Spaces:
Sleeping
Sleeping
File size: 17,073 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 |
import torch.fx as fx
from torch.fx.node import Argument, Target
from torch.nn.utils.fusion import fuse_conv_bn_eval
from typing import Type, Dict, Any, Tuple, Iterable, Optional, List, cast
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.fx.passes.shape_prop import ShapeProp
import copy
from collections import defaultdict
import torch.utils.mkldnn as th_mkldnn
import operator
import time
import logging
from enum import Enum
def _parent_name(target : str) -> Tuple[str, str]:
"""
Splits a qualname into parent path and last atom.
For example, `foo.bar.baz` -> (`foo.bar`, `baz`)
"""
*parent, name = target.rsplit('.', 1)
return parent[0] if parent else '', name
# Works for length 2 patterns with 2 modules
def matches_module_pattern(pattern: Iterable[Type], node: fx.Node, modules: Dict[str, Any]):
if len(node.args) == 0:
return False
nodes: Tuple[Any, fx.Node] = (node.args[0], node)
for expected_type, current_node in zip(pattern, nodes):
if not isinstance(current_node, fx.Node):
return False
if current_node.op != 'call_module':
return False
if not isinstance(current_node.target, str):
return False
if current_node.target not in modules:
return False
if type(modules[current_node.target]) is not expected_type:
return False
return True
def replace_node_module(node: fx.Node, modules: Dict[str, Any], new_module: torch.nn.Module):
assert isinstance(node.target, str)
parent_name, name = _parent_name(node.target)
modules[node.target] = new_module
setattr(modules[parent_name], name, new_module)
def fuse(model: torch.nn.Module, inplace=False, no_trace=False) -> torch.nn.Module:
"""
Fuses convolution/BN layers for inference purposes. Will deepcopy your
model by default, but can modify the model inplace as well.
"""
patterns = [(nn.Conv1d, nn.BatchNorm1d),
(nn.Conv2d, nn.BatchNorm2d),
(nn.Conv3d, nn.BatchNorm3d)]
if not inplace:
model = copy.deepcopy(model)
if not no_trace or not isinstance(model, torch.fx.GraphModule):
fx_model = fx.symbolic_trace(model)
else:
fx_model = model
modules = dict(fx_model.named_modules())
new_graph = copy.deepcopy(fx_model.graph)
for pattern in patterns:
for node in new_graph.nodes:
if matches_module_pattern(pattern, node, modules):
if len(node.args[0].users) > 1: # Output of conv is used by other nodes
continue
conv = modules[node.args[0].target]
bn = modules[node.target]
if not bn.track_running_stats:
continue
fused_conv = fuse_conv_bn_eval(conv, bn)
replace_node_module(node.args[0], modules, fused_conv)
node.replace_all_uses_with(node.args[0])
new_graph.erase_node(node)
return fx.GraphModule(fx_model, new_graph)
def remove_dropout(model: nn.Module) -> nn.Module:
"""
Removes all dropout layers from the module.
"""
fx_model = fx.symbolic_trace(model)
class DropoutRemover(torch.fx.Transformer):
def call_module(self, target : Target, args : Tuple[Argument, ...], kwargs : Dict[str, Any]) -> Any:
if isinstance(self.submodules[target], nn.Dropout):
assert len(args) == 1
return args[0]
else:
return super().call_module(target, args, kwargs)
return DropoutRemover(fx_model).transform()
def extract_subgraph(orig_module: nn.Module, nodes: List[fx.Node], inputs: List[fx.Node], outputs: List[fx.Node]):
"""
Given lists of nodes from an existing graph that represent a subgraph, returns a submodule that executes that subgraph.
"""
new_graph = fx.Graph()
env: Dict[fx.Node, fx.Node] = {}
for input in inputs:
new_node = new_graph.placeholder(input.name)
env[input] = new_node
for node in nodes:
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
new_graph.output([env[output] for output in outputs])
new_graph.lint()
return fx.GraphModule(orig_module, new_graph)
mkldnn_supported = [
nn.Conv2d, nn.Linear, nn.BatchNorm2d, nn.ReLU, nn.MaxPool2d, nn.AvgPool2d, nn.AdaptiveAvgPool2d,
torch.relu, torch.transpose, torch.sigmoid,
F.relu, F.avg_pool2d, F.adaptive_avg_pool2d
]
# These are operators that may not be convertible into MKLDNN ops (e.g. the
# args are scalar values). Thus, we only include them in the subgraph if their
# arguments are already in MKLDNN.
# TODO: Determine whether this can be removed after type inference.
mkldnn_supported_unknown = [operator.add, operator.mul]
mkldnn_map = {
nn.Conv2d: th_mkldnn.MkldnnConv2d,
nn.Linear: th_mkldnn.MkldnnLinear,
nn.BatchNorm2d: lambda a, _: th_mkldnn.MkldnnBatchNorm(a)
}
def modules_to_mkldnn(nodes: List[fx.Node], modules: Dict[str, nn.Module]):
"""
For each node, if it's a module that can be preconverted into MKLDNN,
then we do so and create a mapping to allow us to convert from the MKLDNN
version of the module to the original.
"""
old_modules: Dict[nn.Module, nn.Module] = {}
for node in nodes:
if node.op == 'call_module':
assert isinstance(node.target, str)
cur_module = modules[node.target]
if type(cur_module) in mkldnn_map:
new_module = mkldnn_map[type(cur_module)](cur_module, torch.float)
assert isinstance(new_module, nn.Module)
old_modules[new_module] = copy.deepcopy(cur_module)
replace_node_module(node, modules, new_module)
return old_modules
def reset_modules(nodes: List[fx.Node], modules: Dict[str, nn.Module], old_modules: Dict[nn.Module, nn.Module]):
"""
Maps each module that's been changed with `modules_to_mkldnn` back to its
original.
"""
for node in nodes:
if node.op == 'call_module':
assert (isinstance(node.target, str))
cur_module = modules[node.target]
if cur_module in old_modules:
replace_node_module(node, modules, old_modules[cur_module])
class MklSubgraph:
def __init__(self, fx_graph: fx.Graph):
self.fx_graph = fx_graph
self.nodes: List[fx.Node] = []
self.start_nodes: List[fx.Node] = []
self.end_nodes: List[fx.Node] = []
def gen_mkl_autotuner(example_inputs, iters=10, warmup=1):
"""
This generates a heuristic that can be passed into `optimize_for_inference` that
determines whether a subgraph should be run in MKL by running it with the example_inputs.
Example usage:
heuristic = gen_mkl_autotuner(example_inputs, iters=10)
fast_model = optimization.optimize_for_inference(model, heuristic)
"""
fx_model = None
old_modules = None
def use_mkl_heuristic(graph: MklSubgraph) -> bool:
nonlocal fx_model, old_modules
input_nodes = graph.start_nodes
if fx_model is None:
fx_model = graph.fx_graph.owning_module
old_modules = graph.fx_graph.old_modules # type: ignore[attr-defined]
ShapeProp(fx_model).propagate(example_inputs)
sample_inputs = [torch.randn(node.shape) for node in input_nodes] # type: ignore[attr-defined]
output_args = cast(List[fx.Node], [node.args[0] for node in graph.end_nodes])
submodule = extract_subgraph(fx_model, graph.nodes, input_nodes, output_args)
def benchmark(f):
for _ in range(warmup):
f()
begin = time.time()
for _ in range(iters):
out = f()
return time.time() - begin
mkl_time = benchmark(lambda: [i.to_dense() for i in submodule(*[i.to_mkldnn() for i in sample_inputs])])
reset_modules(submodule.graph.nodes, dict(submodule.named_modules()), old_modules)
no_mkl_time = benchmark(lambda: submodule(*sample_inputs))
return mkl_time < no_mkl_time
return use_mkl_heuristic
def use_mkl_length(graph: MklSubgraph) -> bool:
"""
This is a heuristic that can be passed into `optimize_for_inference` that
determines whether a subgraph should be run in MKL by checking if there
are more than 2 nodes in it
"""
return len(graph.nodes) > 2
class UnionFind:
def __init__(self, n):
self.parent: List[Optional[int]] = [None] * n
self.size: List[int] = [0] * n
def make_set(self, v: int):
self.parent[v] = v
self.size[v] = 1
def find(self, v: int) -> int:
par = self.parent[v]
if v == par:
return v
assert par is not None
self.parent[v] = self.find(par)
return cast(int, self.parent[v])
def join(self, a: int, b: int):
a, b = self.find(a), self.find(b)
if a == b:
return a
if self.size[a] < self.size[b]:
a, b = b, a
self.parent[b] = a
self.size[a] += self.size[b]
def optimize_for_inference(
model: torch.nn.Module,
pass_config: Optional[Dict[str, Any]] = None,
tracer: Type[fx.Tracer] = fx.Tracer
) -> torch.nn.Module:
"""
Performs a set of optimization passes to optimize a model for the
purposes of inference. Specifically, the passes that are run are:
1. Conv/BN fusion
2. Dropout removal
3. MKL layout optimizations
The third optimization takes a function `use_mkl_heuristic` that's used
to determine whether a subgraph should be explicitly run in MKL layout.
Note: As FX does not currently handle aliasing, this pass currently
assumes nothing aliases. If that isn't true, use at your own risk.
"""
default_pass_config = {
"conv_bn_fuse": True,
"remove_dropout": True,
"mkldnn_layout_optimize": {'heuristic': use_mkl_length},
}
if pass_config is None:
pass_config = {}
default_pass_config.update(pass_config)
if default_pass_config["conv_bn_fuse"]:
model = fuse(model)
if default_pass_config["remove_dropout"]:
model = remove_dropout(model)
if default_pass_config["mkldnn_layout_optimize"] is False:
return model
if not isinstance(default_pass_config["mkldnn_layout_optimize"], dict):
raise RuntimeError("mkldnn_layout_optimize config is not a dict")
if "heuristic" not in default_pass_config["mkldnn_layout_optimize"]:
raise RuntimeError("Heuristic not found in mkldnn_layout_optimize config")
use_mkl_heuristic = default_pass_config["mkldnn_layout_optimize"]["heuristic"]
cur_tracer = tracer()
fx_graph = cur_tracer.trace(copy.deepcopy(model))
fx_model = fx.GraphModule(cur_tracer.root, fx_graph)
modules: Dict[str, nn.Module] = dict(model.named_modules())
class MklSupport(Enum):
NO = 1
YES = 2
UNKNOWN = 3
# Inserts to_mkldnn and to_dense around every node we want to be a MKLDNN node.
# If the op is in `mkldnn_supported` then we always treat it as a MKLDNN node.
# However, if it's in `mkldnn_supported_unknown`, then we only treat it as
# a MKLDNN node if its inputs are MKLDNN nodes.
for node in list(fx_graph.nodes):
supports_mkldnn = MklSupport.NO
if node.op == 'call_module':
cur_module = modules[node.target]
if type(cur_module) in mkldnn_supported:
supports_mkldnn = MklSupport.YES
sample_parameter = next(cur_module.parameters(), None)
if sample_parameter is not None:
assert sample_parameter.dtype == torch.float, "this pass is only for torch.float modules"
assert sample_parameter.device == torch.device('cpu'), "this pass is only for CPU modules"
elif node.op == 'call_function':
if node.target in mkldnn_supported:
supports_mkldnn = MklSupport.YES
elif node.target in mkldnn_supported_unknown:
supports_mkldnn = MklSupport.UNKNOWN
if supports_mkldnn != MklSupport.NO:
if supports_mkldnn == MklSupport.UNKNOWN:
if not any(arg.target == 'to_dense' for arg in node.args):
continue
with fx_graph.inserting_before(node):
mkldnn_args = fx.map_arg(node.args, lambda n: fx_graph.call_method('to_mkldnn', (n, )))
node.args = cast(Tuple[fx.node.Argument], mkldnn_args)
with fx_graph.inserting_after(node):
dense_x = fx_graph.create_node('call_method', 'to_dense', (node,))
node.replace_all_uses_with(dense_x)
dense_x.args = (node,)
# Does pre-conversion of all modules into MKLDNN (when possible)
old_modules = modules_to_mkldnn(list(fx_graph.nodes), modules)
fx_graph.old_modules = old_modules # type: ignore[attr-defined]
# optimizes all a -> to_dense -> to_mkldnn -> b patterns into a -> b
for node in fx_graph.nodes:
if node.op == 'call_method' and node.target == 'to_dense':
prv_node = node.args[0]
users = list(node.users)
for user in users:
if user.op == 'call_method' and user.target == 'to_mkldnn':
user.replace_all_uses_with(prv_node)
fx_graph.erase_node(user)
if len(node.users) == 0:
fx_graph.erase_node(node)
num_nodes = len(fx_graph.nodes)
uf = UnionFind(num_nodes)
def get_color(n):
if hasattr(n, 'color'): # Current node is part of a MKL subgraph
return uf.find(n.color)
if hasattr(n, 'start_color'): # Current node is input to MKL subgraph
return uf.find(n.start_color)
return None
# This code is to find each MKLDNN subgraph. Each MKLDNN subgraph consists
# of input nodes (which are only `to_mkldnn` calls), output nodes
# (`to_dense` calls), and intermediate nodes, which are run entirely on
# MKLDNN layout tensors.
#
# Specifically, this code does a flood fill on a directed acyclic graph
# (DAG), starting from each possible "start node" (i.e: `to_mkldnn` nodes).
# If every node only had one input, this would be sufficient. However, in
# the case that a node has multiple inputs coming from different start
# nodes (i.e. colors), we need to join these 2 colors into 1. That's done
# using a Disjoint Set Union.
for cur_idx, node in enumerate(fx_graph.nodes):
if node.op == 'call_method' and node.target == 'to_mkldnn':
node.start_color = cur_idx
uf.make_set(cur_idx)
elif node.op == 'call_method' and node.target == 'to_dense':
assert get_color(node.args[0]) is not None
node.end_color = get_color(node.args[0])
else:
cur_colors = [get_color(i) for i in node.all_input_nodes if isinstance(i, fx.Node) if get_color(i) is not None]
if len(cur_colors) == 0:
continue
assert not any(i is None for i in cur_colors)
cur_colors = sorted(cur_colors)
node.color = cur_colors[0]
for other_color in cur_colors[1:]:
uf.join(cur_colors[0], other_color)
mkldnn_graphs: Dict[int, MklSubgraph] = defaultdict(lambda: MklSubgraph(fx_graph))
for node in fx_graph.nodes:
if hasattr(node, 'color'):
mkldnn_graphs[uf.find(node.color)].nodes.append(node)
if hasattr(node, 'start_color'):
mkldnn_graphs[uf.find(node.start_color)].start_nodes.append(node)
if hasattr(node, 'end_color'):
mkldnn_graphs[uf.find(node.end_color)].end_nodes.append(node)
# Now that we have all the subgraphs, we need to decide which MKLDNN
# subgraphs we actually want to keep in MKLDNN.
for graph in mkldnn_graphs.values():
if not use_mkl_heuristic(graph):
for node in graph.start_nodes + graph.end_nodes:
prv = node.args[0]
node.replace_all_uses_with(prv)
fx_graph.erase_node(node)
reset_modules(graph.nodes, modules, old_modules)
mkldnn_conversions = 0
for node in fx_graph.nodes:
if node.target == 'to_mkldnn' or node.target == 'to_dense':
mkldnn_conversions += 1
logging.getLogger(__name__).info(f"mkldnn conversions: {mkldnn_conversions}")
fx_graph.lint()
result = fx.GraphModule(model, fx_graph)
return result
|