File size: 23,210 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
import copy
from abc import ABC, abstractmethod
from typing import (
    Any,
    Callable,
    cast,
    Dict,
    Generator,
    Iterable,
    Optional,
    Sequence,
    Set,
    Tuple,
    Type,
    Union,
)

import torch.nn as nn

__all__ = [
    "always_wrap_policy",
    "lambda_auto_wrap_policy",
    "transformer_auto_wrap_policy",
    "size_based_auto_wrap_policy",
    "enable_wrap",
    "wrap",
    "CustomPolicy",
    "ModuleWrapPolicy",
]


# NOTE: We intentionally keep this function simple and isolate the complexity
# to `fn` to enable using this function generically. We may move this to a
# non-FSDP-specific folder and/or make it public in the future.
def _post_order_apply(

    root_module: nn.Module,

    fn: Callable[[nn.Module], Optional[nn.Module]],

):
    """

    This applies ``fn`` to every module in the module tree of ``root_module``

    following a post-order traversal. If ``fn`` returns an :class:`nn.Module`,

    then this replaces the original module with the newly returned one in the

    tree. Otherwise, ``fn`` should return ``None``, in which case the module is

    not changed.

    """
    # Track visited modules to avoid visiting shared modules multiple times
    visited_modules: Set[nn.Module] = {root_module}

    def _post_order_apply_inner(

        module: nn.Module,

        module_name: str,

        parent_module: Optional[nn.Module],

    ):
        for child_module_name, child_module in module.named_children():
            if child_module not in visited_modules:
                visited_modules.add(child_module)
                _post_order_apply_inner(child_module, child_module_name, module)
        optional_module = fn(module)
        if optional_module is not None:
            assert isinstance(parent_module, nn.Module), (
                "Non-root modules should have their parent module set but got "
                f"{parent_module} for {module}"
            )
            assert module_name, (
                "Non-root modules should have their module name set but got "
                f"an empty module name for {module}"
            )
            assert isinstance(
                optional_module, nn.Module
            ), f"fn should return None or an nn.Module but got {optional_module}"
            setattr(parent_module, module_name, optional_module)

    _post_order_apply_inner(root_module, "", None)


def _construct_wrap_fn(

    root_module: nn.Module,

    target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]],

    fsdp_fn: Callable,

) -> Callable[[nn.Module], Optional[nn.Module]]:
    """

    This constructs the "wrap" function to pass to :func:`_post_order_apply`

    based on ``target_module_to_kwargs``, which should be constructed from the

    wrapping policy.

    """

    def fn(module: nn.Module) -> Optional[nn.Module]:
        # Explicitly avoid wrapping the root module since for FSDP, it is
        # handled by the caller
        if module in target_module_to_kwargs and module is not root_module:
            kwargs = target_module_to_kwargs[module]
            return fsdp_fn(module, **kwargs)
        return None

    return fn


def _run_mixed_precision_override_policy(

    root_module: nn.Module,

    module_classes: Iterable[Type[nn.Module]],

    ignored_modules: Set[nn.Module],

    root_kwargs: Dict[str, Any],

    target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]],

):
    module_classes_tuple = tuple(set(module_classes))
    for module in root_module.modules():
        if module in ignored_modules:
            continue
        elif isinstance(module, module_classes_tuple):
            # This policy overrides any existing policy
            if module not in target_module_to_kwargs:
                # Only inherit from the root kwargs if not already specified
                target_module_to_kwargs[module] = root_kwargs
            target_module_to_kwargs[module]["mixed_precision"] = None
    return target_module_to_kwargs


def always_wrap_policy(*args, **kwargs) -> bool:
    """

    A simple recursive wrap policy that always returns ``True``. This means

    that every submodule is wrapped by the wrapper class in

    :func:`_recursive_wrap`.

    """
    return True


class _Policy(ABC):
    """

    This defines an abstract base class that represents a policy for applying

    a module-level API.

    """

    @abstractmethod
    def _run_policy(

        self,

        root_module: nn.Module,

        ignored_modules: Set[nn.Module],

        root_kwargs: Dict[str, Any],

    ) -> Dict[nn.Module, Dict[str, Any]]:
        """

        This should return a dict ``target_module_to_kwargs`` that maps from

        each target module to wrap to its kwargs.

        """
        ...


def _module_wrap_policy(

    module: nn.Module,

    recurse: bool,

    nonwrapped_numel: int,

    module_classes: Set[Type[nn.Module]],

) -> bool:
    """

    This auto wrap policy wraps every module that is an instance of any type in

    ``module_classes`` as its own FSDP instance. The root module given by

    ``module`` is always wrapped as an FSDP instance regardless. Since the

    wrapping proceeds bottom up, each FSDP instance manages the parameters in

    its subtree excluding any already managed by a child FSDP instance.



    Args:

        module (nn.Module): Current module being considered.

        recurse (bool): If ``False``, then this function must decide whether

            ``module`` should be wrapped as an FSDP instance or not. If

            ``True``, then the function is still recursing down the module

            tree as a part of the DFS.

        nonwrapped_numel (int): Parameter numel not yet wrapped.

        module_classes (Set[Type[nn.Module]]): Set of module classes that are

            wrapped as FSDP instances.



    Returns:

        ``True`` if ``recurse=True``, and whether ``module`` should be wrapped

        if ``recurse=False``.

    """
    if recurse:
        return True  # always recurse
    return isinstance(module, tuple(module_classes))


class ModuleWrapPolicy(_Policy):
    """

    This policy applies to every module of the specified module classes,

    passing in the kwargs given to the root.

    """

    def __init__(self, module_classes: Iterable[Type[nn.Module]]):
        module_classes_set = set(module_classes)
        self._module_classes = module_classes_set
        self._module_classes_str = str(module_classes_set)

    def _run_policy(

        self,

        root_module: nn.Module,

        ignored_modules: Set[nn.Module],

        root_kwargs: Dict[str, Any],

    ) -> Dict[nn.Module, Dict[str, Any]]:
        module_classes = tuple(self._module_classes)
        target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]] = {}
        for module in root_module.modules():
            if module in ignored_modules:
                continue
            elif isinstance(module, module_classes):
                # Shallow copy to avoid coupling changes across modules
                target_module_to_kwargs[module] = copy.copy(root_kwargs)
        return target_module_to_kwargs

    def __call__(self, module, recurse, *args, **kwargs):
        # nonwrapped_numel is not used.
        return _module_wrap_policy(
            module, recurse, nonwrapped_numel=-1, module_classes=self._module_classes
        )

    def __repr__(self) -> str:
        return super().__repr__() + f"({self._module_classes_str})"


class CustomPolicy(_Policy):
    """

    This policy takes in a lambda function that maps a given ``nn.Module`` to

    either ``False``, ``True``, or a kwarg dictionary.

    - If the function returns ``False`` or an empty dictionary, then the module

      does not have the API applied.

    - If the function returns ``True``, then the module has the API applied

      with the root's kwargs.

    - If the function returns a non-empty dictionary, then the module has the

      API applied, and the dictionary overrides the root's kwargs.



    Example::



        >>> # xdoctest: +SKIP("undefined variables")

        >>> model = init_transformer_model(...)

        >>> def lambda_fn(module: nn.Module):

        >>>     if module is model.lm_head:

        >>>         return {"sharding_strategy": ShardingStrategy.SHARD_GRAD_OP}

        >>>     elif isinstance(module, TransformerBlock):

        >>>         return True

        >>>     return False

        >>> policy = CustomPolicy(lambda_fn)

        >>> fsdp_model = FSDP(model, auto_wrap_policy=policy)

    """

    def __init__(self, lambda_fn: Callable[[nn.Module], Union[bool, Dict[str, Any]]]):
        self._lambda_fn = lambda_fn

    def _run_policy(

        self,

        root_module: nn.Module,

        ignored_modules: Set[nn.Module],

        root_kwargs: Dict[str, Any],

    ) -> Dict[nn.Module, Dict[str, Any]]:
        target_module_to_kwargs: Dict[nn.Module, Dict[str, Any]] = {}
        for module in root_module.modules():
            if module in ignored_modules:
                continue
            res = self._lambda_fn(module)
            if not isinstance(res, (dict, bool)):
                raise ValueError(
                    "The lambda_fn passed to CustomPolicy should return "
                    f"False/True or a kwarg dict, but it returned {res}"
                )
            if not res:
                continue
            kwargs = copy.copy(root_kwargs)
            if isinstance(res, dict):
                # Override the root kwargs with the ones specified by the
                # lambda function
                kwargs.update(res)
            target_module_to_kwargs[module] = kwargs
        return target_module_to_kwargs


def lambda_auto_wrap_policy(

    module: nn.Module, recurse: bool, nonwrapped_numel: int, lambda_fn: Callable

) -> bool:
    """

    A convenient auto wrap policy to wrap submodules based on an arbitrary user

    function. If `lambda_fn(submodule) == True``, the submodule will be wrapped as

    a `wrapper_cls` unit.



    Return if a module should be wrapped during auto wrapping.



    The first three parameters are required by :func:`_recursive_wrap`.



    Args:

        module (nn.Module): Current module being considered.

        recurse (bool): If ``False``, then this function must decide whether

            ``module`` should be wrapped as an FSDP instance or not. If

            ``True``, then the function is still recursing down the module

            tree as a part of the DFS.

        nonwrapped_numel (int): Parameter numel not yet wrapped.



        lambda_fn (Callable[[nn.Module], bool]): If this returns ``True``, then

            this module will be wrapped.

    """
    if recurse:
        return True  # always recurse
    return lambda_fn(module)


def transformer_auto_wrap_policy(

    module: nn.Module,

    recurse: bool,

    nonwrapped_numel: int,

    transformer_layer_cls: Set[Type[nn.Module]],

) -> bool:
    """

    See :func:`_module_wrap_policy`, where ``transformer_layer_cls`` is the

    same as ``module_classes``. Note that shared parameters must be wrapped in

    the same FSDP instance, so this auto wrap policy can help wrap shared

    embeddings into the same FSDP instance for transformer models.

    """
    return _module_wrap_policy(module, recurse, nonwrapped_numel, transformer_layer_cls)


def _wrap_module_cls_individually(

    module: nn.Module, module_classes: Sequence[type], recurse: bool, *args, **kwargs

):
    if recurse:
        # always recurse
        return True
    else:
        # if not recursing, decide whether we should wrap based on whether the type of module
        # is in `module_classes`.
        return isinstance(module, tuple(module_classes))


def _or_policy(

    module: nn.Module,

    recurse: bool,

    nonwrapped_numel: int,

    policies,

) -> bool:
    """

    A policy that wraps ``module`` if any policy in the passed in iterable of

    ``policies`` returns ``True``.

    """
    return any(
        policy(module=module, recurse=recurse, nonwrapped_numel=nonwrapped_numel)
        for policy in policies
    )


def size_based_auto_wrap_policy(

    module: nn.Module,

    recurse: bool,

    nonwrapped_numel: int,

    # Additional custom arguments

    min_num_params: int = int(1e8),

    force_leaf_modules: Optional[Set[Type[nn.Module]]] = None,

    exclude_wrap_modules: Optional[Set[Type[nn.Module]]] = None,

) -> bool:
    """

    A size-based auto wrap policy.



    Args:

        module (nn.Module): Current module being considered.

        recurse (bool): If ``False``, then this function must decide whether

            ``module`` should be wrapped as an FSDP instance or not. If

            ``True``, then the function is still recursing down the module

            tree as a part of the DFS.

        nonwrapped_numel (int): Parameter numel not yet wrapped.



        min_num_params (int): Customizable policy input that controls the size

            threshold over which a module is ready to be wrapped. This is in

            units of numel.

        force_leaf_modules (Set[Type[nn.Module]]): Set of module types to keep

            as leaves, i.e. their children will never be wrapped.

        exclude_wrap_modules (Set[Type[nn.Module]]): Set of module types to be

            excluded in wrapping.



    Returns:

        Whether ``module`` should be wrapped.

    """
    force_leaf_modules = (
        size_based_auto_wrap_policy.FORCE_LEAF_MODULES  # type: ignore[attr-defined]
        if force_leaf_modules is None
        else force_leaf_modules
    )
    exclude_wrap_modules = (
        size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES  # type: ignore[attr-defined]
        if exclude_wrap_modules is None
        else exclude_wrap_modules
    )

    # Keep the argument `min_num_params` for BC for now, but it represents the
    # minimum non-wrapped *numel* before triggering a wrapping
    min_nonwrapped_numel = min_num_params
    is_large = nonwrapped_numel >= min_nonwrapped_numel
    if recurse:
        # We should recurse if the module is big enough but not in force_leaf_modules list.
        return is_large and not isinstance(module, tuple(force_leaf_modules))
    else:
        # If we are not recursing, determine if we should wrap.
        return is_large and not isinstance(module, tuple(exclude_wrap_modules))


# Set those defaults to the size_based_auto_wrap_policy function. Make them easy to be imported.
size_based_auto_wrap_policy.EXCLUDE_WRAP_MODULES = {nn.ModuleList, nn.ModuleDict}  # type: ignore[attr-defined]
size_based_auto_wrap_policy.FORCE_LEAF_MODULES = {nn.MultiheadAttention}  # type: ignore[attr-defined]


@contextlib.contextmanager
def enable_wrap(

    *, wrapper_cls: Any, **wrapper_kwargs: Any

) -> Generator[None, None, None]:
    """

    Context manager to wrap modules using a wrapper.



    Useful for when you'd like to apply the same configuration arguments to all

    child modules that you wrap. A particularly important use case is wrapping

    large layers so that they get sharded (in-place) during initialization, to

    avoid running out of system memory. Large layers can indicate that they

    should be sharded via the ``wrap`` annotation and this context manager can

    provide the exact configuration for these nested instances.



    Usage::



        with enable_wrap(wrapper_cls, **params):

            # Wraps layer in FSDP by default if within context

            self.l1 = wrap(torch.nn.Linear(5, 5))



    Args:

        wrapper_cls:

            Class that `wrap` annotation will `wrap` modules with, such as

            `FullyShardedDataParallel`.

        **wrapper_kwargs:

            Configuration settings that will be passed to all ``wrap``

            instances inside the context

    """
    kwargs = {
        "wrapper_cls": wrapper_cls,
        **wrapper_kwargs,
    }
    with _ConfigAutoWrap(**kwargs):
        yield


def wrap(module: nn.Module, **wrap_overrides: Any) -> nn.Module:
    """

    Annotate that a module should be wrapped. Annotated modules will only be

    wrapped if inside of an :func:`enable_wrap` context manager. This allows

    a module to be initialized both with and without a wrapper without code

    change.



    The class that this function wraps the passed in ``nn.Module`` with is the

    passed in ``wrapper_cls`` argument into ``enable_wrap``. Both

    ``enable_wrap`` and ``wrap`` can take in kwargs specifying how to construct

    the ``wrapper_cls`` instance. In the case of duplicate kwargs in

    ``enable_wrap`` and ``wrap``, the argument passed into ``wrap`` will be

    respected.



    Usage::



        with enable_wrap(wrapper_cls=FSDP, **fsdp_config):

            # Wraps layer in FSDP by default if within context

            self.l1 = wrap(torch.nn.Linear(5, 5))



    Args:

        module (nn.Module): module to wrap (if in :func:`enable_wrap` context)

        **wrap_overrides: configuration overrides that will take priority over

            the values provided by the :func:`enable_wrap` context

    """
    if _ConfigAutoWrap.in_autowrap_context:
        assert _ConfigAutoWrap.wrapper_cls is not None

        wrap_overrides = {**_ConfigAutoWrap.kwargs, **wrap_overrides}
        return _wrap(
            module,
            _ConfigAutoWrap.wrapper_cls,
            **wrap_overrides,
        )
    return module


def _wrap(module: nn.Module, wrapper_cls: Callable, **kwargs) -> nn.Module:
    assert wrapper_cls is not None
    if hasattr(module, "_wrap_overrides"):
        # If module has a _wrap_overrides attribute, we force overriding the
        # FSDP config with these attributes for this module. Currently this
        # is only used to disable mixed precision for BatchNorm when
        # auto_wrapping.
        overrides = {**kwargs, **module._wrap_overrides}  # type: ignore[arg-type]
        return wrapper_cls(module, **overrides)

    return wrapper_cls(module, **kwargs)


def _recursive_wrap(

    module: nn.Module,

    auto_wrap_policy: Callable,

    wrapper_cls: Callable,

    ignored_modules: Set[nn.Module],

    ignored_params: Set[nn.Parameter],

    only_wrap_children: bool = False,

    **kwargs: Any,

) -> Tuple[nn.Module, int]:
    """

    Wraps submodules of ``module`` for which ``auto_wrap_policy`` returns

    ``True`` with ``wrapper_cls``.



    Args:

        module (nn.Module): Module to recursively wrap.

        auto_wrap_policy (Callable): A callable representing a policy that

            determines which modules to recursively wrap with ``wrapper_cls``.

        ignored_modules (Set[torch.nn.Module]): Modules to ignore when

            wrapping.

        ignored_params (Set[torch.nn.Parameter]): Parameters to ignore when

            wrapping; these should be the parameters contained in the modules

            in ``ignored_modules``.

    Returns:

        (nn.Module, int):

            ``module`` after wrapping and the numel recursively wrapped.

    """
    assert auto_wrap_policy is not None, "Must specify auto_wrap_policy."
    assert wrapper_cls is not None, "Must specify wrapper_cls"
    # Make sure no child is already wrapped.
    for _, child in module.named_modules():
        if child in ignored_modules:
            continue
        try:
            assert not isinstance(child, cast(type, wrapper_cls))
        except TypeError:
            # wrapper_cls is a function as opposed to a class type, just bypass above check.
            pass

    # We count all params, assuming none of them are already wrapped.
    nonwrapped_numel = sum(
        p.numel() for p in module.parameters() if p not in ignored_params
    )

    assert auto_wrap_policy is not None
    if auto_wrap_policy(module=module, recurse=True, nonwrapped_numel=nonwrapped_numel):
        total_wrapped_numel = 0
        # Iterate through the children, recursively wrap if necessary
        for name, child in module.named_children():
            if child in ignored_modules:
                continue
            wrapped_child, num_wrapped_params = _recursive_wrap(
                module=child,
                auto_wrap_policy=auto_wrap_policy,
                wrapper_cls=wrapper_cls,
                ignored_modules=ignored_modules,
                ignored_params=ignored_params,
                **kwargs,
            )
            setattr(module, name, wrapped_child)
            # Keep track of how many parameters have been wrapped
            total_wrapped_numel += num_wrapped_params
        # decide if we need to wrap the current module,
        # since the left over parameters exceed the number of params to wrap
        remainder = nonwrapped_numel - total_wrapped_numel
        if not only_wrap_children and auto_wrap_policy(
            module=module, recurse=False, nonwrapped_numel=remainder
        ):
            # Leaf node or final wrapping of the remainder both happen here.
            return _wrap(module, wrapper_cls, **kwargs), nonwrapped_numel
        else:
            return module, total_wrapped_numel
    return module, 0


class _ConfigAutoWrap:
    """

    Helper class to wrap modules based on default config args via a context manager.

    See :func:`enable_wrap` for more information.

    """

    in_autowrap_context: bool = False  # Context flag
    wrapper_cls: Optional[Callable] = None  # The wrapper class
    kwargs: Dict[str, Any] = {}  # Wrapper's args

    def __init__(self, **kwargs: Dict[str, Any]):
        self.kwargs = kwargs

    @staticmethod
    def enable_autowrap_context(kwargs: Any) -> None:
        if _ConfigAutoWrap.in_autowrap_context:
            raise NotImplementedError(
                "You are already within an autowrap context and we currently do not supported nested autowrap."
            )
        _ConfigAutoWrap.in_autowrap_context = True
        # Get and save the wrapper cls for the context.
        assert (
            "wrapper_cls" in kwargs.keys()
        ), "Expected to pass in wrapper_cls arg into _ConfigAutoWrap."
        _ConfigAutoWrap.wrapper_cls = cast(Callable, kwargs["wrapper_cls"])
        del kwargs["wrapper_cls"]
        # Save the rest.
        _ConfigAutoWrap.kwargs = kwargs

    @staticmethod
    def disable_autowrap_context() -> None:
        _ConfigAutoWrap.in_autowrap_context = False
        _ConfigAutoWrap.wrapper_cls = None
        _ConfigAutoWrap.kwargs = {}

    def __enter__(self) -> None:
        self.enable_autowrap_context(self.kwargs)

    def __exit__(self, exc_type: Any, exc_val: Any, exc_tb: Any) -> None:
        self.disable_autowrap_context()