Spaces:
Sleeping
Sleeping
File size: 72,976 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 |
/*
pybind11/cast.h: Partial template specializations to cast between
C++ and Python types
Copyright (c) 2016 Wenzel Jakob <[email protected]>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/common.h"
#include "detail/descr.h"
#include "detail/type_caster_base.h"
#include "detail/typeid.h"
#include "pytypes.h"
#include <array>
#include <cstring>
#include <functional>
#include <iosfwd>
#include <iterator>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_WARNING_DISABLE_MSVC(4127)
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename type, typename SFINAE = void>
class type_caster : public type_caster_base<type> {};
template <typename type>
using make_caster = type_caster<intrinsic_t<type>>;
// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
template <typename T>
typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
using result_t = typename make_caster<T>::template cast_op_type<T>; // See PR #4893
return caster.operator result_t();
}
template <typename T>
typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
cast_op(make_caster<T> &&caster) {
using result_t = typename make_caster<T>::template cast_op_type<
typename std::add_rvalue_reference<T>::type>; // See PR #4893
return std::move(caster).operator result_t();
}
template <typename type>
class type_caster<std::reference_wrapper<type>> {
private:
using caster_t = make_caster<type>;
caster_t subcaster;
using reference_t = type &;
using subcaster_cast_op_type = typename caster_t::template cast_op_type<reference_t>;
static_assert(
std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value
|| std::is_same<reference_t, subcaster_cast_op_type>::value,
"std::reference_wrapper<T> caster requires T to have a caster with an "
"`operator T &()` or `operator const T &()`");
public:
bool load(handle src, bool convert) { return subcaster.load(src, convert); }
static constexpr auto name = caster_t::name;
static handle
cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
// It is definitely wrong to take ownership of this pointer, so mask that rvp
if (policy == return_value_policy::take_ownership
|| policy == return_value_policy::automatic) {
policy = return_value_policy::automatic_reference;
}
return caster_t::cast(&src.get(), policy, parent);
}
template <typename T>
using cast_op_type = std::reference_wrapper<type>;
explicit operator std::reference_wrapper<type>() { return cast_op<type &>(subcaster); }
};
#define PYBIND11_TYPE_CASTER(type, py_name) \
protected: \
type value; \
\
public: \
static constexpr auto name = py_name; \
template <typename T_, \
::pybind11::detail::enable_if_t< \
std::is_same<type, ::pybind11::detail::remove_cv_t<T_>>::value, \
int> \
= 0> \
static ::pybind11::handle cast( \
T_ *src, ::pybind11::return_value_policy policy, ::pybind11::handle parent) { \
if (!src) \
return ::pybind11::none().release(); \
if (policy == ::pybind11::return_value_policy::take_ownership) { \
auto h = cast(std::move(*src), policy, parent); \
delete src; \
return h; \
} \
return cast(*src, policy, parent); \
} \
operator type *() { return &value; } /* NOLINT(bugprone-macro-parentheses) */ \
operator type &() { return value; } /* NOLINT(bugprone-macro-parentheses) */ \
operator type &&() && { return std::move(value); } /* NOLINT(bugprone-macro-parentheses) */ \
template <typename T_> \
using cast_op_type = ::pybind11::detail::movable_cast_op_type<T_>
template <typename CharT>
using is_std_char_type = any_of<std::is_same<CharT, char>, /* std::string */
#if defined(PYBIND11_HAS_U8STRING)
std::is_same<CharT, char8_t>, /* std::u8string */
#endif
std::is_same<CharT, char16_t>, /* std::u16string */
std::is_same<CharT, char32_t>, /* std::u32string */
std::is_same<CharT, wchar_t> /* std::wstring */
>;
template <typename T>
struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
using _py_type_1 = conditional_t<std::is_signed<T>::value,
_py_type_0,
typename std::make_unsigned<_py_type_0>::type>;
using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
public:
bool load(handle src, bool convert) {
py_type py_value;
if (!src) {
return false;
}
#if !defined(PYPY_VERSION)
auto index_check = [](PyObject *o) { return PyIndex_Check(o); };
#else
// In PyPy 7.3.3, `PyIndex_Check` is implemented by calling `__index__`,
// while CPython only considers the existence of `nb_index`/`__index__`.
auto index_check = [](PyObject *o) { return hasattr(o, "__index__"); };
#endif
if (std::is_floating_point<T>::value) {
if (convert || PyFloat_Check(src.ptr())) {
py_value = (py_type) PyFloat_AsDouble(src.ptr());
} else {
return false;
}
} else if (PyFloat_Check(src.ptr())
|| (!convert && !PYBIND11_LONG_CHECK(src.ptr()) && !index_check(src.ptr()))) {
return false;
} else {
handle src_or_index = src;
// PyPy: 7.3.7's 3.8 does not implement PyLong_*'s __index__ calls.
#if PY_VERSION_HEX < 0x03080000 || defined(PYPY_VERSION)
object index;
if (!PYBIND11_LONG_CHECK(src.ptr())) { // So: index_check(src.ptr())
index = reinterpret_steal<object>(PyNumber_Index(src.ptr()));
if (!index) {
PyErr_Clear();
if (!convert)
return false;
} else {
src_or_index = index;
}
}
#endif
if (std::is_unsigned<py_type>::value) {
py_value = as_unsigned<py_type>(src_or_index.ptr());
} else { // signed integer:
py_value = sizeof(T) <= sizeof(long)
? (py_type) PyLong_AsLong(src_or_index.ptr())
: (py_type) PYBIND11_LONG_AS_LONGLONG(src_or_index.ptr());
}
}
// Python API reported an error
bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
// Check to see if the conversion is valid (integers should match exactly)
// Signed/unsigned checks happen elsewhere
if (py_err
|| (std::is_integral<T>::value && sizeof(py_type) != sizeof(T)
&& py_value != (py_type) (T) py_value)) {
PyErr_Clear();
if (py_err && convert && (PyNumber_Check(src.ptr()) != 0)) {
auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
? PyNumber_Float(src.ptr())
: PyNumber_Long(src.ptr()));
PyErr_Clear();
return load(tmp, false);
}
return false;
}
value = (T) py_value;
return true;
}
template <typename U = T>
static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyFloat_FromDouble((double) src);
}
template <typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value
&& (sizeof(U) <= sizeof(long)),
handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PYBIND11_LONG_FROM_SIGNED((long) src);
}
template <typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value
&& (sizeof(U) <= sizeof(unsigned long)),
handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
}
template <typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value
&& (sizeof(U) > sizeof(long)),
handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromLongLong((long long) src);
}
template <typename U = T>
static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value
&& (sizeof(U) > sizeof(unsigned long)),
handle>::type
cast(U src, return_value_policy /* policy */, handle /* parent */) {
return PyLong_FromUnsignedLongLong((unsigned long long) src);
}
PYBIND11_TYPE_CASTER(T, const_name<std::is_integral<T>::value>("int", "float"));
};
template <typename T>
struct void_caster {
public:
bool load(handle src, bool) {
if (src && src.is_none()) {
return true;
}
return false;
}
static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
return none().release();
}
PYBIND11_TYPE_CASTER(T, const_name("None"));
};
template <>
class type_caster<void_type> : public void_caster<void_type> {};
template <>
class type_caster<void> : public type_caster<void_type> {
public:
using type_caster<void_type>::cast;
bool load(handle h, bool) {
if (!h) {
return false;
}
if (h.is_none()) {
value = nullptr;
return true;
}
/* Check if this is a capsule */
if (isinstance<capsule>(h)) {
value = reinterpret_borrow<capsule>(h);
return true;
}
/* Check if this is a C++ type */
const auto &bases = all_type_info((PyTypeObject *) type::handle_of(h).ptr());
if (bases.size() == 1) { // Only allowing loading from a single-value type
value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
return true;
}
/* Fail */
return false;
}
static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
if (ptr) {
return capsule(ptr).release();
}
return none().release();
}
template <typename T>
using cast_op_type = void *&;
explicit operator void *&() { return value; }
static constexpr auto name = const_name("capsule");
private:
void *value = nullptr;
};
template <>
class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> {};
template <>
class type_caster<bool> {
public:
bool load(handle src, bool convert) {
if (!src) {
return false;
}
if (src.ptr() == Py_True) {
value = true;
return true;
}
if (src.ptr() == Py_False) {
value = false;
return true;
}
if (convert || is_numpy_bool(src)) {
// (allow non-implicit conversion for numpy booleans), use strncmp
// since NumPy 1.x had an additional trailing underscore.
Py_ssize_t res = -1;
if (src.is_none()) {
res = 0; // None is implicitly converted to False
}
#if defined(PYPY_VERSION)
// On PyPy, check that "__bool__" attr exists
else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
res = PyObject_IsTrue(src.ptr());
}
#else
// Alternate approach for CPython: this does the same as the above, but optimized
// using the CPython API so as to avoid an unneeded attribute lookup.
else if (auto *tp_as_number = src.ptr()->ob_type->tp_as_number) {
if (PYBIND11_NB_BOOL(tp_as_number)) {
res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
}
}
#endif
if (res == 0 || res == 1) {
value = (res != 0);
return true;
}
PyErr_Clear();
}
return false;
}
static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
return handle(src ? Py_True : Py_False).inc_ref();
}
PYBIND11_TYPE_CASTER(bool, const_name("bool"));
private:
// Test if an object is a NumPy boolean (without fetching the type).
static inline bool is_numpy_bool(handle object) {
const char *type_name = Py_TYPE(object.ptr())->tp_name;
// Name changed to `numpy.bool` in NumPy 2, `numpy.bool_` is needed for 1.x support
return std::strcmp("numpy.bool", type_name) == 0
|| std::strcmp("numpy.bool_", type_name) == 0;
}
};
// Helper class for UTF-{8,16,32} C++ stl strings:
template <typename StringType, bool IsView = false>
struct string_caster {
using CharT = typename StringType::value_type;
// Simplify life by being able to assume standard char sizes (the standard only guarantees
// minimums, but Python requires exact sizes)
static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1,
"Unsupported char size != 1");
#if defined(PYBIND11_HAS_U8STRING)
static_assert(!std::is_same<CharT, char8_t>::value || sizeof(CharT) == 1,
"Unsupported char8_t size != 1");
#endif
static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2,
"Unsupported char16_t size != 2");
static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4,
"Unsupported char32_t size != 4");
// wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
"Unsupported wchar_t size != 2/4");
static constexpr size_t UTF_N = 8 * sizeof(CharT);
bool load(handle src, bool) {
handle load_src = src;
if (!src) {
return false;
}
if (!PyUnicode_Check(load_src.ptr())) {
return load_raw(load_src);
}
// For UTF-8 we avoid the need for a temporary `bytes` object by using
// `PyUnicode_AsUTF8AndSize`.
if (UTF_N == 8) {
Py_ssize_t size = -1;
const auto *buffer
= reinterpret_cast<const CharT *>(PyUnicode_AsUTF8AndSize(load_src.ptr(), &size));
if (!buffer) {
PyErr_Clear();
return false;
}
value = StringType(buffer, static_cast<size_t>(size));
return true;
}
auto utfNbytes
= reinterpret_steal<object>(PyUnicode_AsEncodedString(load_src.ptr(),
UTF_N == 8 ? "utf-8"
: UTF_N == 16 ? "utf-16"
: "utf-32",
nullptr));
if (!utfNbytes) {
PyErr_Clear();
return false;
}
const auto *buffer
= reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
// Skip BOM for UTF-16/32
if (UTF_N > 8) {
buffer++;
length--;
}
value = StringType(buffer, length);
// If we're loading a string_view we need to keep the encoded Python object alive:
if (IsView) {
loader_life_support::add_patient(utfNbytes);
}
return true;
}
static handle
cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
const char *buffer = reinterpret_cast<const char *>(src.data());
auto nbytes = ssize_t(src.size() * sizeof(CharT));
handle s = decode_utfN(buffer, nbytes);
if (!s) {
throw error_already_set();
}
return s;
}
PYBIND11_TYPE_CASTER(StringType, const_name(PYBIND11_STRING_NAME));
private:
static handle decode_utfN(const char *buffer, ssize_t nbytes) {
#if !defined(PYPY_VERSION)
return UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr)
: UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr)
: PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
#else
// PyPy segfaults when on PyUnicode_DecodeUTF16 (and possibly on PyUnicode_DecodeUTF32 as
// well), so bypass the whole thing by just passing the encoding as a string value, which
// works properly:
return PyUnicode_Decode(buffer,
nbytes,
UTF_N == 8 ? "utf-8"
: UTF_N == 16 ? "utf-16"
: "utf-32",
nullptr);
#endif
}
// When loading into a std::string or char*, accept a bytes/bytearray object as-is (i.e.
// without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
// which supports loading a unicode from a str, doesn't take this path.
template <typename C = CharT>
bool load_raw(enable_if_t<std::is_same<C, char>::value, handle> src) {
if (PYBIND11_BYTES_CHECK(src.ptr())) {
// We were passed raw bytes; accept it into a std::string or char*
// without any encoding attempt.
const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
if (!bytes) {
pybind11_fail("Unexpected PYBIND11_BYTES_AS_STRING() failure.");
}
value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
return true;
}
if (PyByteArray_Check(src.ptr())) {
// We were passed a bytearray; accept it into a std::string or char*
// without any encoding attempt.
const char *bytearray = PyByteArray_AsString(src.ptr());
if (!bytearray) {
pybind11_fail("Unexpected PyByteArray_AsString() failure.");
}
value = StringType(bytearray, (size_t) PyByteArray_Size(src.ptr()));
return true;
}
return false;
}
template <typename C = CharT>
bool load_raw(enable_if_t<!std::is_same<C, char>::value, handle>) {
return false;
}
};
template <typename CharT, class Traits, class Allocator>
struct type_caster<std::basic_string<CharT, Traits, Allocator>,
enable_if_t<is_std_char_type<CharT>::value>>
: string_caster<std::basic_string<CharT, Traits, Allocator>> {};
#ifdef PYBIND11_HAS_STRING_VIEW
template <typename CharT, class Traits>
struct type_caster<std::basic_string_view<CharT, Traits>,
enable_if_t<is_std_char_type<CharT>::value>>
: string_caster<std::basic_string_view<CharT, Traits>, true> {};
#endif
// Type caster for C-style strings. We basically use a std::string type caster, but also add the
// ability to use None as a nullptr char* (which the string caster doesn't allow).
template <typename CharT>
struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
using StringType = std::basic_string<CharT>;
using StringCaster = make_caster<StringType>;
StringCaster str_caster;
bool none = false;
CharT one_char = 0;
public:
bool load(handle src, bool convert) {
if (!src) {
return false;
}
if (src.is_none()) {
// Defer accepting None to other overloads (if we aren't in convert mode):
if (!convert) {
return false;
}
none = true;
return true;
}
return str_caster.load(src, convert);
}
static handle cast(const CharT *src, return_value_policy policy, handle parent) {
if (src == nullptr) {
return pybind11::none().release();
}
return StringCaster::cast(StringType(src), policy, parent);
}
static handle cast(CharT src, return_value_policy policy, handle parent) {
if (std::is_same<char, CharT>::value) {
handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
if (!s) {
throw error_already_set();
}
return s;
}
return StringCaster::cast(StringType(1, src), policy, parent);
}
explicit operator CharT *() {
return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str());
}
explicit operator CharT &() {
if (none) {
throw value_error("Cannot convert None to a character");
}
auto &value = static_cast<StringType &>(str_caster);
size_t str_len = value.size();
if (str_len == 0) {
throw value_error("Cannot convert empty string to a character");
}
// If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
// is too high, and one for multiple unicode characters (caught later), so we need to
// figure out how long the first encoded character is in bytes to distinguish between these
// two errors. We also allow want to allow unicode characters U+0080 through U+00FF, as
// those can fit into a single char value.
if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
auto v0 = static_cast<unsigned char>(value[0]);
// low bits only: 0-127
// 0b110xxxxx - start of 2-byte sequence
// 0b1110xxxx - start of 3-byte sequence
// 0b11110xxx - start of 4-byte sequence
size_t char0_bytes = (v0 & 0x80) == 0 ? 1
: (v0 & 0xE0) == 0xC0 ? 2
: (v0 & 0xF0) == 0xE0 ? 3
: 4;
if (char0_bytes == str_len) {
// If we have a 128-255 value, we can decode it into a single char:
if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
one_char = static_cast<CharT>(((v0 & 3) << 6)
+ (static_cast<unsigned char>(value[1]) & 0x3F));
return one_char;
}
// Otherwise we have a single character, but it's > U+00FF
throw value_error("Character code point not in range(0x100)");
}
}
// UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
// surrogate pair with total length 2 instantly indicates a range error (but not a "your
// string was too long" error).
else if (StringCaster::UTF_N == 16 && str_len == 2) {
one_char = static_cast<CharT>(value[0]);
if (one_char >= 0xD800 && one_char < 0xE000) {
throw value_error("Character code point not in range(0x10000)");
}
}
if (str_len != 1) {
throw value_error("Expected a character, but multi-character string found");
}
one_char = value[0];
return one_char;
}
static constexpr auto name = const_name(PYBIND11_STRING_NAME);
template <typename _T>
using cast_op_type = pybind11::detail::cast_op_type<_T>;
};
// Base implementation for std::tuple and std::pair
template <template <typename...> class Tuple, typename... Ts>
class tuple_caster {
using type = Tuple<Ts...>;
static constexpr auto size = sizeof...(Ts);
using indices = make_index_sequence<size>;
public:
bool load(handle src, bool convert) {
if (!isinstance<sequence>(src)) {
return false;
}
const auto seq = reinterpret_borrow<sequence>(src);
if (seq.size() != size) {
return false;
}
return load_impl(seq, convert, indices{});
}
template <typename T>
static handle cast(T &&src, return_value_policy policy, handle parent) {
return cast_impl(std::forward<T>(src), policy, parent, indices{});
}
// copied from the PYBIND11_TYPE_CASTER macro
template <typename T>
static handle cast(T *src, return_value_policy policy, handle parent) {
if (!src) {
return none().release();
}
if (policy == return_value_policy::take_ownership) {
auto h = cast(std::move(*src), policy, parent);
delete src;
return h;
}
return cast(*src, policy, parent);
}
static constexpr auto name = const_name("tuple[")
+ ::pybind11::detail::concat(make_caster<Ts>::name...)
+ const_name("]");
template <typename T>
using cast_op_type = type;
explicit operator type() & { return implicit_cast(indices{}); }
explicit operator type() && { return std::move(*this).implicit_cast(indices{}); }
protected:
template <size_t... Is>
type implicit_cast(index_sequence<Is...>) & {
return type(cast_op<Ts>(std::get<Is>(subcasters))...);
}
template <size_t... Is>
type implicit_cast(index_sequence<Is...>) && {
return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...);
}
static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
template <size_t... Is>
bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
#ifdef __cpp_fold_expressions
if ((... || !std::get<Is>(subcasters).load(seq[Is], convert))) {
return false;
}
#else
for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...}) {
if (!r) {
return false;
}
}
#endif
return true;
}
/* Implementation: Convert a C++ tuple into a Python tuple */
template <typename T, size_t... Is>
static handle
cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(src, policy, parent);
PYBIND11_WORKAROUND_INCORRECT_GCC_UNUSED_BUT_SET_PARAMETER(policy, parent);
std::array<object, size> entries{{reinterpret_steal<object>(
make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...}};
for (const auto &entry : entries) {
if (!entry) {
return handle();
}
}
tuple result(size);
int counter = 0;
for (auto &entry : entries) {
PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
}
return result.release();
}
Tuple<make_caster<Ts>...> subcasters;
};
template <typename T1, typename T2>
class type_caster<std::pair<T1, T2>> : public tuple_caster<std::pair, T1, T2> {};
template <typename... Ts>
class type_caster<std::tuple<Ts...>> : public tuple_caster<std::tuple, Ts...> {};
/// Helper class which abstracts away certain actions. Users can provide specializations for
/// custom holders, but it's only necessary if the type has a non-standard interface.
template <typename T>
struct holder_helper {
static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
};
/// Type caster for holder types like std::shared_ptr, etc.
/// The SFINAE hook is provided to help work around the current lack of support
/// for smart-pointer interoperability. Please consider it an implementation
/// detail that may change in the future, as formal support for smart-pointer
/// interoperability is added into pybind11.
template <typename type, typename holder_type, typename SFINAE = void>
struct copyable_holder_caster : public type_caster_base<type> {
public:
using base = type_caster_base<type>;
static_assert(std::is_base_of<base, type_caster<type>>::value,
"Holder classes are only supported for custom types");
using base::base;
using base::cast;
using base::typeinfo;
using base::value;
bool load(handle src, bool convert) {
return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
}
explicit operator type *() { return this->value; }
// static_cast works around compiler error with MSVC 17 and CUDA 10.2
// see issue #2180
explicit operator type &() { return *(static_cast<type *>(this->value)); }
explicit operator holder_type *() { return std::addressof(holder); }
explicit operator holder_type &() { return holder; }
static handle cast(const holder_type &src, return_value_policy, handle) {
const auto *ptr = holder_helper<holder_type>::get(src);
return type_caster_base<type>::cast_holder(ptr, &src);
}
protected:
friend class type_caster_generic;
void check_holder_compat() {
if (typeinfo->default_holder) {
throw cast_error("Unable to load a custom holder type from a default-holder instance");
}
}
bool load_value(value_and_holder &&v_h) {
if (v_h.holder_constructed()) {
value = v_h.value_ptr();
holder = v_h.template holder<holder_type>();
return true;
}
throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
"(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for "
"type information)");
#else
"of type '"
+ type_id<holder_type>() + "''");
#endif
}
template <typename T = holder_type,
detail::enable_if_t<!std::is_constructible<T, const T &, type *>::value, int> = 0>
bool try_implicit_casts(handle, bool) {
return false;
}
template <typename T = holder_type,
detail::enable_if_t<std::is_constructible<T, const T &, type *>::value, int> = 0>
bool try_implicit_casts(handle src, bool convert) {
for (auto &cast : typeinfo->implicit_casts) {
copyable_holder_caster sub_caster(*cast.first);
if (sub_caster.load(src, convert)) {
value = cast.second(sub_caster.value);
holder = holder_type(sub_caster.holder, (type *) value);
return true;
}
}
return false;
}
static bool try_direct_conversions(handle) { return false; }
holder_type holder;
};
/// Specialize for the common std::shared_ptr, so users don't need to
template <typename T>
class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> {};
/// Type caster for holder types like std::unique_ptr.
/// Please consider the SFINAE hook an implementation detail, as explained
/// in the comment for the copyable_holder_caster.
template <typename type, typename holder_type, typename SFINAE = void>
struct move_only_holder_caster {
static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
"Holder classes are only supported for custom types");
static handle cast(holder_type &&src, return_value_policy, handle) {
auto *ptr = holder_helper<holder_type>::get(src);
return type_caster_base<type>::cast_holder(ptr, std::addressof(src));
}
static constexpr auto name = type_caster_base<type>::name;
};
template <typename type, typename deleter>
class type_caster<std::unique_ptr<type, deleter>>
: public move_only_holder_caster<type, std::unique_ptr<type, deleter>> {};
template <typename type, typename holder_type>
using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
copyable_holder_caster<type, holder_type>,
move_only_holder_caster<type, holder_type>>;
template <typename T, bool Value = false>
struct always_construct_holder {
static constexpr bool value = Value;
};
/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) \
namespace detail { \
template <typename type> \
struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { \
}; \
template <typename type> \
class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
: public type_caster_holder<type, holder_type> {}; \
} \
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
// PYBIND11_DECLARE_HOLDER_TYPE holder types:
template <typename base, typename holder>
struct is_holder_type
: std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
// Specialization for always-supported unique_ptr holders:
template <typename base, typename deleter>
struct is_holder_type<base, std::unique_ptr<base, deleter>> : std::true_type {};
#ifdef PYBIND11_DISABLE_HANDLE_TYPE_NAME_DEFAULT_IMPLEMENTATION // See PR #4888
// This leads to compilation errors if a specialization is missing.
template <typename T>
struct handle_type_name;
#else
template <typename T>
struct handle_type_name {
static constexpr auto name = const_name<T>();
};
#endif
template <>
struct handle_type_name<object> {
static constexpr auto name = const_name("object");
};
template <>
struct handle_type_name<list> {
static constexpr auto name = const_name("list");
};
template <>
struct handle_type_name<dict> {
static constexpr auto name = const_name("dict");
};
template <>
struct handle_type_name<anyset> {
static constexpr auto name = const_name("Union[set, frozenset]");
};
template <>
struct handle_type_name<set> {
static constexpr auto name = const_name("set");
};
template <>
struct handle_type_name<frozenset> {
static constexpr auto name = const_name("frozenset");
};
template <>
struct handle_type_name<str> {
static constexpr auto name = const_name("str");
};
template <>
struct handle_type_name<tuple> {
static constexpr auto name = const_name("tuple");
};
template <>
struct handle_type_name<bool_> {
static constexpr auto name = const_name("bool");
};
template <>
struct handle_type_name<bytes> {
static constexpr auto name = const_name(PYBIND11_BYTES_NAME);
};
template <>
struct handle_type_name<buffer> {
static constexpr auto name = const_name("Buffer");
};
template <>
struct handle_type_name<int_> {
static constexpr auto name = const_name("int");
};
template <>
struct handle_type_name<iterable> {
static constexpr auto name = const_name("Iterable");
};
template <>
struct handle_type_name<iterator> {
static constexpr auto name = const_name("Iterator");
};
template <>
struct handle_type_name<float_> {
static constexpr auto name = const_name("float");
};
template <>
struct handle_type_name<function> {
static constexpr auto name = const_name("Callable");
};
template <>
struct handle_type_name<handle> {
static constexpr auto name = handle_type_name<object>::name;
};
template <>
struct handle_type_name<none> {
static constexpr auto name = const_name("None");
};
template <>
struct handle_type_name<sequence> {
static constexpr auto name = const_name("Sequence");
};
template <>
struct handle_type_name<bytearray> {
static constexpr auto name = const_name("bytearray");
};
template <>
struct handle_type_name<memoryview> {
static constexpr auto name = const_name("memoryview");
};
template <>
struct handle_type_name<slice> {
static constexpr auto name = const_name("slice");
};
template <>
struct handle_type_name<type> {
static constexpr auto name = const_name("type");
};
template <>
struct handle_type_name<capsule> {
static constexpr auto name = const_name("capsule");
};
template <>
struct handle_type_name<ellipsis> {
static constexpr auto name = const_name("ellipsis");
};
template <>
struct handle_type_name<weakref> {
static constexpr auto name = const_name("weakref");
};
template <>
struct handle_type_name<args> {
static constexpr auto name = const_name("*args");
};
template <>
struct handle_type_name<kwargs> {
static constexpr auto name = const_name("**kwargs");
};
template <>
struct handle_type_name<obj_attr_accessor> {
static constexpr auto name = const_name<obj_attr_accessor>();
};
template <>
struct handle_type_name<str_attr_accessor> {
static constexpr auto name = const_name<str_attr_accessor>();
};
template <>
struct handle_type_name<item_accessor> {
static constexpr auto name = const_name<item_accessor>();
};
template <>
struct handle_type_name<sequence_accessor> {
static constexpr auto name = const_name<sequence_accessor>();
};
template <>
struct handle_type_name<list_accessor> {
static constexpr auto name = const_name<list_accessor>();
};
template <>
struct handle_type_name<tuple_accessor> {
static constexpr auto name = const_name<tuple_accessor>();
};
template <typename type>
struct pyobject_caster {
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
pyobject_caster() : value() {}
// `type` may not be default constructible (e.g. frozenset, anyset). Initializing `value`
// to a nil handle is safe since it will only be accessed if `load` succeeds.
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
pyobject_caster() : value(reinterpret_steal<type>(handle())) {}
template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
bool load(handle src, bool /* convert */) {
value = src;
return static_cast<bool>(value);
}
template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
bool load(handle src, bool /* convert */) {
if (!isinstance<type>(src)) {
return false;
}
value = reinterpret_borrow<type>(src);
return true;
}
static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
return src.inc_ref();
}
PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
};
template <typename T>
class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> {};
// Our conditions for enabling moving are quite restrictive:
// At compile time:
// - T needs to be a non-const, non-pointer, non-reference type
// - type_caster<T>::operator T&() must exist
// - the type must be move constructible (obviously)
// At run-time:
// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
// must have ref_count() == 1)h
// If any of the above are not satisfied, we fall back to copying.
template <typename T>
using move_is_plain_type
= satisfies_none_of<T, std::is_void, std::is_pointer, std::is_reference, std::is_const>;
template <typename T, typename SFINAE = void>
struct move_always : std::false_type {};
template <typename T>
struct move_always<
T,
enable_if_t<
all_of<move_is_plain_type<T>,
negation<is_copy_constructible<T>>,
is_move_constructible<T>,
std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>>
: std::true_type {};
template <typename T, typename SFINAE = void>
struct move_if_unreferenced : std::false_type {};
template <typename T>
struct move_if_unreferenced<
T,
enable_if_t<
all_of<move_is_plain_type<T>,
negation<move_always<T>>,
is_move_constructible<T>,
std::is_same<decltype(std::declval<make_caster<T>>().operator T &()), T &>>::value>>
: std::true_type {};
template <typename T>
using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
// reference or pointer to a local variable of the type_caster. Basically, only
// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
// everything else returns a reference/pointer to a local variable.
template <typename type>
using cast_is_temporary_value_reference
= bool_constant<(std::is_reference<type>::value || std::is_pointer<type>::value)
&& !std::is_base_of<type_caster_generic, make_caster<type>>::value
&& !std::is_same<intrinsic_t<type>, void>::value>;
// When a value returned from a C++ function is being cast back to Python, we almost always want to
// force `policy = move`, regardless of the return value policy the function/method was declared
// with.
template <typename Return, typename SFINAE = void>
struct return_value_policy_override {
static return_value_policy policy(return_value_policy p) { return p; }
};
template <typename Return>
struct return_value_policy_override<
Return,
detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
static return_value_policy policy(return_value_policy p) {
return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
? return_value_policy::move
: p;
}
};
// Basic python -> C++ casting; throws if casting fails
template <typename T, typename SFINAE>
type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
static_assert(!detail::is_pyobject<T>::value,
"Internal error: type_caster should only be used for C++ types");
if (!conv.load(handle, true)) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error(
"Unable to cast Python instance of type "
+ str(type::handle_of(handle)).cast<std::string>()
+ " to C++ type '?' (#define "
"PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
#else
throw cast_error("Unable to cast Python instance of type "
+ str(type::handle_of(handle)).cast<std::string>() + " to C++ type '"
+ type_id<T>() + "'");
#endif
}
return conv;
}
// Wrapper around the above that also constructs and returns a type_caster
template <typename T>
make_caster<T> load_type(const handle &handle) {
make_caster<T> conv;
load_type(conv, handle);
return conv;
}
PYBIND11_NAMESPACE_END(detail)
// pytype -> C++ type
template <typename T,
detail::enable_if_t<!detail::is_pyobject<T>::value
&& !detail::is_same_ignoring_cvref<T, PyObject *>::value,
int>
= 0>
T cast(const handle &handle) {
using namespace detail;
static_assert(!cast_is_temporary_value_reference<T>::value,
"Unable to cast type to reference: value is local to type caster");
return cast_op<T>(load_type<T>(handle));
}
// pytype -> pytype (calls converting constructor)
template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
T cast(const handle &handle) {
return T(reinterpret_borrow<object>(handle));
}
// Note that `cast<PyObject *>(obj)` increments the reference count of `obj`.
// This is necessary for the case that `obj` is a temporary, and could
// not possibly be different, given
// 1. the established convention that the passed `handle` is borrowed, and
// 2. we don't want to force all generic code using `cast<T>()` to special-case
// handling of `T` = `PyObject *` (to increment the reference count there).
// It is the responsibility of the caller to ensure that the reference count
// is decremented.
template <typename T,
typename Handle,
detail::enable_if_t<detail::is_same_ignoring_cvref<T, PyObject *>::value
&& detail::is_same_ignoring_cvref<Handle, handle>::value,
int>
= 0>
T cast(Handle &&handle) {
return handle.inc_ref().ptr();
}
// To optimize way an inc_ref/dec_ref cycle:
template <typename T,
typename Object,
detail::enable_if_t<detail::is_same_ignoring_cvref<T, PyObject *>::value
&& detail::is_same_ignoring_cvref<Object, object>::value,
int>
= 0>
T cast(Object &&obj) {
return obj.release().ptr();
}
// C++ type -> py::object
template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
object cast(T &&value,
return_value_policy policy = return_value_policy::automatic_reference,
handle parent = handle()) {
using no_ref_T = typename std::remove_reference<T>::type;
if (policy == return_value_policy::automatic) {
policy = std::is_pointer<no_ref_T>::value ? return_value_policy::take_ownership
: std::is_lvalue_reference<T>::value ? return_value_policy::copy
: return_value_policy::move;
} else if (policy == return_value_policy::automatic_reference) {
policy = std::is_pointer<no_ref_T>::value ? return_value_policy::reference
: std::is_lvalue_reference<T>::value ? return_value_policy::copy
: return_value_policy::move;
}
return reinterpret_steal<object>(
detail::make_caster<T>::cast(std::forward<T>(value), policy, parent));
}
template <typename T>
T handle::cast() const {
return pybind11::cast<T>(*this);
}
template <>
inline void handle::cast() const {
return;
}
template <typename T>
detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
if (obj.ref_count() > 1) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error(
"Unable to cast Python " + str(type::handle_of(obj)).cast<std::string>()
+ " instance to C++ rvalue: instance has multiple references"
" (#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
#else
throw cast_error("Unable to move from Python "
+ str(type::handle_of(obj)).cast<std::string>() + " instance to C++ "
+ type_id<T>() + " instance: instance has multiple references");
#endif
}
// Move into a temporary and return that, because the reference may be a local value of `conv`
T ret = std::move(detail::load_type<T>(obj).operator T &());
return ret;
}
// Calling cast() on an rvalue calls pybind11::cast with the object rvalue, which does:
// - If we have to move (because T has no copy constructor), do it. This will fail if the moved
// object has multiple references, but trying to copy will fail to compile.
// - If both movable and copyable, check ref count: if 1, move; otherwise copy
// - Otherwise (not movable), copy.
template <typename T>
detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_always<T>::value, T>
cast(object &&object) {
return move<T>(std::move(object));
}
template <typename T>
detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_if_unreferenced<T>::value, T>
cast(object &&object) {
if (object.ref_count() > 1) {
return cast<T>(object);
}
return move<T>(std::move(object));
}
template <typename T>
detail::enable_if_t<!detail::is_pyobject<T>::value && detail::move_never<T>::value, T>
cast(object &&object) {
return cast<T>(object);
}
// pytype rvalue -> pytype (calls converting constructor)
template <typename T>
detail::enable_if_t<detail::is_pyobject<T>::value, T> cast(object &&object) {
return T(std::move(object));
}
template <typename T>
T object::cast() const & {
return pybind11::cast<T>(*this);
}
template <typename T>
T object::cast() && {
return pybind11::cast<T>(std::move(*this));
}
template <>
inline void object::cast() const & {
return;
}
template <>
inline void object::cast() && {
return;
}
PYBIND11_NAMESPACE_BEGIN(detail)
// Declared in pytypes.h:
template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
object object_or_cast(T &&o) {
return pybind11::cast(std::forward<T>(o));
}
// Placeholder type for the unneeded (and dead code) static variable in the
// PYBIND11_OVERRIDE_OVERRIDE macro
struct override_unused {};
template <typename ret_type>
using override_caster_t = conditional_t<cast_is_temporary_value_reference<ret_type>::value,
make_caster<ret_type>,
override_unused>;
// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
// store the result in the given variable. For other types, this is a no-op.
template <typename T>
enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o,
make_caster<T> &caster) {
return cast_op<T>(load_type(caster, o));
}
template <typename T>
enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&,
override_unused &) {
pybind11_fail("Internal error: cast_ref fallback invoked");
}
// Trampoline use: Having a pybind11::cast with an invalid reference type is going to
// static_assert, even though if it's in dead code, so we provide a "trampoline" to pybind11::cast
// that only does anything in cases where pybind11::cast is valid.
template <typename T>
enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
pybind11_fail("Internal error: cast_safe fallback invoked");
}
template <typename T>
enable_if_t<std::is_void<T>::value, void> cast_safe(object &&) {}
template <typename T>
enable_if_t<detail::none_of<cast_is_temporary_value_reference<T>, std::is_void<T>>::value, T>
cast_safe(object &&o) {
return pybind11::cast<T>(std::move(o));
}
PYBIND11_NAMESPACE_END(detail)
// The overloads could coexist, i.e. the #if is not strictly speaking needed,
// but it is an easy minor optimization.
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name) {
return cast_error("Unable to convert call argument '" + name
+ "' to Python object (#define "
"PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
}
#else
inline cast_error cast_error_unable_to_convert_call_arg(const std::string &name,
const std::string &type) {
return cast_error("Unable to convert call argument '" + name + "' of type '" + type
+ "' to Python object");
}
#endif
template <return_value_policy policy = return_value_policy::automatic_reference>
tuple make_tuple() {
return tuple(0);
}
template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
tuple make_tuple(Args &&...args_) {
constexpr size_t size = sizeof...(Args);
std::array<object, size> args{{reinterpret_steal<object>(
detail::make_caster<Args>::cast(std::forward<Args>(args_), policy, nullptr))...}};
for (size_t i = 0; i < args.size(); i++) {
if (!args[i]) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error_unable_to_convert_call_arg(std::to_string(i));
#else
std::array<std::string, size> argtypes{{type_id<Args>()...}};
throw cast_error_unable_to_convert_call_arg(std::to_string(i), argtypes[i]);
#endif
}
}
tuple result(size);
int counter = 0;
for (auto &arg_value : args) {
PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
}
return result;
}
/// \ingroup annotations
/// Annotation for arguments
struct arg {
/// Constructs an argument with the name of the argument; if null or omitted, this is a
/// positional argument.
constexpr explicit arg(const char *name = nullptr)
: name(name), flag_noconvert(false), flag_none(true) {}
/// Assign a value to this argument
template <typename T>
arg_v operator=(T &&value) const;
/// Indicate that the type should not be converted in the type caster
arg &noconvert(bool flag = true) {
flag_noconvert = flag;
return *this;
}
/// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
arg &none(bool flag = true) {
flag_none = flag;
return *this;
}
const char *name; ///< If non-null, this is a named kwargs argument
bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type
///< caster!)
bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
};
/// \ingroup annotations
/// Annotation for arguments with values
struct arg_v : arg {
private:
template <typename T>
arg_v(arg &&base, T &&x, const char *descr = nullptr)
: arg(base), value(reinterpret_steal<object>(detail::make_caster<T>::cast(
std::forward<T>(x), return_value_policy::automatic, {}))),
descr(descr)
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
,
type(type_id<T>())
#endif
{
// Workaround! See:
// https://github.com/pybind/pybind11/issues/2336
// https://github.com/pybind/pybind11/pull/2685#issuecomment-731286700
if (PyErr_Occurred()) {
PyErr_Clear();
}
}
public:
/// Direct construction with name, default, and description
template <typename T>
arg_v(const char *name, T &&x, const char *descr = nullptr)
: arg_v(arg(name), std::forward<T>(x), descr) {}
/// Called internally when invoking `py::arg("a") = value`
template <typename T>
arg_v(const arg &base, T &&x, const char *descr = nullptr)
: arg_v(arg(base), std::forward<T>(x), descr) {}
/// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
arg_v &noconvert(bool flag = true) {
arg::noconvert(flag);
return *this;
}
/// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
arg_v &none(bool flag = true) {
arg::none(flag);
return *this;
}
/// The default value
object value;
/// The (optional) description of the default value
const char *descr;
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
/// The C++ type name of the default value (only available when compiled in debug mode)
std::string type;
#endif
};
/// \ingroup annotations
/// Annotation indicating that all following arguments are keyword-only; the is the equivalent of
/// an unnamed '*' argument
struct kw_only {};
/// \ingroup annotations
/// Annotation indicating that all previous arguments are positional-only; the is the equivalent of
/// an unnamed '/' argument (in Python 3.8)
struct pos_only {};
template <typename T>
arg_v arg::operator=(T &&value) const {
return {*this, std::forward<T>(value)};
}
/// Alias for backward compatibility -- to be removed in version 2.0
template <typename /*unused*/>
using arg_t = arg_v;
inline namespace literals {
/** \rst
String literal version of `arg`
\endrst */
constexpr arg
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 5
operator"" _a // gcc 4.8.5 insists on having a space (hard error).
#else
operator""_a // clang 17 generates a deprecation warning if there is a space.
#endif
(const char *name, size_t) {
return arg(name);
}
} // namespace literals
PYBIND11_NAMESPACE_BEGIN(detail)
template <typename T>
using is_kw_only = std::is_same<intrinsic_t<T>, kw_only>;
template <typename T>
using is_pos_only = std::is_same<intrinsic_t<T>, pos_only>;
// forward declaration (definition in attr.h)
struct function_record;
/// Internal data associated with a single function call
struct function_call {
function_call(const function_record &f, handle p); // Implementation in attr.h
/// The function data:
const function_record &func;
/// Arguments passed to the function:
std::vector<handle> args;
/// The `convert` value the arguments should be loaded with
std::vector<bool> args_convert;
/// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
/// present, are also in `args` but without a reference).
object args_ref, kwargs_ref;
/// The parent, if any
handle parent;
/// If this is a call to an initializer, this argument contains `self`
handle init_self;
};
/// Helper class which loads arguments for C++ functions called from Python
template <typename... Args>
class argument_loader {
using indices = make_index_sequence<sizeof...(Args)>;
template <typename Arg>
using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
template <typename Arg>
using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
// Get kwargs argument position, or -1 if not present:
static constexpr auto kwargs_pos = constexpr_last<argument_is_kwargs, Args...>();
static_assert(kwargs_pos == -1 || kwargs_pos == (int) sizeof...(Args) - 1,
"py::kwargs is only permitted as the last argument of a function");
public:
static constexpr bool has_kwargs = kwargs_pos != -1;
// py::args argument position; -1 if not present.
static constexpr int args_pos = constexpr_last<argument_is_args, Args...>();
static_assert(args_pos == -1 || args_pos == constexpr_first<argument_is_args, Args...>(),
"py::args cannot be specified more than once");
static constexpr auto arg_names
= ::pybind11::detail::concat(type_descr(make_caster<Args>::name)...);
bool load_args(function_call &call) { return load_impl_sequence(call, indices{}); }
template <typename Return, typename Guard, typename Func>
// NOLINTNEXTLINE(readability-const-return-type)
enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
return std::move(*this).template call_impl<remove_cv_t<Return>>(
std::forward<Func>(f), indices{}, Guard{});
}
template <typename Return, typename Guard, typename Func>
enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
std::move(*this).template call_impl<remove_cv_t<Return>>(
std::forward<Func>(f), indices{}, Guard{});
return void_type();
}
private:
static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
template <size_t... Is>
bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
#ifdef __cpp_fold_expressions
if ((... || !std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is]))) {
return false;
}
#else
for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...}) {
if (!r) {
return false;
}
}
#endif
return true;
}
template <typename Return, typename Func, size_t... Is, typename Guard>
Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) && {
return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
}
std::tuple<make_caster<Args>...> argcasters;
};
/// Helper class which collects only positional arguments for a Python function call.
/// A fancier version below can collect any argument, but this one is optimal for simple calls.
template <return_value_policy policy>
class simple_collector {
public:
template <typename... Ts>
explicit simple_collector(Ts &&...values)
: m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) {}
const tuple &args() const & { return m_args; }
dict kwargs() const { return {}; }
tuple args() && { return std::move(m_args); }
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const {
PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
if (!result) {
throw error_already_set();
}
return reinterpret_steal<object>(result);
}
private:
tuple m_args;
};
/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
template <return_value_policy policy>
class unpacking_collector {
public:
template <typename... Ts>
explicit unpacking_collector(Ts &&...values) {
// Tuples aren't (easily) resizable so a list is needed for collection,
// but the actual function call strictly requires a tuple.
auto args_list = list();
using expander = int[];
(void) expander{0, (process(args_list, std::forward<Ts>(values)), 0)...};
m_args = std::move(args_list);
}
const tuple &args() const & { return m_args; }
const dict &kwargs() const & { return m_kwargs; }
tuple args() && { return std::move(m_args); }
dict kwargs() && { return std::move(m_kwargs); }
/// Call a Python function and pass the collected arguments
object call(PyObject *ptr) const {
PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
if (!result) {
throw error_already_set();
}
return reinterpret_steal<object>(result);
}
private:
template <typename T>
void process(list &args_list, T &&x) {
auto o = reinterpret_steal<object>(
detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
if (!o) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error_unable_to_convert_call_arg(std::to_string(args_list.size()));
#else
throw cast_error_unable_to_convert_call_arg(std::to_string(args_list.size()),
type_id<T>());
#endif
}
args_list.append(std::move(o));
}
void process(list &args_list, detail::args_proxy ap) {
for (auto a : ap) {
args_list.append(a);
}
}
void process(list & /*args_list*/, arg_v a) {
if (!a.name) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
nameless_argument_error();
#else
nameless_argument_error(a.type);
#endif
}
if (m_kwargs.contains(a.name)) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
multiple_values_error();
#else
multiple_values_error(a.name);
#endif
}
if (!a.value) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
throw cast_error_unable_to_convert_call_arg(a.name);
#else
throw cast_error_unable_to_convert_call_arg(a.name, a.type);
#endif
}
m_kwargs[a.name] = std::move(a.value);
}
void process(list & /*args_list*/, detail::kwargs_proxy kp) {
if (!kp) {
return;
}
for (auto k : reinterpret_borrow<dict>(kp)) {
if (m_kwargs.contains(k.first)) {
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
multiple_values_error();
#else
multiple_values_error(str(k.first));
#endif
}
m_kwargs[k.first] = k.second;
}
}
[[noreturn]] static void nameless_argument_error() {
throw type_error(
"Got kwargs without a name; only named arguments "
"may be passed via py::arg() to a python function call. "
"(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
}
[[noreturn]] static void nameless_argument_error(const std::string &type) {
throw type_error("Got kwargs without a name of type '" + type
+ "'; only named "
"arguments may be passed via py::arg() to a python function call. ");
}
[[noreturn]] static void multiple_values_error() {
throw type_error(
"Got multiple values for keyword argument "
"(#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for details)");
}
[[noreturn]] static void multiple_values_error(const std::string &name) {
throw type_error("Got multiple values for keyword argument '" + name + "'");
}
private:
tuple m_args;
dict m_kwargs;
};
// [workaround(intel)] Separate function required here
// We need to put this into a separate function because the Intel compiler
// fails to compile enable_if_t<!all_of<is_positional<Args>...>::value>
// (tested with ICC 2021.1 Beta 20200827).
template <typename... Args>
constexpr bool args_are_all_positional() {
return all_of<is_positional<Args>...>::value;
}
/// Collect only positional arguments for a Python function call
template <return_value_policy policy,
typename... Args,
typename = enable_if_t<args_are_all_positional<Args...>()>>
simple_collector<policy> collect_arguments(Args &&...args) {
return simple_collector<policy>(std::forward<Args>(args)...);
}
/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
template <return_value_policy policy,
typename... Args,
typename = enable_if_t<!args_are_all_positional<Args...>()>>
unpacking_collector<policy> collect_arguments(Args &&...args) {
// Following argument order rules for generalized unpacking according to PEP 448
static_assert(constexpr_last<is_positional, Args...>()
< constexpr_first<is_keyword_or_ds, Args...>()
&& constexpr_last<is_s_unpacking, Args...>()
< constexpr_first<is_ds_unpacking, Args...>(),
"Invalid function call: positional args must precede keywords and ** unpacking; "
"* unpacking must precede ** unpacking");
return unpacking_collector<policy>(std::forward<Args>(args)...);
}
template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::operator()(Args &&...args) const {
#ifndef NDEBUG
if (!PyGILState_Check()) {
pybind11_fail("pybind11::object_api<>::operator() PyGILState_Check() failure.");
}
#endif
return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
}
template <typename Derived>
template <return_value_policy policy, typename... Args>
object object_api<Derived>::call(Args &&...args) const {
return operator()<policy>(std::forward<Args>(args)...);
}
PYBIND11_NAMESPACE_END(detail)
template <typename T>
handle type::handle_of() {
static_assert(std::is_base_of<detail::type_caster_generic, detail::make_caster<T>>::value,
"py::type::of<T> only supports the case where T is a registered C++ types.");
return detail::get_type_handle(typeid(T), true);
}
#define PYBIND11_MAKE_OPAQUE(...) \
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) \
namespace detail { \
template <> \
class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> {}; \
} \
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
/// Lets you pass a type containing a `,` through a macro parameter without needing a separate
/// typedef, e.g.:
/// `PYBIND11_OVERRIDE(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
#define PYBIND11_TYPE(...) __VA_ARGS__
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|