dtype(/*typenum*/ value); }
};
template <typename T>
struct npy_format_descriptor<T, enable_if_t<is_same_ignoring_cvref<T, PyObject *>::value>> {
static constexpr auto name = const_name("object");
static constexpr int value = npy_api::NPY_OBJECT_;
static pybind11::dtype dtype() { return pybind11::dtype(/*typenum*/ value); }
};
#define PYBIND11_DECL_CHAR_FMT \
static constexpr auto name = const_name("S") + const_name<N>(); \
static pybind11::dtype dtype() { \
return pybind11::dtype(std::string("S") + std::to_string(N)); \
}
template <size_t N>
struct npy_format_descriptor<char[N]> {
PYBIND11_DECL_CHAR_FMT
};
template <size_t N>
struct npy_format_descriptor<std::array<char, N>> {
PYBIND11_DECL_CHAR_FMT
};
#undef PYBIND11_DECL_CHAR_FMT
template <typename T>
struct npy_format_descriptor<T, enable_if_t<array_info<T>::is_array>> {
private:
using base_descr = npy_format_descriptor<typename array_info<T>::type>;
public:
static_assert(!array_info<T>::is_empty, "Zero-sized arrays are not supported");
static constexpr auto name
= const_name("(") + array_info<T>::extents + const_name(")") + base_descr::name;
static pybind11::dtype dtype() {
list shape;
array_info<T>::append_extents(shape);
return pybind11::dtype::from_args(
pybind11::make_tuple(base_descr::dtype(), std::move(shape)));
}
};
template <typename T>
struct npy_format_descriptor<T, enable_if_t<std::is_enum<T>::value>> {
private:
using base_descr = npy_format_descriptor<typename std::underlying_type<T>::type>;
public:
static constexpr auto name = base_descr::name;
static pybind11::dtype dtype() { return base_descr::dtype(); }
};
struct field_descriptor {
const char *name;
ssize_t offset;
ssize_t size;
std::string format;
dtype descr;
};
PYBIND11_NOINLINE void register_structured_dtype(any_container<field_descriptor> fields,
const std::type_info &tinfo,
ssize_t itemsize,
bool (*direct_converter)(PyObject *, void *&)) {
auto &numpy_internals = get_numpy_internals();
if (numpy_internals.get_type_info(tinfo, false)) {
pybind11_fail("NumPy: dtype is already registered");
}
// Use ordered fields because order matters as of NumPy 1.14:
// https://docs.scipy.org/doc/numpy/release.html#multiple-field-indexing-assignment-of-structured-arrays
std::vector<field_descriptor> ordered_fields(std::move(fields));
std::sort(
ordered_fields.begin(),
ordered_fields.end(),
[](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; });
list names, formats, offsets;
for (auto &field : ordered_fields) {
if (!field.descr) {
pybind11_fail(std::string("NumPy: unsupported field dtype: `") + field.name + "` @ "
+ tinfo.name());
}
names.append(pybind11::str(field.name));
formats.append(field.descr);
offsets.append(pybind11::int_(field.offset));
}
auto *dtype_ptr
= pybind11::dtype(std::move(names), std::move(formats), std::move(offsets), itemsize)
.release()
.ptr();
// There is an existing bug in NumPy (as of v1.11): trailing bytes are
// not encoded explicitly into the format string. This will supposedly
// get fixed in v1.12; for further details, see these:
// - https://github.com/numpy/numpy/issues/7797
// - https://github.com/numpy/numpy/pull/7798
// Because of this, we won't use numpy's logic to generate buffer format
// strings and will just do it ourselves.
ssize_t offset = 0;
std::ostringstream oss;
// mark the structure as unaligned with '^', because numpy and C++ don't
// always agree about alignment (particularly for complex), and we're
// explicitly listing all our padding. This depends on none of the fields
// overriding the endianness. Putting the ^ in front of individual fields
// isn't guaranteed to work due to https://github.com/numpy/numpy/issues/9049
oss << "^T{";
for (auto &field : ordered_fields) {
if (field.offset > offset) {
oss << (field.offset - offset) << 'x';
}
oss << field.format << ':' << field.name << ':';
offset = field.offset + field.size;
}
if (itemsize > offset) {
oss << (itemsize - offset) << 'x';
}
oss << '}';
auto format_str = oss.str();
// Smoke test: verify that NumPy properly parses our buffer format string
auto &api = npy_api::get();
auto arr = array(buffer_info(nullptr, itemsize, format_str, 1));
if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr())) {
pybind11_fail("NumPy: invalid buffer descriptor!");
}
auto tindex = std::type_index(tinfo);
numpy_internals.registered_dtypes[tindex] = {dtype_ptr, std::move(format_str)};
get_internals().direct_conversions[tindex].push_back(direct_converter);
}
template <typename T, typename SFINAE>
struct npy_format_descriptor {
static_assert(is_pod_struct<T>::value,
"Attempt to use a non-POD or unimplemented POD type as a numpy dtype");
static constexpr auto name = make_caster<T>::name;
static pybind11::dtype dtype() { return reinterpret_borrow<pybind11::dtype>(dtype_ptr()); }
static std::string format() {
static auto format_str = get_numpy_internals().get_type_info<T>(true)->format_str;
return format_str;
}
static void register_dtype(any_container<field_descriptor> fields) {
register_structured_dtype(std::move(fields),
typeid(typename std::remove_cv<T>::type),
sizeof(T),
&direct_converter);
}
private:
static PyObject *dtype_ptr() {
static PyObject *ptr = get_numpy_internals().get_type_info<T>(true)->dtype_ptr;
return ptr;
}
static bool direct_converter(PyObject *obj, void *&value) {
auto &api = npy_api::get();
if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_)) {
return false;
}
if (auto descr = reinterpret_steal<object>(api.PyArray_DescrFromScalar_(obj))) {
if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) {
value = ((PyVoidScalarObject_Proxy *) obj)->obval;
return true;
}
}
return false;
}
};
#ifdef __CLION_IDE__ // replace heavy macro with dummy code for the IDE (doesn't affect code)
# define PYBIND11_NUMPY_DTYPE(Type, ...) ((void) 0)
# define PYBIND11_NUMPY_DTYPE_EX(Type, ...) ((void) 0)
#else
# define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name) \
::pybind11::detail::field_descriptor { \
Name, offsetof(T, Field), sizeof(decltype(std::declval<T>().Field)), \
::pybind11::format_descriptor<decltype(std::declval<T>().Field)>::format(), \
::pybind11::detail::npy_format_descriptor< \
decltype(std::declval<T>().Field)>::dtype() \
}
// Extract name, offset and format descriptor for a struct field
# define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field)
// The main idea of this macro is borrowed from https://github.com/swansontec/map-macro
// (C) William Swanson, Paul Fultz
# define PYBIND11_EVAL0(...) __VA_ARGS__
# define PYBIND11_EVAL1(...) PYBIND11_EVAL0(PYBIND11_EVAL0(PYBIND11_EVAL0(__VA_ARGS__)))
# define PYBIND11_EVAL2(...) PYBIND11_EVAL1(PYBIND11_EVAL1(PYBIND11_EVAL1(__VA_ARGS__)))
# define PYBIND11_EVAL3(...) PYBIND11_EVAL2(PYBIND11_EVAL2(PYBIND11_EVAL2(__VA_ARGS__)))
# define PYBIND11_EVAL4(...) PYBIND11_EVAL3(PYBIND11_EVAL3(PYBIND11_EVAL3(__VA_ARGS__)))
# define PYBIND11_EVAL(...) PYBIND11_EVAL4(PYBIND11_EVAL4(PYBIND11_EVAL4(__VA_ARGS__)))
# define PYBIND11_MAP_END(...)
# define PYBIND11_MAP_OUT
# define PYBIND11_MAP_COMMA ,
# define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END
# define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT
# define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0(test, next, 0)
# define PYBIND11_MAP_NEXT(test, next) PYBIND11_MAP_NEXT1(PYBIND11_MAP_GET_END test, next)
# if defined(_MSC_VER) \
&& !defined(__clang__) // MSVC is not as eager to expand macros, hence this workaround
# define PYBIND11_MAP_LIST_NEXT1(test, next) \
PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0))
# else
# define PYBIND11_MAP_LIST_NEXT1(test, next) \
PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)
# endif
# define PYBIND11_MAP_LIST_NEXT(test, next) \
PYBIND11_MAP_LIST_NEXT1(PYBIND11_MAP_GET_END test, next)
# define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \
f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST1)(f, t, peek, __VA_ARGS__)
# define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \
f(t, x) PYBIND11_MAP_LIST_NEXT(peek, PYBIND11_MAP_LIST0)(f, t, peek, __VA_ARGS__)
// PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ...
# define PYBIND11_MAP_LIST(f, t, ...) \
PYBIND11_EVAL(PYBIND11_MAP_LIST1(f, t, __VA_ARGS__, (), 0))
# define PYBIND11_NUMPY_DTYPE(Type, ...) \
::pybind11::detail::npy_format_descriptor<Type>::register_dtype( \
::std::vector<::pybind11::detail::field_descriptor>{ \
PYBIND11_MAP_LIST(PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)})
# if defined(_MSC_VER) && !defined(__clang__)
# define PYBIND11_MAP2_LIST_NEXT1(test, next) \
PYBIND11_EVAL0(PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0))
# else
# define PYBIND11_MAP2_LIST_NEXT1(test, next) \
PYBIND11_MAP_NEXT0(test, PYBIND11_MAP_COMMA next, 0)
# endif
# define PYBIND11_MAP2_LIST_NEXT(test, next) \
PYBIND11_MAP2_LIST_NEXT1(PYBIND11_MAP_GET_END test, next)
# define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \
f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST1)(f, t, peek, __VA_ARGS__)
# define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \
f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT(peek, PYBIND11_MAP2_LIST0)(f, t, peek, __VA_ARGS__)
// PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ...
# define PYBIND11_MAP2_LIST(f, t, ...) \
PYBIND11_EVAL(PYBIND11_MAP2_LIST1(f, t, __VA_ARGS__, (), 0))
# define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \
::pybind11::detail::npy_format_descriptor<Type>::register_dtype( \
::std::vector<::pybind11::detail::field_descriptor>{ \
PYBIND11_MAP2_LIST(PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)})
#endif // __CLION_IDE__
class common_iterator {
public:
using container_type = std::vector<ssize_t>;
using value_type = container_type::value_type;
using size_type = container_type::size_type;
common_iterator() : m_strides() {}
common_iterator(void *ptr, const container_type &strides, const container_type &shape)
: p_ptr(reinterpret_cast<char *>(ptr)), m_strides(strides.size()) {
m_strides.back() = static_cast<value_type>(strides.back());
for (size_type i = m_strides.size() - 1; i != 0; --i) {
size_type j = i - 1;
auto s = static_cast<value_type>(shape[i]);
m_strides[j] = strides[j] + m_strides[i] - strides[i] * s;
}
}
void increment(size_type dim) { p_ptr += m_strides[dim]; }
void *data() const { return p_ptr; }
private:
char *p_ptr{nullptr};
container_type m_strides;
};
template <size_t N>
class multi_array_iterator {
public:
using container_type = std::vector<ssize_t>;
multi_array_iterator(const std::array<buffer_info, N> &buffers, const container_type &shape)
: m_shape(shape.size()), m_index(shape.size(), 0), m_common_iterator() {
// Manual copy to avoid conversion warning if using std::copy
for (size_t i = 0; i < shape.size(); ++i) {
m_shape[i] = shape[i];
}
container_type strides(shape.size());
for (size_t i = 0; i < N; ++i) {
init_common_iterator(buffers[i], shape, m_common_iterator[i], strides);
}
}
multi_array_iterator &operator++() {
for (size_t j = m_index.size(); j != 0; --j) {
size_t i = j - 1;
if (++m_index[i] != m_shape[i]) {
increment_common_iterator(i);
break;
}
m_index[i] = 0;
}
return *this;
}
template <size_t K, class T = void>
T *data() const {
return reinterpret_cast<T *>(m_common_iterator[K].data());
}
private:
using common_iter = common_iterator;
void init_common_iterator(const buffer_info &buffer,
const container_type &shape,
common_iter &iterator,
container_type &strides) {
auto buffer_shape_iter = buffer.shape.rbegin();
auto buffer_strides_iter = buffer.strides.rbegin();
auto shape_iter = shape.rbegin();
auto strides_iter = strides.rbegin();
while (buffer_shape_iter != buffer.shape.rend()) {
if (*shape_iter == *buffer_shape_iter) {
*strides_iter = *buffer_strides_iter;
} else {
*strides_iter = 0;
}
++buffer_shape_iter;
++buffer_strides_iter;
++shape_iter;
++strides_iter;
}
std::fill(strides_iter, strides.rend(), 0);
iterator = common_iter(buffer.ptr, strides, shape);
}
void increment_common_iterator(size_t dim) {
for (auto &iter : m_common_iterator) {
iter.increment(dim);
}
}
container_type m_shape;
container_type m_index;
std::array<common_iter, N> m_common_iterator;
};
enum class broadcast_trivial { non_trivial, c_trivial, f_trivial };
// Populates the shape and number of dimensions for the set of buffers. Returns a
// broadcast_trivial enum value indicating whether the broadcast is "trivial"--that is, has each
// buffer being either a singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous
// (`f_trivial`) storage buffer; returns `non_trivial` otherwise.
template <size_t N>
broadcast_trivial
broadcast(const std::array<buffer_info, N> &buffers, ssize_t &ndim, std::vector<ssize_t> &shape) {
ndim = std::accumulate(
buffers.begin(), buffers.end(), ssize_t(0), [](ssize_t res, const buffer_info &buf) {
return std::max(res, buf.ndim);
});
shape.clear();
shape.resize((size_t) ndim, 1);
// Figure out the output size, and make sure all input arrays conform (i.e. are either size 1
// or the full size).
for (size_t i = 0; i < N; ++i) {
auto res_iter = shape.rbegin();
auto end = buffers[i].shape.rend();
for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end;
++shape_iter, ++res_iter) {
const auto &dim_size_in = *shape_iter;
auto &dim_size_out = *res_iter;
// Each input dimension can either be 1 or `n`, but `n` values must match across
// buffers
if (dim_size_out == 1) {
dim_size_out = dim_size_in;
} else if (dim_size_in != 1 && dim_size_in != dim_size_out) {
pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!");
}
}
}
bool trivial_broadcast_c = true;
bool trivial_broadcast_f = true;
for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) {
if (buffers[i].size == 1) {
continue;
}
// Require the same number of dimensions:
if (buffers[i].ndim != ndim) {
return broadcast_trivial::non_trivial;
}
// Require all dimensions be full-size:
if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin())) {
return broadcast_trivial::non_trivial;
}
// Check for C contiguity (but only if previous inputs were also C contiguous)
if (trivial_broadcast_c) {
ssize_t expect_stride = buffers[i].itemsize;
auto end = buffers[i].shape.crend();
for (auto shape_iter = buffers[i].shape.crbegin(),
stride_iter = buffers[i].strides.crbegin();
trivial_broadcast_c && shape_iter != end;
++shape_iter, ++stride_iter) {
if (expect_stride == *stride_iter) {
expect_stride *= *shape_iter;
} else {
trivial_broadcast_c = false;
}
}
}
// Check for Fortran contiguity (if previous inputs were also F contiguous)
if (trivial_broadcast_f) {
ssize_t expect_stride = buffers[i].itemsize;
auto end = buffers[i].shape.cend();
for (auto shape_iter = buffers[i].shape.cbegin(),
stride_iter = buffers[i].strides.cbegin();
trivial_broadcast_f && shape_iter != end;
++shape_iter, ++stride_iter) {
if (expect_stride == *stride_iter) {
expect_stride *= *shape_iter;
} else {
trivial_broadcast_f = false;
}
}
}
}
return trivial_broadcast_c ? broadcast_trivial::c_trivial
: trivial_broadcast_f ? broadcast_trivial::f_trivial
: broadcast_trivial::non_trivial;
}
template <typename T>
struct vectorize_arg {
static_assert(!std::is_rvalue_reference<T>::value,
"Functions with rvalue reference arguments cannot be vectorized");
// The wrapped function gets called with this type:
using call_type = remove_reference_t<T>;
// Is this a vectorized argument?
static constexpr bool vectorize
= satisfies_any_of<call_type, std::is_arithmetic, is_complex, is_pod>::value
&& satisfies_none_of<call_type,
std::is_pointer,
std::is_array,
is_std_array,
std::is_enum>::value
&& (!std::is_reference<T>::value
|| (std::is_lvalue_reference<T>::value && std::is_const<call_type>::value));
// Accept this type: an array for vectorized types, otherwise the type as-is:
using type = conditional_t<vectorize, array_t<remove_cv_t<call_type>, array::forcecast>, T>;
};
// py::vectorize when a return type is present
template <typename Func, typename Return, typename... Args>
struct vectorize_returned_array {
using Type = array_t<Return>;
static Type create(broadcast_trivial trivial, const std::vector<ssize_t> &shape) {
if (trivial == broadcast_trivial::f_trivial) {
return array_t<Return, array::f_style>(shape);
}
return array_t<Return>(shape);
}
static Return *mutable_data(Type &array) { return array.mutable_data(); }
static Return call(Func &f, Args &...args) { return f(args...); }
static void call(Return *out, size_t i, Func &f, Args &...args) { out[i] = f(args...); }
};
// py::vectorize when a return type is not present
template <typename Func, typename... Args>
struct vectorize_returned_array<Func, void, Args...> {
using Type = none;
static Type create(broadcast_trivial, const std::vector<ssize_t> &) { return none(); }
static void *mutable_data(Type &) { return nullptr; }
static detail::void_type call(Func &f, Args &...args) {
f(args...);
return {};
}
static void call(void *, size_t, Func &f, Args &...args) { f(args...); }
};
template <typename Func, typename Return, typename... Args>
struct vectorize_helper {
// NVCC for some reason breaks if NVectorized is private
#ifdef __CUDACC__
public:
#else
private:
#endif
static constexpr size_t N = sizeof...(Args);
static constexpr size_t NVectorized = constexpr_sum(vectorize_arg<Args>::vectorize...);
static_assert(
NVectorized >= 1,
"pybind11::vectorize(...) requires a function with at least one vectorizable argument");
public:
template <typename T,
// SFINAE to prevent shadowing the copy constructor.
typename = detail::enable_if_t<
!std::is_same<vectorize_helper, typename std::decay<T>::type>::value>>
explicit vectorize_helper(T &&f) : f(std::forward<T>(f)) {}
object operator()(typename vectorize_arg<Args>::type... args) {
return run(args...,
make_index_sequence<N>(),
select_indices<vectorize_arg<Args>::vectorize...>(),
make_index_sequence<NVectorized>());
}
private:
remove_reference_t<Func> f;
// Internal compiler error in MSVC 19.16.27025.1 (Visual Studio 2017 15.9.4), when compiling
// with "/permissive-" flag when arg_call_types is manually inlined.
using arg_call_types = std::tuple<typename vectorize_arg<Args>::call_type...>;
template <size_t Index>
using param_n_t = typename std::tuple_element<Index, arg_call_types>::type;
using returned_array = vectorize_returned_array<Func, Return, Args...>;
// Runs a vectorized function given arguments tuple and three index sequences:
// - Index is the full set of 0 ... (N-1) argument indices;
// - VIndex is the subset of argument indices with vectorized parameters, letting us access
// vectorized arguments (anything not in this sequence is passed through)
// - BIndex is a incremental sequence (beginning at 0) of the same size as VIndex, so that
// we can store vectorized buffer_infos in an array (argument VIndex has its buffer at
// index BIndex in the array).
template <size_t... Index, size_t... VIndex, size_t... BIndex>
object run(typename vectorize_arg<Args>::type &...args,
index_sequence<Index...> i_seq,
index_sequence<VIndex...> vi_seq,
index_sequence<BIndex...> bi_seq) {
// Pointers to values the function was called with; the vectorized ones set here will start
// out as array_t<T> pointers, but they will be changed them to T pointers before we make
// call the wrapped function. Non-vectorized pointers are left as-is.
std::array<void *, N> params{{&args...}};
// The array of `buffer_info`s of vectorized arguments:
std::array<buffer_info, NVectorized> buffers{
{reinterpret_cast<array *>(params[VIndex])->request()...}};
/* Determine dimensions parameters of output array */
ssize_t nd = 0;
std::vector<ssize_t> shape(0);
auto trivial = broadcast(buffers, nd, shape);
auto ndim = (size_t) nd;
size_t size
= std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies<size_t>());
// If all arguments are 0-dimension arrays (i.e. single values) return a plain value (i.e.
// not wrapped in an array).
if (size == 1 && ndim == 0) {
PYBIND11_EXPAND_SIDE_EFFECTS(params[VIndex] = buffers[BIndex].ptr);
return cast(
returned_array::call(f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...));
}
auto result = returned_array::create(trivial, shape);
PYBIND11_WARNING_PUSH
#ifdef PYBIND11_DETECTED_CLANG_WITH_MISLEADING_CALL_STD_MOVE_EXPLICITLY_WARNING
PYBIND11_WARNING_DISABLE_CLANG("-Wreturn-std-move")
#endif
if (size == 0) {
return result;
}
/* Call the function */
auto *mutable_data = returned_array::mutable_data(result);
if (trivial == broadcast_trivial::non_trivial) {
apply_broadcast(buffers, params, mutable_data, size, shape, i_seq, vi_seq, bi_seq);
} else {
apply_trivial(buffers, params, mutable_data, size, i_seq, vi_seq, bi_seq);
}
return result;
PYBIND11_WARNING_POP
}
template <size_t... Index, size_t... VIndex, size_t... BIndex>
void apply_trivial(std::array<buffer_info, NVectorized> &buffers,
std::array<void *, N> ¶ms,
Return *out,
size_t size,
index_sequence<Index...>,
index_sequence<VIndex...>,
index_sequence<BIndex...>) {
// Initialize an array of mutable byte references and sizes with references set to the
// appropriate pointer in `params`; as we iterate, we'll increment each pointer by its size
// (except for singletons, which get an increment of 0).
std::array<std::pair<unsigned char *&, const size_t>, NVectorized> vecparams{
{std::pair<unsigned char *&, const size_t>(
reinterpret_cast<unsigned char *&>(params[VIndex] = buffers[BIndex].ptr),
buffers[BIndex].size == 1 ? 0 : sizeof(param_n_t<VIndex>))...}};
for (size_t i = 0; i < size; ++i) {
returned_array::call(
out, i, f, *reinterpret_cast<param_n_t<Index> *>(params[Index])...);
for (auto &x : vecparams) {
x.first += x.second;
}
}
}
template <size_t... Index, size_t... VIndex, size_t... BIndex>
void apply_broadcast(std::array<buffer_info, NVectorized> &buffers,
std::array<void *, N> ¶ms,
Return *out,
size_t size,
const std::vector<ssize_t> &output_shape,
index_sequence<Index...>,
index_sequence<VIndex...>,
index_sequence<BIndex...>) {
multi_array_iterator<NVectorized> input_iter(buffers, output_shape);
for (size_t i = 0; i < size; ++i, ++input_iter) {
PYBIND11_EXPAND_SIDE_EFFECTS((params[VIndex] = input_iter.template data<BIndex>()));
returned_array::call(
out, i, f, *reinterpret_cast<param_n_t<Index> *>(std::get<Index>(params))...);
}
}
};
template <typename Func, typename Return, typename... Args>
vectorize_helper<Func, Return, Args...> vectorize_extractor(const Func &f, Return (*)(Args...)) {
return detail::vectorize_helper<Func, Return, Args...>(f);
}
template <typename T, int Flags>
struct handle_type_name<array_t<T, Flags>> {
static constexpr auto name
= const_name("numpy.ndarray[") + npy_format_descriptor<T>::name + const_name("]");
};
PYBIND11_NAMESPACE_END(detail)
// Vanilla pointer vectorizer:
template <typename Return, typename... Args>
detail::vectorize_helper<Return (*)(Args...), Return, Args...> vectorize(Return (*f)(Args...)) {
return detail::vectorize_helper<Return (*)(Args...), Return, Args...>(f);
}
// lambda vectorizer:
template <typename Func, detail::enable_if_t<detail::is_lambda<Func>::value, int> = 0>
auto vectorize(Func &&f)
-> decltype(detail::vectorize_extractor(std::forward<Func>(f),
(detail::function_signature_t<Func> *) nullptr)) {
return detail::vectorize_extractor(std::forward<Func>(f),
(detail::function_signature_t<Func> *) nullptr);
}
// Vectorize a class method (non-const):
template <typename Return,
typename Class,
typename... Args,
typename Helper = detail::vectorize_helper<
decltype(std::mem_fn(std::declval<Return (Class::*)(Args...)>())),
Return,
Class *,
Args...>>
Helper vectorize(Return (Class::*f)(Args...)) {
return Helper(std::mem_fn(f));
}
// Vectorize a class method (const):
template <typename Return,
typename Class,
typename... Args,
typename Helper = detail::vectorize_helper<
decltype(std::mem_fn(std::declval<Return (Class::*)(Args...) const>())),
Return,
const Class *,
Args...>>
Helper vectorize(Return (Class::*f)(Args...) const) {
return Helper(std::mem_fn(f));
}
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|