File size: 175,511 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
"""Distributed Collective Communication (c10d)."""

import itertools
import collections.abc
import contextlib
import hashlib
import io
import logging
import os
import pickle
import sys
import time
import warnings
from collections import namedtuple
from datetime import timedelta
from typing import Any, Callable, Dict, Optional, Tuple, Union, List

import torch
from torch._C._distributed_c10d import (
    AllgatherOptions,
    AllreduceCoalescedOptions,
    AllreduceOptions,
    AllToAllOptions,
    _DistributedBackendOptions,
    BarrierOptions,
    BroadcastOptions,
    GatherOptions,
    PrefixStore,
    ProcessGroup,
    ReduceOp,
    ReduceOptions,
    ReduceScatterOptions,
    ScatterOptions,
    Store,
    DebugLevel,
    get_debug_level,
    Work,
    _register_process_group,
    _resolve_process_group,
    _unregister_all_process_groups,
    _unregister_process_group,
)
from torch._utils_internal import set_pytorch_distributed_envs_from_justknobs
from .constants import default_pg_timeout, default_pg_nccl_timeout
from .c10d_logger import _exception_logger, _time_logger
from .rendezvous import register_rendezvous_handler, rendezvous  # noqa: F401
from ..utils._typing_utils import not_none
DistStoreError = torch._C._DistStoreError

__all__ = [
    'Backend', 'BackendConfig', 'GroupMember', 'P2POp', 'all_gather', 'all_gather_coalesced',
    'all_gather_object', 'all_reduce',
    'all_reduce_coalesced', 'all_to_all',
    'all_to_all_single', 'barrier', 'batch_isend_irecv', 'broadcast',
    'broadcast_object_list', 'destroy_process_group',
    'gather', 'gather_object', 'get_backend_config', 'get_backend', 'get_rank',
    'get_world_size', 'get_pg_count', 'group', 'init_process_group', 'irecv',
    'is_gloo_available', 'is_initialized', 'is_mpi_available', 'is_backend_available',
    'is_nccl_available', 'is_torchelastic_launched', 'is_ucc_available',
    'isend', 'monitored_barrier', 'new_group', 'new_subgroups',
    'new_subgroups_by_enumeration', 'recv', 'reduce',
    'reduce_scatter', 'scatter',
    'scatter_object_list', 'send', 'supports_complex',
    'AllreduceCoalescedOptions', 'AllreduceOptions', 'AllToAllOptions',
    'BarrierOptions', 'BroadcastOptions', 'GatherOptions', 'PrefixStore',
    'ProcessGroup', 'ReduceOp', 'ReduceOptions', 'ReduceScatterOptions',
    'ScatterOptions', 'Store', 'DebugLevel', 'get_debug_level', 'Work',
    'default_pg_timeout', 'get_group_rank', 'get_global_rank', 'get_process_group_ranks',
    'reduce_op', 'all_gather_into_tensor', 'reduce_scatter_tensor',
]

_MPI_AVAILABLE = True
_NCCL_AVAILABLE = True
_GLOO_AVAILABLE = True
_UCC_AVAILABLE = True

_pickler = pickle.Pickler
_unpickler = pickle.Unpickler

# Change __module__ of all imported types from torch._C._distributed_c10d that are public
def _export_c_types() -> None:
    _public_types_to_change_module = [
        AllreduceCoalescedOptions,
        AllreduceOptions,
        AllToAllOptions,
        BarrierOptions,
        BroadcastOptions,
        GatherOptions,
        PrefixStore,
        ProcessGroup,
        ReduceOp,
        ReduceOptions,
        ReduceScatterOptions,
        ScatterOptions,
        Store,
        DebugLevel,
        get_debug_level,
        Work
    ]
    for type in _public_types_to_change_module:
        type.__module__ = "torch.distributed.distributed_c10d"
_export_c_types()

try:
    from torch._C._distributed_c10d import ProcessGroupMPI
    ProcessGroupMPI.__module__ = "torch.distributed.distributed_c10d"
    __all__ += ["ProcessGroupMPI"]
except ImportError:
    _MPI_AVAILABLE = False

try:
    from torch._C._distributed_c10d import ProcessGroupNCCL
    ProcessGroupNCCL.__module__ = "torch.distributed.distributed_c10d"
    __all__ += ["ProcessGroupNCCL"]
except ImportError:
    _NCCL_AVAILABLE = False

try:
    from torch._C._distributed_c10d import ProcessGroupGloo
    from torch._C._distributed_c10d import _ProcessGroupWrapper
    ProcessGroupGloo.__module__ = "torch.distributed.distributed_c10d"
    __all__ += ["ProcessGroupGloo"]
except ImportError:
    _GLOO_AVAILABLE = False

try:
    from torch._C._distributed_c10d import ProcessGroupUCC
    ProcessGroupUCC.__module__ = "torch.distributed.distributed_c10d"
    __all__ += ["ProcessGroupUCC"]
except ImportError:
    _UCC_AVAILABLE = False

logger = logging.getLogger(__name__)

PG_WRAPPER_STORE_PREFIX = "pg_wrapper"


# Some reduce ops are not supported by complex numbers and will result in an error.
# We currently provide complex support to the distributed API by viewing
# complex tensors as real (torch.view_as_real), meaning that calling
# these unsupported ops will return garbage values rather than error out.
# (e.g. max(2+3i, 3+2i) = 3+3i)
# We'd like calls to unsupported ops to error out accordingly,
# rather than returning garbage values.
def supports_complex(reduceOp: ReduceOp) -> bool:
    """Return true if reduce ops is supported. False otherwise."""
    denyList = [
        ReduceOp.MAX,
        ReduceOp.MIN,
        ReduceOp.PRODUCT,
        ReduceOp.BAND,
        ReduceOp.BOR,
        ReduceOp.BXOR,
    ]
    return reduceOp not in denyList


class Backend(str):
    """

    An enum-like class for backends.



    Available backends: GLOO, NCCL, UCC, MPI, and other registered backends.



    The values of this class are lowercase strings, e.g., ``"gloo"``. They can

    be accessed as attributes, e.g., ``Backend.NCCL``.



    This class can be directly called to parse the string, e.g.,

    ``Backend(backend_str)`` will check if ``backend_str`` is valid, and

    return the parsed lowercase string if so. It also accepts uppercase strings,

    e.g., ``Backend("GLOO")`` returns ``"gloo"``.



    .. note:: The entry ``Backend.UNDEFINED`` is present but only used as

              initial value of some fields. Users should neither use it directly

              nor assume its existence.

    """

    UNDEFINED = "undefined"
    GLOO = "gloo"
    NCCL = "nccl"
    UCC = "ucc"
    MPI = "mpi"

    _BackendPlugin = namedtuple("_BackendPlugin", ["creator_fn", "extended_api"])

    _plugins: Dict[str, _BackendPlugin] = {}

    backend_list = [UNDEFINED, GLOO, NCCL, UCC, MPI]

    default_device_backend_map: Dict[str, str] = {
        'cpu' : GLOO,
        'cuda' : NCCL,
    }

    backend_capability: Dict[str, List[str]] = {
        GLOO : ["cpu", "cuda"],
        NCCL : ["cuda"],
        UCC : ["cpu", "cuda"],
        MPI : ["cpu", "cuda"],
    }

    backend_type_map: Dict[str, ProcessGroup.BackendType] = {
        UNDEFINED: ProcessGroup.BackendType.UNDEFINED,
        GLOO : ProcessGroup.BackendType.GLOO,
        NCCL: ProcessGroup.BackendType.NCCL,
        UCC: ProcessGroup.BackendType.UCC,
    }

    def __new__(cls, name: str):
        """Create and return a new instance of the class."""
        if not isinstance(name, str):
            raise ValueError("Backend constructor parameter must be string-ish")
        value = getattr(Backend, name.upper(), Backend.UNDEFINED)

        if value == Backend.UNDEFINED:
            value = name.lower()
        return value

    @classmethod
    def register_backend(cls, name, func, extended_api=False, devices: Optional[Union[str, List[str]]] = None) -> None:
        """

        Register a new backend with the given name and instantiating function.



        This class method is used by 3rd party ``ProcessGroup`` extension to

        register new backends.



        Args:

            name (str): Backend name of the ``ProcessGroup`` extension. It

                        should match the one in ``init_process_group()``.

            func (function): Function handler that instantiates the backend.

                             The function should be implemented in the backend

                             extension and takes four arguments, including

                             ``store``, ``rank``, ``world_size``, and ``timeout``.

            extended_api (bool, optional): Whether the backend supports extended argument structure.

                                           Default: ``False``. If set to ``True``, the backend

                                           will get an instance of ``c10d::DistributedBackendOptions``, and

                                           a process group options object as defined by the backend implementation.

            device (str or list of str, optional): device type this backend

                            supports, e.g. "cpu", "cuda", etc. If `None`,

                            assuming both "cpu" and "cuda"



        .. note:: This support of 3rd party backend is experimental and subject to change.



        """
        # Allow UCC plugin if Pytorch is not built with native support.
        # TODO: remove this exception once UCC plugin is fully deprecated.
        if (name != Backend.UCC or (name == Backend.UCC and is_ucc_available())):
            assert not hasattr(Backend, name.upper()), (
                f"{name.upper()} c10d backend already exist"
            )
        assert name.upper() not in Backend._plugins, (
            f"{name.upper()} c10d backend creator function already exist"
        )

        setattr(Backend, name.upper(), name.lower())
        Backend.backend_list.append(name.lower())
        if devices is not None:
            for device in devices:
                if device != 'cpu' and device != 'cuda':
                    Backend.default_device_backend_map[device] = name.lower()
        Backend.backend_type_map[name.lower()] = ProcessGroup.BackendType.CUSTOM

        # Update device capability matrix in Backend class
        if devices is None:
            # This is more of a backward support for groups like `threaded`:
            # assume default devices "cpu" and "cuda", but warn
            warnings.warn(
                f"Device capability of {name} unspecified, assuming `cpu` and "
                "`cuda`. Please specify it via the `devices` argument of "
                "`register_backend`."
            )
            Backend.backend_capability[name.lower()] = ["cpu", "cuda"]
        elif isinstance(devices, str):
            # Single device string specified. Simply convert to list.
            Backend.backend_capability[name.lower()] = [devices]
        else:
            Backend.backend_capability[name.lower()] = devices

        Backend._plugins[name.upper()] = Backend._BackendPlugin(func, extended_api)

class BackendConfig:
    """Backend configuration class."""

    def __init__(self, backend: Backend):
        """Init."""
        self.device_backend_map: Dict[str, Backend] = {}
        backend = str(backend)

        if backend == Backend.UNDEFINED:
            # default config when backend is not specified
            # supported since PyTorch 2.0
            for device, default_backend in Backend.default_device_backend_map.items():
                if is_backend_available(default_backend):
                    if default_backend == Backend.NCCL and not torch.cuda.is_available():
                        continue
                    self.device_backend_map[device] = Backend(default_backend)
        elif backend.lower() in Backend.backend_list:
            # Cases for when backend is a single string (without device types)
            # e.g. "nccl", "gloo", "ucc", "mpi"
            supported_devices = Backend.backend_capability[backend.lower()]
            backend_val = Backend(backend)
            self.device_backend_map = dict.fromkeys(supported_devices, backend_val)
        elif ":" in backend.lower():
            # Backend specified in "device:backend" format
            # make sure the backend string is in the correct format
            # "{device_type1}:{backend1},{device_type2}:{backend2}"
            # e.g. "cpu:gloo,cuda:nccl"
            backend_str_error_message = f"""The custom backend string argument is invalid: {backend}.

                Custom backend string is an experimental feature where the backend string must be in the format:

                "<device_type1>:<backend1>,<device_type2>:<backend2>...". e.g. 'cpu:gloo,cuda:nccl'"""

            # parse the backend string and populate the device_backend_map
            for device_backend_pair_str in backend.lower().split(","):
                device_backend_pair = device_backend_pair_str.split(":")
                if len(device_backend_pair) != 2:
                    raise ValueError(f"Invalid device:backend pairing: \

                                     {device_backend_pair_str}. {backend_str_error_message}")
                device, backend = device_backend_pair
                if device in self.device_backend_map:
                    raise ValueError(f"Duplicate device type {device} \

                                     in backend string: {backend}. {backend_str_error_message}")
                self.device_backend_map[device] = Backend(backend)
        else:
            # User specified a single backend name whose device capability is
            # unknown, assuming it can support the default devices of PyTorch
            # (cpu and cuda)
            warnings.warn(
                f"Device capability of {backend} unknown, assuming `cpu` and "
                "`cuda`. You can specify it in `device:backend` format in "
                "`init_process_group` call."
            )
            backend_val = Backend(backend)
            self.device_backend_map = {
                "cpu" : backend_val,
                "cuda" : backend_val,
                "xpu" : backend_val,
            }

        logger.info(
            f"Using backend config: {self.device_backend_map}"  # noqa: G004
        )

    def __repr__(self):
        """Return all the device:backend pairs separated by commas."""
        return ",".join(f"{device}:{backend}" for device, backend in self.device_backend_map.items())

    def get_device_backend_map(self) -> Dict[str, Backend]:
        """Return backend map of the device."""
        return self.device_backend_map

class _reduce_op:
    r"""

    Deprecated enum-like class.



    For reduction operations: ``SUM``, ``PRODUCT``, ``MIN``, and ``MAX``.



    :class:`~torch.distributed.ReduceOp` is recommended to use instead.

    """

    def __init__(self):
        # __members__ is a dict storing key-value pairs for enum classes
        for k, v in ReduceOp.RedOpType.__members__.items():
            setattr(self, k, v)
        self.__members__ = ReduceOp.RedOpType.__members__

    def __getattribute__(self, key):
        warnings.warn(
            "torch.distributed.reduce_op is deprecated, please use "
            "torch.distributed.ReduceOp instead"
        )
        return object.__getattribute__(self, key)


reduce_op = _reduce_op()


class P2POp:
    """

    A class to build point-to-point operations for ``batch_isend_irecv``.



    This class builds the type of P2P operation, communication buffer, peer rank,

    Process Group, and tag. Instances of this class will be passed to

    ``batch_isend_irecv`` for point-to-point communications.



    Args:

        op (Callable): A function to send data to or receive data from a peer process.

            The type of ``op`` is either ``torch.distributed.isend`` or

            ``torch.distributed.irecv``.

        tensor (Tensor): Tensor to send or receive.

        peer (int): Destination or source rank.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        tag (int, optional): Tag to match send with recv.

    """

    def __init__(self, op: Callable, tensor: torch.Tensor, peer: int,

                 group: Optional[ProcessGroup] = None, tag: int = 0):
        """Init."""
        self.op = op
        self.tensor = tensor
        self.peer = peer
        self.group = group
        self.tag = tag

    def __new__(cls, op: Callable, tensor: torch.Tensor, peer: int,

                group: Optional[ProcessGroup] = None, tag: int = 0):
        """Create and return a new instance of the class."""
        _check_op(op)
        _check_single_tensor(tensor, "tensor")
        return object.__new__(cls)


class _CollOp:
    """

    A class to capture collective operations.



    Args:

        op (Callable): A collective function, e.g. ``torch.distributed.all_reduce``.

        tensor (Tensor): Tensor to operate on.

        dst_tensor (Tensor, optional): Provided when source and destinaton tensors are not the same.

        redop (ReduceOp, optional): reduce operation.

        root (int, optional): root of broadcast or reduce.

    """

    def __init__(self, op: Callable, tensor: torch.Tensor, dst_tensor: Optional[torch.Tensor] = None,

                 redop: Optional[ReduceOp] = None, root: Optional[int] = None):
        self.op = op
        self.tensor = tensor
        self.dst_tensor = dst_tensor
        self.redop = redop
        self.root = root


# DO NOT USE THESE FIELDS DIRECTLY.
# Use them through the _world object to make sure the _world override mechanism
_pg_map: Dict[ProcessGroup, Tuple[str, Store]] = {}
_pg_names: Dict[ProcessGroup, str] = {}
_pg_group_ranks: Dict[ProcessGroup, Dict[int, int]] = {}
# For a pg, it is a map from ProcessGroup to BackendConfig
_pg_backend_config: Dict[ProcessGroup, str] = {}
_group_count = 0
_tags_to_pg: Dict[str, List[ProcessGroup]] = {}
_pg_to_tag: Dict[ProcessGroup, str] = {}
_backend: Optional[str] = None

class _World:
    """

    Container class for c10d process group state.



    This is used during registration and lookup of PG state.



    .. warning:: This is an experimental API intended to expose the inner workings

       of c10d and is subject to change..

    """

    def __init__(self):
        self._default_pg = None
        self._pg_coalesce_state: Dict[ProcessGroup, List[_CollOp]] = {}
        self._pg_default_device: Dict[ProcessGroup, torch.device] = {}

    @property
    def default_pg(self) -> Optional[ProcessGroup]:
        """

        Process group that includes all ranks of the cluster.



        This default ProcessGroup is used by c10d APIs when a ProcessGroup is needed

        but None is provided.

        """
        return self._default_pg

    @default_pg.setter
    def default_pg(self, value) -> None:
        self._default_pg = value

    @property
    def pg_map(self) -> Dict[ProcessGroup, Tuple[str, Store]]:
        """

        Provide Mapping from ProcessGroup to backend name and store.



        For NCCL and GLOO pg, it is a map from ProcessGroup to (Backend, Store)

        For MPI pg, it is a map from ProcessGroup to (Backend, None)



        TODO don't expose the map, expose fine grained ops

        """
        global _pg_map
        return _pg_map

    @property
    def pg_names(self) -> Dict[ProcessGroup, str]:
        """

        Process group's names, map from ProcessGroup to str.



        TODO don't expose the map, expose fine grained ops

        """
        global _pg_names
        return _pg_names

    @property
    def pg_group_ranks(self) -> Dict[ProcessGroup, Dict[int, int]]:
        """

        Process group's global rank to local rank mapping.



        TODO don't expose the map, expose fine grained ops

        """
        global _pg_group_ranks
        return _pg_group_ranks

    @property
    def pg_backend_config(self) -> Dict[ProcessGroup, str]:
        """

        Process group's backend config.



        TODO don't expose the map, expose fine grained ops

        """
        global _pg_backend_config
        return _pg_backend_config

    @property
    def group_count(self) -> int:
        """

        Process group count for default naming.



        TODO don't expose group_count, use something else instead

        """
        global _group_count
        return _group_count

    @group_count.setter
    def group_count(self, value: int) -> None:
        """Use to compute the name of ProcessGroups when using global synchronization."""
        global _group_count
        _group_count = value

    @property
    def tags_to_pg(self) -> Dict[str, List[ProcessGroup]]:
        global _tags_to_pg
        return _tags_to_pg

    @property
    def pg_to_tag(self) -> Dict[ProcessGroup, str]:
        global _pg_to_tag
        return _pg_to_tag

    @property
    def pg_coalesce_state(self) -> Dict[ProcessGroup, List[_CollOp]]:
        return self._pg_coalesce_state

    @property
    def pg_default_device(self) -> Dict[ProcessGroup, torch.device]:
        return self._pg_default_device

    @property
    def pg_config_info(self) -> List[Dict[str, Any]]:
        """

        Return a list of dict with process groups and backends.



        Along with their unique IDs and configurations (types and ranks).

        """
        config_info: List[Dict[str, Any]] = []
        default_pg_size = _get_group_size(None)
        for pg in self.pg_map.keys():
            ranks = self.pg_group_ranks[pg]
            config_info.append(
                {
                    "pg_name": self.pg_names[pg],
                    "uid": _get_process_group_uid(pg),
                    "backend_config": self.pg_backend_config[pg],
                    "ranks": list(ranks.keys())
                    if len(ranks) != default_pg_size
                    else [],  # 'ranks' is an empty list when all ranks are involved in a pg
                    "group_size": len(ranks),
                    "group_count": self.group_count,
                }
            )
        return config_info


_world = _World()
"""Holds the singleton instance of ``_World`` used by c10. Experimental extension point to override it"""

class _WorldMeta(type):
    """

    Meta class of ``group`` and ``GroupMember``.



    Allows them to have the class property ``WORLD``.

    """

    # Points to the default PG once initialized.
    @property
    def WORLD(cls) -> Optional[ProcessGroup]:
        return _world.default_pg

    @WORLD.setter
    def WORLD(cls, pg: Optional[ProcessGroup]):
        _world.default_pg = pg

class group(metaclass=_WorldMeta):
    """Group class. Placeholder."""

    pass

class GroupMember(metaclass=_WorldMeta):
    """Group member class."""

    NON_GROUP_MEMBER = -100


def _get_default_timeout(backend: Backend) -> timedelta:
    # see note on nccl vs other backend timeout (constants.py)
    if backend == Backend.NCCL:
        if not isinstance(default_pg_nccl_timeout, timedelta):
            # TODO moco benchmark on CPU initializes pgnccl backend today, triggered this assert in CI before it was
            # changed to be a warning.  We should fix the moco model.
            warnings.warn("Attempted to get default timeout for nccl backend, but NCCL support is not compiled")
            return default_pg_timeout
        return default_pg_nccl_timeout
    else:
        return default_pg_timeout

def _check_valid_timeout(timeout: Any) -> None:
    if not isinstance(timeout, timedelta):
        raise TypeError(
            f"Expected timeout argument to be of type datetime.timedelta, got {timeout}"
        )

# Default process group state
_default_pg_init_method: Optional[str] = None

STORE_BASED_BARRIER_PREFIX = "store_based_barrier_key"

def _get_pg_default_device(group: Optional[ProcessGroup] = None) -> torch.device:
    """

    Return the device to use with ``group`` for control flow usage (object collectives, barrier).



    There are selection rules:

        1. If user specifies exactly one backend in ``init_process_group`` call:

            use that backend

        2. Else if user specifies multiple "device:backend" pairs in init_process_group:

            If "cpu" is among those pairs, use "cpu" (because the object is in cpu memory);

            Otherwise, use the first backend (sort of a random pick).



    Args:

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.



    Returns:

        torch.device: The device to use with ``group``.



    """
    group = group or _get_default_group()
    if group in _world.pg_default_device:
        # Previously searched and cached; just return
        return _world.pg_default_device[group]

    if not isinstance(group, ProcessGroup):
        # Provide backward compatibility to cases where `group` passed in is
        # actually a Backend (like `ProcessGroupGloo`) rather than a
        # `ProcessGroup` in PT 2.0 sense
        warnings.warn(
            f"You are using a Backend {type(group)} as a ProcessGroup. "
            "This usage is deprecated since PyTorch 2.0. Please use a public API "
            "of PyTorch Distributed instead."
        )
        # Most users create Gloo with private API for object collectives
        _world.pg_default_device[group] = torch.device("cpu")
        return _world.pg_default_device[group]

    """

    ``group._device_types`` is a property pybind that returns the devices

    ("cpu", "cuda", etc) supported by ``group``. Can be multiple if the

    ``group`` supports multiple devices.

    """
    devices = group._device_types

    if len(devices) == 1:
        # User fixed exactly one backend in `init_process_group`
        _world.pg_default_device[group] = devices[0]
    elif len(devices) == 0:
        # No backend has been registered with this PG (maybe because no
        # collective has been run?) We pick cpu as the default and hopefully
        # this would lazily init Gloo or other available cpu backend.
        _world.pg_default_device[group] = torch.device("cpu")
    elif torch.device("cpu") in devices:
        # There are multiple backends in this PG and cpu is among them.
        # cpu is preferred as the object is in cpu memory. No need for device
        # copy.
        _world.pg_default_device[group] = torch.device("cpu")
    else:
        # No cpu in the backend list. Randomly pick the first backend
        _world.pg_default_device[group] = devices[0]

    logger.info(
        f"Using device {_world.pg_default_device[group]} for object "  # noqa: G004
        "collectives."
    )
    return _world.pg_default_device[group]


@_time_logger
def _store_based_barrier(rank, store, group_name, rendezvous_count, timeout, logging_interval=timedelta(seconds=10)) -> None:
    """

    Store based barrier for synchronizing processes.



    Barrier based on store which is used for synchronizing processes after

    ``init_process_group`` or ``new_group``. Intended to be used only with

    those two methods and is not a generic alternative to ``barrier()``.

    """
    store_key = f"{STORE_BASED_BARRIER_PREFIX}:{group_name}"
    store.add(store_key, 1)
    logger.info("Added key: %s to store for rank: %s", store_key, rank)

    # Now wait for all workers to check in with the store.
    world_size = rendezvous_count
    worker_count = store.add(store_key, 0)

    last_worker_key = f"{store_key}:last_worker"
    if worker_count == world_size:
        store.set(last_worker_key, "1")

    # adjust the timeout to be at least 10secs + 1sec per thousand ranks to reduce the odds of timeout
    # this value was empirically found while scale testing.
    logging_interval = max(logging_interval, timedelta(seconds=10 + world_size / 1000))

    start = time.time()
    while True:
        try:
            # This will throw an exception after the logging_interval in which we print out
            # the status of the group or time out officially, throwing runtime error
            store.wait([last_worker_key], logging_interval)
            break
        except RuntimeError as e:
            worker_count = store.add(store_key, 0)
            # Print status periodically to keep track.
            logger.info(
                "Waiting in store based barrier to initialize process group for "
                "rank: %s, key: %s (world_size=%s, num_workers_joined=%s, timeout=%s)",
                rank, store_key, world_size, worker_count, timeout
            )

            if timedelta(seconds=(time.time() - start)) > timeout:
                raise DistStoreError(  # noqa: TRY200
                    "Timed out initializing process group in store based barrier on "
                    "rank {}, for key: {} (world_size={}, num_workers_joined={}, timeout={})".format(
                        rank, store_key, world_size, worker_count, timeout
                    )
                )

    logger.info(
        "Rank %s: Completed store-based barrier for key:%s with %s nodes.", rank, store_key, world_size
    )


def _rank_not_in_group(group: Optional[ProcessGroup]) -> bool:
    """Check if the current process's rank is not in a given group."""
    if group is None:
        return False
    return group == GroupMember.NON_GROUP_MEMBER


def _warn_not_in_group(op_name) -> None:
    global_rank = -1 if GroupMember.WORLD is None else GroupMember.WORLD.rank()
    warnings.warn(
        f"Running {op_name} on global rank {global_rank} which does not "
        "belong to the given group."
    )


def get_group_rank(group: ProcessGroup, global_rank: int) -> int:
    """

    Translate a global rank into a group rank.



    ``global_rank`` must be part of ``group`` otherwise this raises RuntimeError.



    Args:

        group (ProcessGroup): ProcessGroup to find the relative rank.

        global_rank (int): Global rank to query.



    Returns:

        Group rank of ``global_rank`` relative to ``group``



    N.B. calling this function on the default process group returns identity

    """
    if group is GroupMember.WORLD:
        return global_rank
    if group not in _world.pg_group_ranks:
        raise ValueError(f"Group {group} is not registered, please create group with torch.distributed.new_group API")
    group_ranks = _world.pg_group_ranks[group]
    if global_rank not in group_ranks:
        raise ValueError(f"Global rank {global_rank} is not part of group {group}")

    return group_ranks[global_rank]

def get_global_rank(group: ProcessGroup, group_rank: int) -> int:
    """

    Translate a group rank into a global rank.



    ``group_rank`` must be part of `group` otherwise this raises RuntimeError.



    Args:

        group (ProcessGroup): ProcessGroup to find the global rank from.

        group_rank (int): Group rank to query.



    Returns:

        Global rank of ``group_rank`` relative to ``group``



    N.B. calling this function on the default process group returns identity

    """
    if group is GroupMember.WORLD:
        return group_rank
    if group not in _world.pg_group_ranks:
        raise ValueError(f"Group {group} is not registered, please create group with torch.distributed.new_group API")
    for rank, grp_rank in _world.pg_group_ranks[group].items():
        if grp_rank == group_rank:
            return rank
    raise ValueError(f"Group rank {group_rank} is not part of group {group}")

# TODO: remove this once the ecosystem moves away from it.
def _get_global_rank(group, rank) -> int:
    """Use get_global_rank as this method is deprecated."""
    warnings.warn(
        "torch.distributed.distributed_c10d._get_global_rank is deprecated "
        "please use torch.distributed.distributed_c10d.get_global_rank instead"
    )
    return get_global_rank(group, rank)


def get_process_group_ranks(group: ProcessGroup) -> List[int]:
    """

    Get all ranks associated with ``group``.



    Args:

        group (ProcessGroup): ProcessGroup to get all ranks from.



    Returns:

        List of global ranks ordered by group rank.

    """
    return list(_world.pg_group_ranks[group].keys())

def _get_group_size(group) -> int:
    """Get a given group's world size."""
    if group is GroupMember.WORLD or group is None:
        default_pg = _get_default_group()
        return default_pg.size()
    return group.size()


def _get_group_size_by_name(group_name: str) -> int:
    group = _resolve_process_group(group_name)
    return group.size()


def _resolve_group_name_by_ranks_and_tag(ranks: List[int], tag: str) -> str:
    # TODO(yifu): remove this function once ranks + tag is not a supported
    # identifier for process group for functional collectives.
    group = _find_pg_by_ranks_and_tag(tag, ranks)
    if group is None:
        raise ValueError("")
    return group.group_name


def _check_single_tensor(param, param_name) -> None:
    """Check that the parameter ``param_name`` is a single tensor."""
    if not isinstance(param, torch.Tensor):
        raise TypeError(
            f"""Invalid function argument. Expected parameter `{param_name}` of type torch.Tensor

             but got {type(param)} instead."""
        )


def _check_tensor_list(param, param_name) -> None:
    """Check that the parameter ``param_name`` is a list of tensors."""
    if not isinstance(param, list):
        raise TypeError(
            f"""Invalid function argument. Expected parameter `{param_name}` of type List[torch.Tensor]

             but got {type(param)} instead."""
        )
    elif not all(isinstance(p, torch.Tensor) for p in param):
        raise TypeError(
            f"""Invalid function argument. Expected parameter `{param_name}` of type List[torch.Tensor]

             but got {type(param)} with elements of type {[type(p) for p in param]}."""
        )


def _as_iterable(obj) -> collections.abc.Iterable:
    return obj if isinstance(obj, list) else (obj,)

def _ensure_all_tensors_same_dtype(*tensors) -> None:
    last_dtype = None
    for tensor in itertools.chain.from_iterable(map(_as_iterable, tensors)):
        tensor_dtype = tensor.dtype
        # Mixing complex and its element type is allowed
        if tensor_dtype.is_complex:
            tensor_dtype = torch.float32 if tensor_dtype == torch.complex64 else torch.complex128

        if last_dtype is None:
            last_dtype = tensor_dtype
        else:
            if last_dtype != tensor_dtype:
                raise ValueError(
                    "Invalid usage of tensors with different dtypes"
                    f"Found {last_dtype} and  {tensor.dtype}"
                )


def _check_op(op) -> None:
    """Check that the ``op`` is either isend or irecv."""
    if op not in [isend, irecv]:
        raise ValueError(
            "Invalid ``op``. Expected ``op`` "
            "to be of type ``torch.distributed.isend`` or "
            "``torch.distributed.irecv``."
        )


def _check_p2p_op_list(p2p_op_list) -> None:
    """

    Check that the ``p2p_op_list`` is a list of P2POp instances.



    Also, check that all ops use the same group.

    """
    if not isinstance(p2p_op_list, list) or not all(
        isinstance(p2p_op, P2POp) for p2p_op in p2p_op_list
    ):
        raise ValueError(
            "Invalid ``p2p_op_list``. Each op is expected to "
            "to be of type ``torch.distributed.P2POp``."
        )

    group = p2p_op_list[0].group
    if not all(group == p2p_op.group for p2p_op in p2p_op_list):
        raise ValueError("All ops need to use the same group.")


def is_mpi_available() -> bool:
    """Check if the MPI backend is available."""
    return _MPI_AVAILABLE


def is_nccl_available() -> bool:
    """Check if the NCCL backend is available."""
    return _NCCL_AVAILABLE


def is_gloo_available() -> bool:
    """Check if the Gloo backend is available."""
    return _GLOO_AVAILABLE


def is_ucc_available() -> bool:
    """Check if the UCC backend is available."""
    return _UCC_AVAILABLE


def is_backend_available(backend: str) -> bool:
    """

    Check backend availability.



    Checks if the given backend is available and supports the built-in backends or

    third-party backends through function ``Backend.register_backend``.



    Args:

        backend (str): Backend name.

    Returns:

        bool: Returns true if the backend is available otherwise false.

    """
    # If the backend has an ``is_backend_available`` function, return the result of that function directly
    available_func = getattr(torch.distributed, f"is_{backend.lower()}_available", None)
    if available_func:
        return available_func()

    return backend.lower() in Backend.backend_list


def is_initialized() -> bool:
    """Check if the default process group has been initialized."""
    return GroupMember.WORLD is not None


def is_torchelastic_launched() -> bool:
    """

    Check whether this process was launched with ``torch.distributed.elastic`` (aka torchelastic).



    The existence of ``TORCHELASTIC_RUN_ID`` environment

    variable is used as a proxy to determine whether the current process

    was launched with torchelastic. This is a reasonable proxy since

    ``TORCHELASTIC_RUN_ID`` maps to the rendezvous id which is always a

    non-null value indicating the job id for peer discovery purposes..

    """
    return os.getenv("TORCHELASTIC_RUN_ID") is not None


def _is_barrier_after_init() -> int:
    # Environment variable to control whether process group should perform a
    # barrier after its init. Default value is 0, i.e. no barrier. If you
    # experience issue with this setting, you may set
    # `TORCH_DIST_INIT_BARRIER=1` to add the barrier.
    return int(os.getenv("TORCH_DIST_INIT_BARRIER", "0"))


def _abort_in_destroy_pg() -> bool:
    # Environment variable to control whether to abort the communicators when users call destroy_process_group()
    env = os.getenv("TORCH_NCCL_ABORT_IN_DESTROY_PG", "0")
    return env == "1" or env.lower() == "true"


def _get_default_group() -> ProcessGroup:
    """Get the default process group created by init_process_group."""
    if not is_initialized():
        raise ValueError(
            "Default process group has not been initialized, "
            "please make sure to call init_process_group."
        )
    return not_none(GroupMember.WORLD)


def _get_default_store() -> Store:
    """Get the default store created by init_process_group."""
    if not is_initialized():
        raise ValueError(
            "Default process group has not been initialized, "
            "please make sure to call init_process_group."
        )
    default_pg = _get_default_group()
    _, default_store = _world.pg_map[default_pg]
    return default_store


def _update_default_pg(pg) -> None:
    _world.default_pg = pg
    rank = pg.rank() if pg is not None and pg != GroupMember.NON_GROUP_MEMBER else -1
    torch._C._distributed_c10d._set_global_rank(rank)

def get_backend_config(group: Optional[ProcessGroup] = None) -> str:
    """

    Return the backend configuration of the given process group.



    Args:

        group (ProcessGroup, optional): The process group to work on. The

            default is the general main process group. If another specific group

            is specified, the calling process must be part of :attr:`group`.



    Returns:

        The backend configuration of the given process group as a lower case string.



    """
    if group is None:
        pg = _get_default_group()
    else:
        pg = group
    if _rank_not_in_group(pg):
        raise ValueError("Invalid process group specified")
    backend_config = _world.pg_backend_config.get(pg)
    return str(not_none(backend_config))

def get_backend(group: Optional[ProcessGroup] = None) -> Backend:
    """

    Return the backend of the given process group.



    Args:

        group (ProcessGroup, optional): The process group to work on. The

            default is the general main process group. If another specific group

            is specified, the calling process must be part of :attr:`group`.



    Returns:

        The backend of the given process group as a lower case string.



    """
    if group is None:
        pg = _get_default_group()
    else:
        pg = group
    if _rank_not_in_group(pg):
        raise ValueError("Invalid process group specified")
    pg_store = _world.pg_map[pg] if pg in _world.pg_map else None
    return Backend(not_none(pg_store)[0])

def _get_process_group_uid(pg: ProcessGroup) -> int:
    backend = None
    try:
        backend = pg._get_backend(torch.device("cuda"))
    except RuntimeError:
        pass
    if is_nccl_available() and isinstance(backend, ProcessGroupNCCL):
        return backend.uid
    return -1

def _get_pg_config(group: Optional[ProcessGroup] = None) -> Dict[str, Any]:
    """

    Return the pg configuration of the given process group.



    """
    if group is None:
        pg = _get_default_group()
    else:
        pg = group
    return {
        "pg_name": _get_process_group_name(pg),
        "uid": _get_process_group_uid(pg),
        "backend_config": get_backend_config(pg),
        "pg_size": _get_group_size(pg),
        "ranks": get_process_group_ranks(pg),
    }

def _get_all_pg_configs() -> List[Dict[str, Any]]:
    """

    Return the pg configuration of all the process groups.



    """
    config_info: List[Dict[str, Any]] = []
    for pg in _world.pg_map.keys():
        config_info.append(_get_pg_config(pg))
    return config_info

def get_pg_count() -> int:
    """

    Return the number of process groups.



    """
    return _world.group_count

def _set_pg_timeout(timeout: timedelta, group: Optional[ProcessGroup] = None) -> None:
    """

    Set the timeout for the given process group when users want to use a different timeout instead of

    default values.



    Args:

        timeout (timedelta): Timeout for operations executed against the process group which

            users want to set. Default value is 10 minutes for NCCL and 30 minutes for other backends.

            This is the duration after which collectives will be aborted asynchronously and the process will crash.

            This is done since CUDA execution is async and it is no longer safe to continue executing user code since

            failed async NCCL operations might result in subsequent CUDA operations running on corrupted data.

            When TORCH_NCCL_BLOCKING_WAIT is set, the process will block and wait for this timeout.



        group (ProcessGroup, optional): The process group to work on. The

            default is the general main process group. If another specific group

            is specified, the calling process must be part of :attr:`group`.



    Returns:

        None

    """
    if group is None:
        group = _get_default_group()
    if _rank_not_in_group(group):
        raise ValueError("Invalid process group specified")
    assert isinstance(group, ProcessGroup)
    devices = group._device_types
    backends = set()
    if torch.device("cpu") in devices and is_gloo_available():
        backend = group._get_backend(torch.device("cpu"))
        if isinstance(backend, ProcessGroupGloo):
            backends.add(backend)
    if torch.device("cuda") in devices:
        backend = group._get_backend(torch.device("cuda"))
        if is_nccl_available() and isinstance(backend, ProcessGroupNCCL):
            backends.add(backend)  # type: ignore[arg-type]
        elif is_gloo_available() and isinstance(backend, ProcessGroupGloo):
            backends.add(backend)  # type: ignore[arg-type]
    if len(backends) == 0:
        warnings.warn("Set timeout is now only supported for either nccl or gloo.")
    for backend in backends:
        backend._set_default_timeout(timeout)


@_exception_logger
@_time_logger
def init_process_group(

    backend: Optional[str] = None,

    init_method: Optional[str] = None,

    timeout: Optional[timedelta] = None,

    world_size: int = -1,

    rank: int = -1,

    store: Optional[Store] = None,

    group_name: str = "",

    pg_options: Optional[Any] = None,

    device_id: Optional[torch.device] = None,

) -> None:
    """

    Initialize the default distributed process group.



    This will also initialize the distributed package.



    There are 2 main ways to initialize a process group:

        1. Specify ``store``, ``rank``, and ``world_size`` explicitly.

        2. Specify ``init_method`` (a URL string) which indicates where/how

           to discover peers. Optionally specify ``rank`` and ``world_size``,

           or encode all required parameters in the URL and omit them.



    If neither is specified, ``init_method`` is assumed to be "env://".





    Args:

        backend (str or Backend, optional): The backend to use. Depending on

            build-time configurations, valid values include ``mpi``, ``gloo``,

            ``nccl``, and ``ucc``. If the backend is not provided, then both a ``gloo``

            and ``nccl`` backend will be created, see notes below for how multiple

            backends are managed. This field can be given as a lowercase string

            (e.g., ``"gloo"``), which can also be accessed via

            :class:`Backend` attributes (e.g., ``Backend.GLOO``). If using

            multiple processes per machine with ``nccl`` backend, each process

            must have exclusive access to every GPU it uses, as sharing GPUs

            between processes can result in deadlocks. ``ucc`` backend is

            experimental.

        init_method (str, optional): URL specifying how to initialize the

                                     process group. Default is "env://" if no

                                     ``init_method`` or ``store`` is specified.

                                     Mutually exclusive with ``store``.

        world_size (int, optional): Number of processes participating in

                                    the job. Required if ``store`` is specified.

        rank (int, optional): Rank of the current process (it should be a

                              number between 0 and ``world_size``-1).

                              Required if ``store`` is specified.

        store(Store, optional): Key/value store accessible to all workers, used

                                to exchange connection/address information.

                                Mutually exclusive with ``init_method``.

        timeout (timedelta, optional): Timeout for operations executed against

            the process group. Default value is 10 minutes for NCCL and 30 minutes for other backends.

            This is the duration after which collectives will be aborted asynchronously and the process will crash.

            This is done since CUDA execution is async and it is no longer safe to continue executing user code since

            failed async NCCL operations might result in subsequent CUDA operations running on corrupted data.

            When TORCH_NCCL_BLOCKING_WAIT is set, the process will block and wait for this timeout.



        group_name (str, optional, deprecated): Group name. This argument is ignored

        pg_options (ProcessGroupOptions, optional): process group options

            specifying what additional options need to be passed in during

            the construction of specific process groups. As of now, the only

            options we support is ``ProcessGroupNCCL.Options`` for the ``nccl``

            backend, ``is_high_priority_stream`` can be specified so that

            the nccl backend can pick up high priority cuda streams when

            there're compute kernels waiting.

        device_id (torch.device, optional): a single, specific device

            to "bind" this process to, allowing for backend-specific

            optimizations.  Currently this has two effects, only under

            NCCL: the communicator is immediately formed (calling

            ``ncclCommInit*`` immediately rather than the normal lazy

            call) and sub-groups will use ``ncclCommSplit`` when

            possible to avoid unnecessary overhead of group creation. If you

            want to know NCCL initialization error early, you can also use this

            field.



    .. note:: To enable ``backend == Backend.MPI``, PyTorch needs to be built from source

        on a system that supports MPI.



    .. note:: Support for multiple backends is experimental. Currently when no backend is

        specified, both ``gloo`` and ``nccl`` backends will be created. The ``gloo`` backend

        will be used for collectives with CPU tensors and the ``nccl`` backend will be used

        for collectives with CUDA tensors. A custom backend can be specified by passing in

        a string with format "<device_type>:<backend_name>,<device_type>:<backend_name>", e.g.

        "cpu:gloo,cuda:custom_backend".



    """

    global _world

    global _backend
    global _default_pg_init_method

    if GroupMember.WORLD is not None:
        raise ValueError("trying to initialize the default process group twice!")

    set_pytorch_distributed_envs_from_justknobs()

    assert (store is None) or (
        init_method is None
    ), "Cannot specify both init_method and store."

    if store is not None:
        assert world_size > 0, "world_size must be positive if using store"
        assert rank >= 0, "rank must be non-negative if using store"
    elif init_method is None:
        init_method = "env://"

    if backend:
        backend = Backend(backend)
    else:
        backend = Backend("undefined")

    if timeout is None:
        timeout = _get_default_timeout(backend)

    _check_valid_timeout(timeout)

    """

    Group name is not visible to users unless they access

    internals of c10d. This means we can ignore the value

    they provide as it not exposed in a public way.

    """
    group_name = _process_group_name([], use_hashed_name=False)
    if backend == Backend.MPI:
        if world_size != -1 or rank != -1:
            warnings.warn(
                f"For MPI backend, world_size ({world_size}) and rank ({rank}) "
                "are ignored since they are assigned by the "
                "MPI runtime."
            )

        default_pg, _ = _new_process_group_helper(
            -1, -1, [], backend, None, group_name, timeout=timeout
        )
        _update_default_pg(default_pg)
    else:
        # backward compatible API
        if store is None:
            rendezvous_iterator = rendezvous(
                not_none(init_method), rank, world_size, timeout=timeout
            )
            store, rank, world_size = next(rendezvous_iterator)
            store.set_timeout(timeout)

            # Use a PrefixStore to avoid accidental overrides of keys used by
            # different systems (e.g. RPC) in case the store is multi-tenant.
            store = PrefixStore("default_pg", store)

        default_pg, _ = _new_process_group_helper(
            world_size,
            rank,
            [],
            backend,
            store,
            group_name,
            pg_options=pg_options,
            timeout=timeout,
            device_id=device_id,
        )
        _update_default_pg(default_pg)

    _world.pg_group_ranks[GroupMember.WORLD] = {i: i for i in range(GroupMember.WORLD.size())}  # type: ignore[attr-defined, index]
    _backend = _world.pg_map[not_none(GroupMember.WORLD)][0]
    _default_pg_init_method = init_method

    old_hook = sys.excepthook

    def _distributed_excepthook(*args):
        old_stderr = sys.stderr
        sys.stderr = buf = io.StringIO()
        try:
            old_hook(*args)
        finally:
            sys.stderr = old_stderr
        msg = buf.getvalue()
        prefix = f"[rank{get_rank()}]"
        msg = "\n".join(f"{prefix}: {s}" if s != "" else "" for s in msg.split("\n"))
        sys.stderr.write(msg)
        sys.stderr.flush()

    sys.excepthook = _distributed_excepthook

    if _is_barrier_after_init() == 1:
        # barrier at the end to ensure that once we return from this method, all
        # process groups including global variables (if any) are updated
        # correctly on all ranks.
        # Update 04/2023: for large-scale runs, this barrier (esp. store-based
        # barrier) may be costly and/or unscalable. Also, in a lot of cases,
        # these barriers may be unnecessary, as proven by a green CI after
        # removal. An environment variable `TORCH_DIST_INIT_BARRIER` has been
        # added which enables this barrier only when set to 1.
        logger.info(
            "Performing barrier after ProcessGroup initialization since "
            "TORCH_DIST_INIT_BARRIER = 1"
        )
        if backend == Backend.MPI:
            # MPI backend doesn't use store.
            barrier()
        else:
            # Use store based barrier here since barrier() used a bunch of
            # default devices and messes up NCCL internal state.
            _store_based_barrier(rank, store, group_name, world_size, timeout)

def _get_split_source(pg):
    split_from = None
    if pg.bound_device_id:
        split_from = pg._get_backend(pg.bound_device_id)
    elif pg is _world.default_pg:
        try:
            split_from = pg._get_backend(torch.device("cuda"))
        except RuntimeError:
            # no cuda device associated with this backend
            pass

    if not split_from or not split_from.supports_splitting:
        return None

    # If necessary, find a backend to split from by peeling process
    # group wrappers from our potentially wrapped process group.
    while isinstance(split_from, _ProcessGroupWrapper):
        split_from = split_from.wrapped_pg

    return split_from

def _shutdown_backend(pg):
    """

    Try to shut down the backend of a process group.

    Currently, only ProcessGroupNCCL backend is supported.

    No op for other backends.

    """
    backend = None
    try:
        backend = pg._get_backend(torch.device("cuda"))
    except RuntimeError:
        pass
    if isinstance(backend, ProcessGroupNCCL):
        # explictly call shutdown to ensure that NCCL resources are released
        backend._shutdown()

def _new_process_group_helper(

    group_size,

    group_rank,

    global_ranks_in_group,

    backend,

    store,

    group_name,

    pg_options=None,

    timeout=None,

    pg_tag=None,

    device_id=None,

):
    """

    Create a new distributed process group.



    This function must be called by ALL processes in the global group, even if

    the calling process is not part of the newly created group. In that case,

    this function returns GroupMember.NON_GROUP_MEMBER.



    This function is called with ``global_ranks_in_group == []`` for the default group.

    """
    global _world

    if group_name in _world.pg_names.values():
        raise ValueError(
            "The specified group name has already been "
            "created, please use a different group name"
        )

    if device_id is not None and (device_id.index is None or device_id.type != 'cuda'):
        raise ValueError("init_process_group device_id parameter must be a cuda device with an "
                         "id, e.g. cuda:0, not just cuda or cpu")

    # Note: _new_process_group_helper is only called from init_process_group, which always provides a timeout value
    _check_valid_timeout(timeout)

    if pg_tag not in [None, ""]:
        # creating with the same tag and rank set results in the same underlying PG
        existing_group = _find_pg_by_ranks_and_tag(pg_tag, global_ranks_in_group)
        if existing_group:
            _, prefix_store = _world.pg_map[existing_group]
            return existing_group, prefix_store

    # The list of group ranks is empty if we're creating the default group.
    is_default_group = len(global_ranks_in_group) == 0

    # nccl and potentially other backends allow creation of
    # communicators based on pre-existing ones, which can save
    # initialization time.  Due to lazy initialization of
    # communicators in some backends, we have to be careful and only
    # split when we *know* the backends already are connected _on all
    # ranks_.  We can only know this if the group we are making is the
    # entire world or if we have bound a device id to the world (which
    # causes early connection initialization).
    if (is_initialized() and
            (len(global_ranks_in_group) == _get_default_group().size() or _get_default_group().bound_device_id)):
        split_from = _get_split_source(_get_default_group())
    else:
        split_from = None

    # If this is a subgroup (which means group_ranks is specified),
    # we check if the current process is a member of the new group.
    if not is_default_group:
        global_rank = _get_default_group().rank()
        if global_rank not in global_ranks_in_group:
            # If we are using `ncclCommSplit` (or similar split from
            # other APIs) to create the communicator, we will need to
            # call `ncclCommSplit` on *all* ranks in this new group's
            # parent group, even those not in the new group.  This is
            # a requirement of the NCCL API as otherwise we would get
            # out of sync.
            if split_from:
                split_from.perform_nocolor_split(_get_default_group().bound_device_id)
            return GroupMember.NON_GROUP_MEMBER, None

    prefix_store = PrefixStore(f"{group_name}/", store)
    base_pg_options = ProcessGroup.Options(backend=str(backend))
    base_pg_options._timeout = timeout
    pg: ProcessGroup = ProcessGroup(prefix_store, group_rank, group_size, base_pg_options)
    if device_id:
        pg.bound_device_id = device_id
    backend_config = BackendConfig(backend)
    backend_class: torch._C._distributed_c10d.Backend
    for device, backend_str in backend_config.get_device_backend_map().items():
        # Use the group name as prefix in the default store, such that
        # a single store can be reused by multiple groups.
        backend_prefix_store = PrefixStore(f"{device}/", prefix_store)

        if backend_str == Backend.MPI:
            if not is_mpi_available():
                raise RuntimeError(
                    "Distributed package doesn't have MPI built in."
                    " MPI is only included if you build PyTorch from"
                    " source on a host that has MPI installed."
                )
            backend_class = ProcessGroupMPI.create(global_ranks_in_group)
            backend_type = ProcessGroup.BackendType.MPI
            if not backend_class:
                return GroupMember.NON_GROUP_MEMBER, None
            # create new process group with accurate rank and size
            if pg.rank() == -1 and pg.size() == -1:
                pg = ProcessGroup(backend_prefix_store, backend_class.rank(), backend_class.size(), base_pg_options)
        elif backend_str == Backend.GLOO:
            # TODO: remove this check after lazy initialization is supported
            # if pg_options is not None:
            #     raise RuntimeError("GLOO options not supported")
            backend_class = ProcessGroupGloo(backend_prefix_store, group_rank, group_size, timeout=timeout)
            backend_type = ProcessGroup.BackendType.GLOO
        elif backend_str == Backend.NCCL:
            if not is_nccl_available():
                raise RuntimeError("Distributed package doesn't have NCCL built in")
            if pg_options is not None:
                assert isinstance(
                    pg_options, ProcessGroupNCCL.Options
                ), "Expected pg_options argument to be of type ProcessGroupNCCL.Options"
                if pg_options._timeout != timeout:
                    warnings.warn(
                        "pg_options._timeout was specified, "
                        "but timeout kwarg has a default value that will always override it. "
                    )
            else:
                # default pg_options for NCCL
                pg_options = ProcessGroupNCCL.Options()
                pg_options.is_high_priority_stream = False
            pg_options._timeout = timeout

            if split_from:
                pg_options.split_from = split_from
                pg_options.split_color = _process_group_color(global_ranks_in_group)
            pg_options.global_ranks_in_group = global_ranks_in_group
            backend_class = ProcessGroupNCCL(
                backend_prefix_store, group_rank, group_size, pg_options)
            backend_type = ProcessGroup.BackendType.NCCL
        elif backend_str == Backend.UCC and is_ucc_available():
            # TODO: once UCC plugin is fully deprecated, remove
            # is_ucc_available() from above elif-condition and raise
            # RuntimeError if is_ucc_available() returns false.

            backend_class = ProcessGroupUCC(backend_prefix_store, group_rank, group_size, timeout=timeout)
            backend_type = ProcessGroup.BackendType.UCC
        else:
            assert backend_str.upper() in Backend._plugins, (
                f"Unknown c10d backend type {backend_str.upper()}"
            )

            backend_plugin = Backend._plugins[backend_str.upper()]
            creator_fn = backend_plugin.creator_fn
            extended_api = backend_plugin.extended_api
            backend_type = ProcessGroup.BackendType.CUSTOM

            if not extended_api:
                backend_class = creator_fn(backend_prefix_store, group_rank, group_size, timeout)
            else:
                dist_backend_opts = _DistributedBackendOptions()
                dist_backend_opts.store = backend_prefix_store
                dist_backend_opts.group_rank = group_rank
                dist_backend_opts.group_size = group_size
                dist_backend_opts.timeout = timeout
                dist_backend_opts.group_id = group_name
                dist_backend_opts.global_ranks_in_group = global_ranks_in_group

                backend_class = creator_fn(dist_backend_opts, pg_options)

        # Set sequence numbers for gloo and nccl backends.
        if backend_str == Backend.GLOO:
            assert isinstance(backend_class, ProcessGroupGloo)
            backend_class._set_sequence_number_for_group()
        elif backend_str == Backend.NCCL:
            assert isinstance(backend_class, ProcessGroupNCCL)
            backend_class._set_sequence_number_for_group()

        # If the type is a subclass of ProcessGroup then return this process group immediately
        # TODO: This defaults to the old behavior for PythonProcessGroups which overwrites the
        # ProcessGroup instance
        if issubclass(type(backend_class), ProcessGroup):
            pg = backend_class  # type: ignore[assignment]
            break

        # Process group wrapper initialization for supported PGs when TORCH_DISTRIBUTED_DEBUG is set
        if backend_str in [Backend.GLOO, Backend.NCCL, Backend.UCC]:
            # In debug mode and if GLOO is available, wrap in a wrapper PG that
            # enables enhanced collective checking for debuggability.
            if get_debug_level() == DebugLevel.DETAIL:
                if not _GLOO_AVAILABLE:
                    logger.info(
                        """TORCH_DISTRIBUTED_DEBUG was set to DETAIL, but

                                GLOO is not available. Build with Gloo to

                                create a wrapper process group in debug mode

                                to aid collective desynchronization debugging."""
                    )
                else:
                    backend_class = _create_process_group_wrapper(
                        wrapped_pg=backend_class,
                        store_prefix=group_name,
                        store=backend_prefix_store,
                        rank=group_rank,
                        world_size=group_size,
                        timeout=timeout,
                    )

        # register only a single backend when all get_device_backend_map values are the same
        if len(set(backend_config.get_device_backend_map().values())) == 1:
            for device in backend_config.get_device_backend_map().keys():
                pg._register_backend(torch.device(device), backend_type, backend_class)

            # break out of outer loop to not create any more backends
            break

        pg._register_backend(torch.device(device), backend_type, backend_class)

    if device_id and pg._get_backend(device_id).supports_splitting:
        eager_backend = pg._get_backend(device_id)
        eager_backend.eager_connect_single_device(device_id)

    # update global state
    assert group_name is not None
    _world.pg_map[pg] = (backend, prefix_store)
    _world.pg_names[pg] = group_name
    pg._set_group_name(group_name)
    _register_process_group(group_name, pg)

    _world.pg_backend_config[pg] = str(backend_config)
    # "" is the default tag for user PGs
    if pg_tag in [None, ""]:
        pg_tag = f"ptd:{group_name}"
        _world.tags_to_pg.setdefault("", []).append(pg)
    else:
        pg_tag = f"user:{pg_tag}"

    _world.tags_to_pg.setdefault(pg_tag, []).append(pg)
    _world.pg_to_tag[pg] = pg_tag
    return pg, prefix_store

def destroy_process_group(group: Optional[ProcessGroup] = None):
    """

    Destroy a given process group, and deinitialize the distributed package.



    Args:

        group (ProcessGroup, optional): The process group to be destroyed, if

                                        group.WORLD is given, all process

                                        groups including the default one will

                                        be destroyed.

    """
    global _world

    if group == GroupMember.NON_GROUP_MEMBER:
        return

    if group is None:
        pg = GroupMember.WORLD
    else:
        pg = group

    assert pg is not None
    if _world.pg_map.get(pg, None) is None:
        raise ValueError("Invalid process group specified")

    # When users register Python onCompletion hooks, those hooks will run on a
    # different thread than the main thread. Today, the ProcessGroup dtor does
    # wait for that thread. However, the dtor might finish after the Python
    # Interpreter exits. After that grabbing the GIL for the Python hook will crash.
    # We can either revive the interpreter when running hooks or keep the main one
    # alive until all works and hooks are done. The current implementation does the
    # latter. Therefore, we explicitly call _wait_for_pending_works() here to wait
    # for the pending hooks to finish.
    if pg.name().lower() == "nccl" and pg._has_hooks():
        pg._wait_for_pending_works()

    if group is None or group == GroupMember.WORLD:
        if _abort_in_destroy_pg():
            # shutdown all backends in the order of pg names. shutting down in order because
            # ncclCommAbort() was a 'collective' call in some versions of NCCL.
            for pg_to_shutdown in sorted(_world.pg_names, key=lambda x: _world.pg_names[x], reverse=True):
                _shutdown_backend(pg_to_shutdown)

        _update_default_pg(None)
        _world.pg_map.clear()
        _world.pg_names.clear()
        _world.pg_group_ranks.clear()
        _world.pg_backend_config.clear()
        _world.pg_to_tag.clear()
        _world.tags_to_pg.clear()
        _world.pg_coalesce_state.clear()
        _world.pg_default_device.clear()
        _unregister_all_process_groups()

        # when process group doesn't have an explicit name (only WORLD (default)
        # process group can have an explicit name), we use global _world.group_count
        # to generate the name. We need to reset the counter on destruction to
        # allow consistent value to be generated when we re-create process
        # groups after some trainers recover from failure
        #
        # We only reset this when WORLD is being destroyed because if this
        # process group is in good state, we aren't dealing with failures.
        _world.group_count = 0
    else:
        if _abort_in_destroy_pg():
            _shutdown_backend(pg)
        del _world.pg_map[pg]
        del _world.pg_names[pg]
        del _world.pg_group_ranks[pg]
        del _world.pg_backend_config[pg]
        if pg in _world.pg_default_device:
            del _world.pg_default_device[pg]
        if pg in _world.pg_coalesce_state.keys():
            warnings.warn(
                "Some coalesced collectives haven't been launched when "
                "ProcessGroup is destroyed. They will be cleaned."
            )
            del _world.pg_coalesce_state[pg]

        tag = _world.pg_to_tag.get(pg)
        del _world.pg_to_tag[pg]
        if tag is not None:
            try:
                _world.tags_to_pg[tag].remove(pg)
                if tag.startswith("ptd:"):
                    _world.tags_to_pg[""].remove(pg)
            except Exception:
                pass
        _unregister_process_group(pg.group_name)


def get_rank(group: Optional[ProcessGroup] = None) -> int:
    """

    Return the rank of the current process in the provided ``group``, default otherwise.



    Rank is a unique identifier assigned to each process within a distributed

    process group. They are always consecutive integers ranging from 0 to

    ``world_size``.



    Args:

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.



    Returns:

        The rank of the process group

        -1, if not part of the group



    """
    if _rank_not_in_group(group):
        return -1

    default_pg = _get_default_group()
    if group is None or group is GroupMember.WORLD:
        return default_pg.rank()

    return get_group_rank(group, default_pg.rank())


def get_world_size(group: Optional[ProcessGroup] = None) -> int:
    """

    Return the number of processes in the current process group.



    Args:

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.



    Returns:

        The world size of the process group

        -1, if not part of the group



    """
    if _rank_not_in_group(group):
        return -1

    return _get_group_size(group)


def isend(tensor: torch.Tensor, dst: int, group: Optional[ProcessGroup] = None, tag: int = 0) -> Optional[Work]:
    """

    Send a tensor asynchronously.



    .. warning::

        Modifying ``tensor`` before the request completes causes undefined

        behavior.



    .. warning::

        ``tag`` is not supported with the NCCL backend.



    Args:

        tensor (Tensor): Tensor to send.

        dst (int): Destination rank on global process group (regardless of ``group`` argument)

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        tag (int, optional): Tag to match send with remote recv



    Returns:

        A distributed request object.

        None, if not part of the group



    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("isend")
        return None

    if tensor.is_complex():
        tensor = torch.view_as_real(tensor)

    if group is None or group is GroupMember.WORLD:
        pg = _get_default_group()
    else:
        pg = group
        dst = get_group_rank(pg, dst)

    return pg.send([tensor], dst, tag)

def irecv(tensor: torch.Tensor, src: Optional[int] = None, group: Optional[ProcessGroup] = None, tag: int = 0) -> Optional[Work]:
    """

    Receives a tensor asynchronously.



    .. warning::

        ``tag`` is not supported with the NCCL backend.



    Args:

        tensor (Tensor): Tensor to fill with received data.

        src (int, optional): Source rank on global process group (regardless of ``group`` argument).

            Will receive from any process if unspecified.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        tag (int, optional): Tag to match recv with remote send



    Returns:

        A distributed request object.

        None, if not part of the group



    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("irecv")
        return None

    if tensor.is_complex():
        tensor = torch.view_as_real(tensor)

    if group is None or group is GroupMember.WORLD:
        pg = _get_default_group()
    else:
        pg = group

    if src is None:
        return pg.recv_anysource([tensor], tag)
    else:
        if pg is GroupMember.WORLD:
            return pg.recv([tensor], src, tag)
        else:
            group_src_rank = get_group_rank(pg, src)
            return pg.recv([tensor], group_src_rank, tag)

@_exception_logger
def send(tensor: torch.Tensor, dst: int, group: Optional[ProcessGroup] = None, tag: int = 0) -> None:
    """

    Send a tensor synchronously.



    Args:

        tensor (Tensor): Tensor to send.

        dst (int): Destination rank on global process group (regardless of ``group`` argument).

            Destination rank should not be the same as the rank of the current process.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        tag (int, optional): Tag to match send with remote recv



    """
    if get_rank() == dst:
        raise ValueError(
            "Invalid destination rank: destination rank should not be the same as "
            "the rank of the current process."
        )

    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("send")
        return None

    if tensor.is_complex():
        tensor = torch.view_as_real(tensor)

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        default_pg.send([tensor], dst, tag).wait()
    else:
        group_dst_rank = get_group_rank(group, dst)
        group.send([tensor], group_dst_rank, tag).wait()

@_exception_logger
def recv(tensor: torch.Tensor, src: Optional[int] = None, group: Optional[ProcessGroup] = None, tag: int = 0) -> int:
    """

    Receives a tensor synchronously.



    Args:

        tensor (Tensor): Tensor to fill with received data.

        src (int, optional): Source rank on global process group (regardless of ``group`` argument).

            Will receive from any process if unspecified.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        tag (int, optional): Tag to match recv with remote send



    Returns:

        Sender rank

        -1, if not part of the group



    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("recv")
        return -1

    if tensor.is_complex():
        tensor = torch.view_as_real(tensor)

    if group is None:
        pg = _get_default_group()
    else:
        pg = group

    if src is None:
        work = pg.recv_anysource([tensor], tag)
        work.wait()
        src_rank = work._source_rank()
        if group is None or group is GroupMember.WORLD:
            return src_rank
        else:
            return get_global_rank(pg, src_rank)
    else:
        if group is None or group is GroupMember.WORLD:
            pg.recv([tensor], src, tag).wait()
        else:
            group_src_rank = get_group_rank(pg, src)
            pg.recv([tensor], group_src_rank, tag).wait()
        return src


class _IllegalWork(Work):
    def __getattribute__(self, name):
        if name in ["is_success", "exception", "wait", "source_rank", "_source_rank", "result", "synchronize"]:
            raise ValueError(f"Illegal to call {name} on IllegalWork object")


class _CoalescingManager:
    def __init__(self):
        self.works: List[Work] = []

    def append(self, work: Work):
        if work:
            self.works.append(work)

    def wait(self):
        for work in self.works:
            work.wait()


@contextlib.contextmanager
def _coalescing_manager(

    group: Optional[ProcessGroup] = None,

    device: Optional[torch.device] = None,

    async_ops: Optional[bool] = False,

):
    """

    Context manager used to coalesce collectives or P2P operations when possible.



    Args:

        group (`ProcessGroup`, optional): The process group to work on. If None,

            the default process group will be used.

        device (`torch.device`, optional): Default is None, set to a device if

            there isn't a `**_coalesced` implementation by the backend.

        async_ops (`bool`, optional): whether the coalesced ops are async ops.



    Examples:

        >>> # xdoctest: +SKIP("no rank")

        >>> # Synchronous ops

        >>> with _coalescing_manager():

        >>>     for i in range(num_colls):

        >>>         dist.all_reduce(tensors[i])

        >>> # Asynchronous ops

        >>> with _coalescing_manager(async_ops=True) as cm:

        >>>     for i in range(num_colls):

        >>>         dist.all_reduce(tensors[i])

        >>> cm.wait()



    .. warning::

       :func:`_coalescing_manager` currently do not support coalescing

       all-reduces with different reduce operators, e.g.  `ReduceOp.SUM` mixed

       with `ReduceOp.PRODUCT`.

    """
    group = group or _get_default_group()
    op_list = _world.pg_coalesce_state.setdefault(group, [])
    if op_list:
        raise ValueError("ProcessGroup has non-empty op list at the start of coalescing")
    if device:
        group._start_coalescing(device)
    cm = _CoalescingManager()
    yield cm
    op_list = _world.pg_coalesce_state.pop(group)
    if op_list:
        # Collectives supporting "Fast Path" coalescing are captured.
        # See implementation in corresponding collective APIs.
        # Currently supported:
        # - coalesced `all_reduce`
        # - coalesced `all_gather_into_tensor`
        # - coalesced `reduce_scatter_tensor`
        op0 = op_list[0].op
        if op0 == all_reduce:
            tensors = []
            for op in op_list:
                tensors.append(op.tensor)
            all_reduce_opts = AllreduceCoalescedOptions()
            all_reduce_opts.reduceOp = not_none(op_list[0].redop)
            work = group.allreduce_coalesced(tensors, all_reduce_opts)
        elif op0 == all_gather_into_tensor:
            inputs = []
            outputs = []
            for op in op_list:
                inputs.append(op.tensor)
                outputs.append(not_none(op.dst_tensor))
            work = group.allgather_into_tensor_coalesced(outputs, inputs)
        elif op0 == reduce_scatter_tensor:
            inputs = []
            outputs = []
            for op in op_list:
                inputs.append(op.tensor)
                outputs.append(not_none(op.dst_tensor))
            reduce_opts = ReduceScatterOptions()
            reduce_opts.reduceOp = not_none(op_list[0].redop)
            work = group.reduce_scatter_tensor_coalesced(outputs, inputs, reduce_opts)
        else:
            raise AssertionError(
                f"Coalescing manager does not support fast-path coalescing of {op0}, "
                f"yet {op0} is still recorded in op list. This is an internal error of c10d."
            )

    if device:
        # Old style of letting each coll inside the context manager to call into C++ counterpart via python binding
        work = group._end_coalescing(device)

    if async_ops:
        cm.append(work)  # type: ignore[possibly-undefined]
    else:
        work.wait()  # type: ignore[possibly-undefined]


def batch_isend_irecv(p2p_op_list):
    """

    Send or Receive a batch of tensors asynchronously and return a list of requests.



    Process each of the operations in ``p2p_op_list`` and return the corresponding

    requests. NCCL, Gloo, and UCC backend are currently supported.



    Args:

        p2p_op_list: A list of point-to-point operations(type of each operator is

            ``torch.distributed.P2POp``). The order of the isend/irecv in the list

            matters and it needs to match with corresponding isend/irecv on the

            remote end.



    Returns:

        A list of distributed request objects returned by calling the corresponding

        op in the op_list.



    Examples:

        >>> # xdoctest: +SKIP("no rank")

        >>> send_tensor = torch.arange(2, dtype=torch.float32) + 2 * rank

        >>> recv_tensor = torch.randn(2, dtype=torch.float32)

        >>> send_op = dist.P2POp(dist.isend, send_tensor, (rank + 1)%world_size)

        >>> recv_op = dist.P2POp(dist.irecv, recv_tensor, (rank - 1 + world_size)%world_size)

        >>> reqs = batch_isend_irecv([send_op, recv_op])

        >>> for req in reqs:

        >>>     req.wait()

        >>> recv_tensor

        tensor([2, 3])     # Rank 0

        tensor([0, 1])     # Rank 1



    .. note:: Note that when this API is used with the NCCL PG backend, users must set

        the current GPU device with `torch.cuda.set_device`, otherwise it will

        lead to unexpected hang issues.



        In addition, if this API is the first collective call in the ``group``

        passed to ``dist.P2POp``, all ranks of the ``group`` must participate in

        this API call; otherwise, the behavior is undefined. If this API call is

        not the first collective call in the ``group``, batched P2P operations

        involving only a subset of ranks of the ``group`` are allowed.

    """
    _check_p2p_op_list(p2p_op_list)
    group = p2p_op_list[0].group
    device = p2p_op_list[0].tensor.device
    if device.type == "cuda":
        # NCCL style coalescing
        with _coalescing_manager(group, device, async_ops=True) as cm:
            for p2p_op in p2p_op_list:
                p2p_op.op(p2p_op.tensor, p2p_op.peer, p2p_op.group, p2p_op.tag)
        return cm.works
    else:
        # Backward support for Gloo
        reqs = []
        for p2p_op in p2p_op_list:
            work = p2p_op.op(p2p_op.tensor, p2p_op.peer, p2p_op.group, p2p_op.tag)
            if work:
                reqs.append(work)
        return reqs


@_exception_logger
def broadcast(tensor, src, group=None, async_op=False):
    """

    Broadcasts the tensor to the whole group.



    ``tensor`` must have the same number of elements in all processes

    participating in the collective.



    Args:

        tensor (Tensor): Data to be sent if ``src`` is the rank of current

            process, and tensor to be used to save received data otherwise.

        src (int): Source rank on global process group (regardless of ``group`` argument).

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("broadcast")
        return

    opts = BroadcastOptions()
    opts.rootRank = src
    opts.rootTensor = 0
    opts.asyncOp = async_op

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.broadcast([tensor], opts)
    else:
        group_src_rank = get_group_rank(group, src)
        opts.rootRank = group_src_rank
        work = group.broadcast([tensor], opts)
    if async_op:
        return work
    else:
        work.wait()

@_exception_logger
def all_reduce(tensor, op=ReduceOp.SUM, group=None, async_op=False):
    """

    Reduces the tensor data across all machines in a way that all get the final result.



    After the call ``tensor`` is going to be bitwise identical in all processes.



    Complex tensors are supported.



    Args:

        tensor (Tensor): Input and output of the collective. The function

            operates in-place.

        op (optional): One of the values from

            ``torch.distributed.ReduceOp``

            enum.  Specifies an operation used for element-wise reductions.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    Examples:

        >>> # xdoctest: +SKIP("no rank")

        >>> # All tensors below are of torch.int64 type.

        >>> # We have 2 process groups, 2 ranks.

        >>> device = torch.device(f'cuda:{rank}')

        >>> tensor = torch.arange(2, dtype=torch.int64, device=device) + 1 + 2 * rank

        >>> tensor

        tensor([1, 2], device='cuda:0') # Rank 0

        tensor([3, 4], device='cuda:1') # Rank 1

        >>> dist.all_reduce(tensor, op=ReduceOp.SUM)

        >>> tensor

        tensor([4, 6], device='cuda:0') # Rank 0

        tensor([4, 6], device='cuda:1') # Rank 1



        >>> # All tensors below are of torch.cfloat type.

        >>> # We have 2 process groups, 2 ranks.

        >>> tensor = torch.tensor([1+1j, 2+2j], dtype=torch.cfloat, device=device) + 2 * rank * (1+1j)

        >>> tensor

        tensor([1.+1.j, 2.+2.j], device='cuda:0') # Rank 0

        tensor([3.+3.j, 4.+4.j], device='cuda:1') # Rank 1

        >>> dist.all_reduce(tensor, op=ReduceOp.SUM)

        >>> tensor

        tensor([4.+4.j, 6.+6.j], device='cuda:0') # Rank 0

        tensor([4.+4.j, 6.+6.j], device='cuda:1') # Rank 1



    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("all_reduce")
        return

    if tensor.is_complex():
        if not supports_complex(op):
            raise ValueError(f"all_reduce does not support {op} on complex tensors")
        tensor = torch.view_as_real(tensor)

    opts = AllreduceOptions()
    opts.reduceOp = op
    if group is None:
        group = _get_default_group()

    if group in _world.pg_coalesce_state.keys():
        # We are in coalescing context, do not issue single operation, just append a collective representation
        coll = _CollOp(all_reduce, tensor, None, op, None)
        _world.pg_coalesce_state[group].append(coll)
        if async_op:
            return _IllegalWork()
        else:
            return None

    work = group.allreduce([tensor], opts)

    if async_op:
        return work
    else:
        work.wait()

@_exception_logger
def all_reduce_coalesced(tensors, op=ReduceOp.SUM, group=None, async_op=False):
    """

    WARNING: at this time individual shape checking is not implemented across nodes.



    For example, if the rank 0 node passes [torch.rand(4), torch.rand(2)] and the

    rank 1 node passes [torch.rand(2), torch.rand(2), torch.rand(2)], the allreduce

    operation will proceed without complaint and return erroneous outputs. This lack

    of shape checking results in significant performance improvements but users of this

    function should take extra care to ensure that each node passes in tensors whose

    shapes match across nodes.



    Reduces each tensor in tensors (residing on the same device) across all machines

    in such a way that all get the final result.



    After the call each tensor in tensors is going to bitwise identical

    in all processes.



    Complex tensors are supported.



    Args:

        tensors (Union[List[Tensor], Tensor]): Input and output of the collective.

            The function operates in-place.

        op (Optional[ReduceOp]): One of the values from

            ``torch.distributed.ReduceOp`` enum. Specifies an operation used for

            element-wise reductions.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (Optional[bool]): Whether this op should be an async op.



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group.



    """
    warnings.warn(
        "torch.distributed.all_reduce_coalesced will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#collective-functions"
    )
    if isinstance(tensors, torch.Tensor):
        tensors = [tensors]
    _check_tensor_list(tensors, "tensor")
    _ensure_all_tensors_same_dtype(tensors)
    if _rank_not_in_group(group):
        _warn_not_in_group("all_reduce_coalesced")
        return

    if any(t.is_complex() for t in tensors) and not supports_complex(op):
        raise ValueError(f"all_reduce does not support {op} on complex tensors")

    tensors = [t if not t.is_complex() else torch.view_as_real(t) for t in tensors]

    opts = AllreduceCoalescedOptions()
    opts.reduceOp = op
    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allreduce_coalesced(tensors, opts)
    else:
        work = group.allreduce_coalesced(tensors, opts)

    if async_op:
        return work.get_future()
    else:
        work.wait()

@_exception_logger
def reduce(tensor, dst, op=ReduceOp.SUM, group=None, async_op=False):
    """

    Reduces the tensor data across all machines.



    Only the process with rank ``dst`` is going to receive the final result.



    Args:

        tensor (Tensor): Input and output of the collective. The function

            operates in-place.

        dst (int): Destination rank on global process group (regardless of ``group`` argument)

        op (optional): One of the values from

            ``torch.distributed.ReduceOp``

            enum.  Specifies an operation used for element-wise reductions.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    """
    _check_single_tensor(tensor, "tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("reduce")
        return

    opts = ReduceOptions()
    opts.reduceOp = op
    opts.rootRank = dst

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.reduce([tensor], opts)
    else:
        group_dst_rank = get_group_rank(group, dst)
        opts.rootRank = group_dst_rank
        work = group.reduce([tensor], opts)

    if async_op:
        return work
    else:
        work.wait()

def _object_to_tensor(obj, device, group):
    f = io.BytesIO()
    _pickler(f).dump(obj)
    byte_storage = torch.ByteStorage._from_buffer(f.getvalue())  # type: ignore[attr-defined]
    # Do not replace `torch.ByteTensor` or `torch.LongTensor` with torch.tensor and specifying dtype.
    # Otherwise, it will casue 100X slowdown.
    # See: https://github.com/pytorch/pytorch/issues/65696
    byte_tensor = torch.ByteTensor(byte_storage).to(device)
    if get_debug_level() == DebugLevel.DETAIL and is_nccl_available():
        backend = get_backend(group)
        if backend == Backend.NCCL:
            hash = torch._C._distributed_c10d._hash_tensors([byte_tensor])
            logger.warning(f"_object_to_tensor size: {byte_tensor.numel()} hash value: {hash}")  # noqa: G004
    local_size = torch.LongTensor([byte_tensor.numel()]).to(device)
    return byte_tensor, local_size


def _tensor_to_object(tensor, tensor_size, group):
    if get_debug_level() == DebugLevel.DETAIL and is_nccl_available():
        backend = get_backend(group)
        if backend == Backend.NCCL:
            hash = torch._C._distributed_c10d._hash_tensors([tensor])
            logger.warning(f"_tensor_to_object size: {tensor.numel()} hash value: {hash}")  # noqa: G004
    tensor = tensor.cpu()
    buf = tensor.numpy().tobytes()[:tensor_size]
    return _unpickler(io.BytesIO(buf)).load()


@_exception_logger
def all_gather_object(object_list, obj, group=None):
    """

    Gathers picklable objects from the whole group into a list.



    Similar to :func:`all_gather`, but Python objects can be passed in.

    Note that the object must be picklable in order to be gathered.



    Args:

        object_list (list[Any]): Output list. It should be correctly sized as the

            size of the group for this collective and will contain the output.

        obj (Any): Pickable Python object to be broadcast from current process.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used. Default is ``None``.



    Returns:

        None. If the calling rank is part of this group, the output of the

        collective will be populated into the input ``object_list``. If the

        calling rank is not part of the group, the passed in ``object_list`` will

        be unmodified.



    .. note:: Note that this API differs slightly from the :func:`all_gather`

        collective since it does not provide an ``async_op`` handle and thus

        will be a blocking call.



    .. note:: For NCCL-based processed groups, internal tensor representations

        of objects must be moved to the GPU device before communication takes

        place. In this case, the device used is given by

        ``torch.cuda.current_device()`` and it is the user's responsiblity to

        ensure that this is set so that each rank has an individual GPU, via

        ``torch.cuda.set_device()``.



    .. warning::

        :func:`all_gather_object` uses ``pickle`` module implicitly, which is

        known to be insecure. It is possible to construct malicious pickle data

        which will execute arbitrary code during unpickling. Only call this

        function with data you trust.



    .. warning::

        Calling :func:`all_gather_object` with GPU tensors is not well supported

        and inefficient as it incurs GPU -> CPU transfer since tensors would be

        pickled. Please consider using :func:`all_gather` instead.



    Example::

        >>> # xdoctest: +SKIP("need process group init")

        >>> # Note: Process group initialization omitted on each rank.

        >>> import torch.distributed as dist

        >>> # Assumes world_size of 3.

        >>> gather_objects = ["foo", 12, {1: 2}] # any picklable object

        >>> output = [None for _ in gather_objects]

        >>> dist.all_gather_object(output, gather_objects[dist.get_rank()])

        >>> output

        ['foo', 12, {1: 2}]

    """
    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather_object")
        return

    current_device = _get_pg_default_device(group)
    input_tensor, local_size = _object_to_tensor(obj, current_device, group)

    # Gather all local sizes. This is so that we can find the max size, and index
    # until the correct size when deserializing the tensors.
    group_size = get_world_size(group=group)
    object_sizes_tensor = torch.zeros(
        group_size, dtype=torch.long, device=current_device
    )
    object_size_list = [
        object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
    ]
    # Allgather tensor sizes
    all_gather(object_size_list, local_size, group=group)
    max_object_size = int(max(object_size_list).item())  # type: ignore[type-var]
    # Resize tensor to max size across all ranks.
    input_tensor.resize_(max_object_size)
    coalesced_output_tensor = torch.empty(
        max_object_size * group_size, dtype=torch.uint8, device=current_device
    )
    # Output tensors are nonoverlapping views of coalesced_output_tensor
    output_tensors = [
        coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)]
        for i in range(group_size)
    ]
    all_gather(output_tensors, input_tensor, group=group)
    # Deserialize outputs back to object.
    for i, tensor in enumerate(output_tensors):
        tensor = tensor.type(torch.uint8)
        tensor_size = object_size_list[i]
        object_list[i] = _tensor_to_object(tensor, tensor_size, group)


@_exception_logger
def gather_object(obj, object_gather_list=None, dst=0, group=None):
    """

    Gathers picklable objects from the whole group in a single process.



    Similar to :func:`gather`, but Python objects can be passed in. Note that the

    object must be picklable in order to be gathered.



    Args:

        obj (Any): Input object. Must be picklable.

        object_gather_list (list[Any]): Output list. On the ``dst`` rank, it

            should be correctly sized as the size of the group for this

            collective and will contain the output. Must be ``None`` on non-dst

            ranks. (default is ``None``)

        dst (int, optional): Destination rank on global process group (regardless of ``group`` argument). (default is 0)

        group: (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used. Default is ``None``.



    Returns:

        None. On the ``dst`` rank, ``object_gather_list`` will contain the

        output of the collective.



    .. note:: Note that this API differs slightly from the gather collective

        since it does not provide an async_op handle and thus will be a blocking

        call.



    .. note:: For NCCL-based processed groups, internal tensor representations

        of objects must be moved to the GPU device before communication takes

        place. In this case, the device used is given by

        ``torch.cuda.current_device()`` and it is the user's responsiblity to

        ensure that this is set so that each rank has an individual GPU, via

        ``torch.cuda.set_device()``.



    .. warning::

        :func:`gather_object` uses ``pickle`` module implicitly, which is

        known to be insecure. It is possible to construct malicious pickle data

        which will execute arbitrary code during unpickling. Only call this

        function with data you trust.



    .. warning::

        Calling :func:`gather_object` with GPU tensors is not well supported

        and inefficient as it incurs GPU -> CPU transfer since tensors would be

        pickled. Please consider using :func:`gather` instead.



    Example::

        >>> # xdoctest: +SKIP("need process group init")

        >>> # Note: Process group initialization omitted on each rank.

        >>> import torch.distributed as dist

        >>> # Assumes world_size of 3.

        >>> gather_objects = ["foo", 12, {1: 2}] # any picklable object

        >>> output = [None for _ in gather_objects]

        >>> dist.gather_object(

        ...     gather_objects[dist.get_rank()],

        ...     output if dist.get_rank() == 0 else None,

        ...     dst=0

        ... )

        >>> # On rank 0

        >>> output

        ['foo', 12, {1: 2}]

    """
    if _rank_not_in_group(group):
        _warn_not_in_group("gather_object")
        return

    # Ensure object_gather_list is specified appropriately.
    my_rank = get_rank()
    _validate_output_list_for_rank(my_rank, dst, object_gather_list)
    current_device = _get_pg_default_device(group)
    input_tensor, local_size = _object_to_tensor(obj, current_device, group)

    # Gather all local sizes. This is so that we can find the max size, and index
    # until the correct size when deserializing the tensors.
    group_size = get_world_size(group=group)
    object_sizes_tensor = torch.zeros(
        group_size, dtype=torch.long, device=current_device
    )
    object_size_list = [
        object_sizes_tensor[i].unsqueeze(dim=0) for i in range(group_size)
    ]
    # Allgather tensor sizes. An all-gather is needed here despite this being a
    # gather, since each rank needs to broadcast a tensor of the same (maximal)
    # size.
    all_gather(object_size_list, local_size, group=group)
    max_object_size = int(max(object_size_list).item())  # type: ignore[type-var]
    # Resize tensor to max size across all ranks.
    input_tensor.resize_(max_object_size)
    # Avoid populating output tensors if the result won't be gathered on this rank.
    if my_rank == dst:
        coalesced_output_tensor = torch.empty(
            max_object_size * group_size, dtype=torch.uint8, device=current_device
        )
        # Output tensors are nonoverlapping views of coalesced_output_tensor
        output_tensors = [
            coalesced_output_tensor[max_object_size * i : max_object_size * (i + 1)]
            for i in range(group_size)
        ]
    # All ranks call gather with equal-sized tensors.
    gather(
        input_tensor,
        gather_list=output_tensors if my_rank == dst else None,  # type: ignore[possibly-undefined]
        dst=dst,
        group=group,
    )
    if my_rank != dst:
        return
    for i, tensor in enumerate(output_tensors):
        tensor = tensor.type(torch.uint8)
        tensor_size = object_size_list[i]
        object_gather_list[i] = _tensor_to_object(tensor, tensor_size, group)


@_exception_logger
def broadcast_object_list(object_list, src=0, group=None, device=None):
    """

    Broadcasts picklable objects in ``object_list`` to the whole group.



    Similar to :func:`broadcast`, but Python objects can be passed in.

    Note that all objects in ``object_list`` must be picklable in order to be

    broadcasted.



    Args:

        object_list (List[Any]): List of input objects to broadcast.

            Each object must be picklable. Only objects on the ``src`` rank will

            be broadcast, but each rank must provide lists of equal sizes.

        src (int): Source rank from which to broadcast ``object_list``.

            Source rank is based on global process group (regardless of ``group`` argument)

        group: (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used. Default is ``None``.

        device (``torch.device``, optional): If not None, the objects are

            serialized and converted to tensors which are moved to the

            ``device`` before broadcasting. Default is ``None``.



    Returns:

        ``None``. If rank is part of the group, ``object_list`` will contain the

        broadcasted objects from ``src`` rank.



    .. note:: For NCCL-based process groups, internal tensor representations

        of objects must be moved to the GPU device before communication takes

        place. In this case, the device used is given by

        ``torch.cuda.current_device()`` and it is the user's responsibility to

        ensure that this is set so that each rank has an individual GPU, via

        ``torch.cuda.set_device()``.



    .. note:: Note that this API differs slightly from the :func:`all_gather`

        collective since it does not provide an ``async_op`` handle and thus

        will be a blocking call.



    .. warning::

        :func:`broadcast_object_list` uses ``pickle`` module implicitly, which

        is known to be insecure. It is possible to construct malicious pickle

        data which will execute arbitrary code during unpickling. Only call this

        function with data you trust.



    .. warning::

        Calling :func:`broadcast_object_list` with GPU tensors is not well supported

        and inefficient as it incurs GPU -> CPU transfer since tensors would be

        pickled. Please consider using :func:`broadcast` instead.



    Example::

        >>> # xdoctest: +SKIP("need process group init")

        >>> # Note: Process group initialization omitted on each rank.

        >>> import torch.distributed as dist

        >>> if dist.get_rank() == 0:

        >>>     # Assumes world_size of 3.

        >>>     objects = ["foo", 12, {1: 2}] # any picklable object

        >>> else:

        >>>     objects = [None, None, None]

        >>> # Assumes backend is not NCCL

        >>> device = torch.device("cpu")

        >>> dist.broadcast_object_list(objects, src=0, device=device)

        >>> objects

        ['foo', 12, {1: 2}]

    """
    if _rank_not_in_group(group):
        _warn_not_in_group("broadcast_object_list")
        return

    # Current device selection.
    # To preserve backwards compatibility, ``device`` is default to ``None``
    # in which case we run current logic of device selection, i.e.
    # ``current_device`` is CUDA if backend is NCCL otherwise CPU device. In the
    # case it is not ``None`` we move the size and object tensors to be
    # broadcasted to this device.
    current_device = device or _get_pg_default_device(group)
    my_rank = get_rank()
    # Serialize object_list elements to tensors on src rank.
    if my_rank == src:
        tensor_list, size_list = zip(*[_object_to_tensor(obj, current_device, group) for obj in object_list])
        object_sizes_tensor = torch.cat(size_list)
    else:
        object_sizes_tensor = torch.empty(len(object_list), dtype=torch.long, device=current_device)

    # Broadcast object sizes
    broadcast(object_sizes_tensor, src=src, group=group)

    # Concatenate and broadcast serialized object tensors
    # Note: torch.cat will do an extra memory copy to the current device, if the tensor_list
    # has only one element, we can skip the copy.
    if my_rank == src:
        if len(tensor_list) == 1:  # type: ignore[possibly-undefined]
            object_tensor = tensor_list[0]
        else:
            object_tensor = torch.cat(tensor_list)
    else:
        object_tensor = torch.empty(  # type: ignore[call-overload]
            torch.sum(object_sizes_tensor).item(),  # type: ignore[arg-type]
            dtype=torch.uint8,
            device=current_device
        )

    broadcast(object_tensor, src=src, group=group)
    # Deserialize objects using their stored sizes.
    offset = 0
    if my_rank != src:
        for i, obj_size in enumerate(object_sizes_tensor):
            obj_view = object_tensor[offset : offset + obj_size]
            obj_view = obj_view.type(torch.uint8)
            offset += obj_size
            object_list[i] = _tensor_to_object(obj_view, obj_size, group)


@_exception_logger
def scatter_object_list(

    scatter_object_output_list, scatter_object_input_list, src=0, group=None

):
    """

    Scatters picklable objects in ``scatter_object_input_list`` to the whole group.



    Similar to :func:`scatter`, but Python objects can be passed in. On

    each rank, the scattered object will be stored as the first element of

    ``scatter_object_output_list``. Note that all objects in

    ``scatter_object_input_list`` must be picklable in order to be scattered.



    Args:

        scatter_object_output_list (List[Any]): Non-empty list whose first

            element will store the object scattered to this rank.

        scatter_object_input_list (List[Any]): List of input objects to scatter.

            Each object must be picklable. Only objects on the ``src`` rank will

            be scattered, and the argument can be ``None`` for non-src ranks.

        src (int): Source rank from which to scatter ``scatter_object_input_list``.

            Source rank is based on global process group (regardless of ``group`` argument).

        group: (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used. Default is ``None``.



    Returns:

        ``None``. If rank is part of the group, ``scatter_object_output_list``

        will have its first element set to the scattered object for this rank.



    .. note:: Note that this API differs slightly from the scatter collective

        since it does not provide an ``async_op`` handle and thus will be a

        blocking call.



    .. warning::

        :func:`scatter_object_list` uses ``pickle`` module implicitly, which

        is known to be insecure. It is possible to construct malicious pickle

        data which will execute arbitrary code during unpickling. Only call this

        function with data you trust.



    .. warning::

        Calling :func:`scatter_object_list` with GPU tensors is not well supported

        and inefficient as it incurs GPU -> CPU transfer since tensors would be

        pickled. Please consider using :func:`scatter` instead.



    Example::

        >>> # xdoctest: +SKIP("need process group init")

        >>> # Note: Process group initialization omitted on each rank.

        >>> import torch.distributed as dist

        >>> if dist.get_rank() == 0:

        >>>     # Assumes world_size of 3.

        >>>     objects = ["foo", 12, {1: 2}] # any picklable object

        >>> else:

        >>>     # Can be any list on non-src ranks, elements are not used.

        >>>     objects = [None, None, None]

        >>> output_list = [None]

        >>> dist.scatter_object_list(output_list, objects, src=0)

        >>> # Rank i gets objects[i]. For example, on rank 2:

        >>> output_list

        [{1: 2}]

    """
    if _rank_not_in_group(group):
        _warn_not_in_group("scatter_object_list")
        return

    if (
        not isinstance(scatter_object_output_list, list)
        or len(scatter_object_output_list) < 1
    ):
        raise ValueError(
            "Expected argument scatter_object_output_list to be a list of size at least 1."
        )

    my_rank = get_rank()
    pg_device = _get_pg_default_device(group)
    if my_rank == src:
        tensor_list, tensor_sizes = zip(
            *[_object_to_tensor(obj, pg_device, group) for obj in scatter_object_input_list]
        )
        tensor_list, tensor_sizes = list(tensor_list), list(tensor_sizes)

    # Src rank broadcasts the maximum tensor size. This is because all ranks are
    # expected to call into scatter() with equal-sized tensors.
    if my_rank == src:
        max_tensor_size = max(tensor_sizes)  # type: ignore[possibly-undefined]
        for tensor in tensor_list:  # type: ignore[possibly-undefined]
            tensor.resize_(max_tensor_size)
    else:
        max_tensor_size = torch.tensor([0], dtype=torch.long, device=pg_device)
    broadcast(max_tensor_size, src=src, group=group)

    # Scatter actual serialized objects
    output_tensor = torch.empty(max_tensor_size.item(), dtype=torch.uint8, device=pg_device)
    scatter(
        output_tensor,
        scatter_list=None if my_rank != src else tensor_list,  # type: ignore[possibly-undefined]
        src=src,
        group=group,
    )

    # Scatter per-object sizes to trim tensors when deserializing back to object
    obj_tensor_size = torch.tensor([0], dtype=torch.long, device=pg_device)
    scatter(
        obj_tensor_size,
        scatter_list=None if my_rank != src else tensor_sizes,  # type: ignore[possibly-undefined]
        src=src,
        group=group,
    )

    # Deserialize back to object
    scatter_object_output_list[0] = _tensor_to_object(output_tensor, obj_tensor_size, group)


@_exception_logger
def all_gather(tensor_list, tensor, group=None, async_op=False):
    """

    Gathers tensors from the whole group in a list.



    Complex tensors are supported.



    Args:

        tensor_list (list[Tensor]): Output list. It should contain

            correctly-sized tensors to be used for output of the collective.

        tensor (Tensor): Tensor to be broadcast from current process.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    Examples:

        >>> # xdoctest: +SKIP("need process group init")

        >>> # All tensors below are of torch.int64 dtype.

        >>> # We have 2 process groups, 2 ranks.

        >>> device = torch.device(f'cuda:{rank}')

        >>> tensor_list = [torch.zeros(2, dtype=torch.int64, device=device) for _ in range(2)]

        >>> tensor_list

        [tensor([0, 0], device='cuda:0'), tensor([0, 0], device='cuda:0')] # Rank 0

        [tensor([0, 0], device='cuda:0'), tensor([0, 0], device='cuda:1')] # Rank 1

        >>> tensor = torch.arange(2, dtype=torch.int64, device=device) + 1 + 2 * rank

        >>> tensor

        tensor([1, 2], device='cuda:0') # Rank 0

        tensor([3, 4], device='cuda:1') # Rank 1

        >>> dist.all_gather(tensor_list, tensor)

        >>> tensor_list

        [tensor([1, 2], device='cuda:0'), tensor([3, 4], device='cuda:0')] # Rank 0

        [tensor([1, 2], device='cuda:1'), tensor([3, 4], device='cuda:1')] # Rank 1



        >>> # All tensors below are of torch.cfloat dtype.

        >>> # We have 2 process groups, 2 ranks.

        >>> tensor_list = [torch.zeros(2, dtype=torch.cfloat, device=device) for _ in range(2)]

        >>> tensor_list

        [tensor([0.+0.j, 0.+0.j], device='cuda:0'), tensor([0.+0.j, 0.+0.j], device='cuda:0')] # Rank 0

        [tensor([0.+0.j, 0.+0.j], device='cuda:1'), tensor([0.+0.j, 0.+0.j], device='cuda:1')] # Rank 1

        >>> tensor = torch.tensor([1+1j, 2+2j], dtype=torch.cfloat, device=device) + 2 * rank * (1+1j)

        >>> tensor

        tensor([1.+1.j, 2.+2.j], device='cuda:0') # Rank 0

        tensor([3.+3.j, 4.+4.j], device='cuda:1') # Rank 1

        >>> dist.all_gather(tensor_list, tensor)

        >>> tensor_list

        [tensor([1.+1.j, 2.+2.j], device='cuda:0'), tensor([3.+3.j, 4.+4.j], device='cuda:0')] # Rank 0

        [tensor([1.+1.j, 2.+2.j], device='cuda:1'), tensor([3.+3.j, 4.+4.j], device='cuda:1')] # Rank 1



    """
    _check_tensor_list(tensor_list, "tensor_list")
    _check_single_tensor(tensor, "tensor")
    _ensure_all_tensors_same_dtype(tensor_list, tensor)
    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather")
        return

    tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in tensor_list
    ]
    tensor = tensor if not tensor.is_complex() else torch.view_as_real(tensor)

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allgather([tensor_list], [tensor])
    else:
        work = group.allgather([tensor_list], [tensor])

    if async_op:
        return work
    else:
        work.wait()


@_exception_logger
def all_gather_into_tensor(output_tensor, input_tensor, group=None, async_op=False):
    """

    Gather tensors from all ranks and put them in a single output tensor.



    Args:

        output_tensor (Tensor): Output tensor to accommodate tensor elements

            from all ranks. It must be correctly sized to have one of the

            following forms:

            (i) a concatenation of all the input tensors along the primary

            dimension; for definition of "concatenation", see ``torch.cat()``;

            (ii) a stack of all the input tensors along the primary dimension;

            for definition of "stack", see ``torch.stack()``.

            Examples below may better explain the supported output forms.

        input_tensor (Tensor): Tensor to be gathered from current rank.

            Different from the ``all_gather`` API, the input tensors in this

            API must have the same size across all ranks.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    Examples:

        >>> # xdoctest: +SKIP("need process group init")

        >>> # All tensors below are of torch.int64 dtype and on CUDA devices.

        >>> # We have two ranks.

        >>> device = torch.device(f'cuda:{rank}')

        >>> tensor_in = torch.arange(2, dtype=torch.int64, device=device) + 1 + 2 * rank

        >>> tensor_in

        tensor([1, 2], device='cuda:0') # Rank 0

        tensor([3, 4], device='cuda:1') # Rank 1

        >>> # Output in concatenation form

        >>> tensor_out = torch.zeros(world_size * 2, dtype=torch.int64, device=device)

        >>> dist.all_gather_into_tensor(tensor_out, tensor_in)

        >>> tensor_out

        tensor([1, 2, 3, 4], device='cuda:0') # Rank 0

        tensor([1, 2, 3, 4], device='cuda:1') # Rank 1

        >>> # Output in stack form

        >>> tensor_out2 = torch.zeros(world_size, 2, dtype=torch.int64, device=device)

        >>> dist.all_gather_into_tensor(tensor_out2, tensor_in)

        >>> tensor_out2

        tensor([[1, 2],

                [3, 4]], device='cuda:0') # Rank 0

        tensor([[1, 2],

                [3, 4]], device='cuda:1') # Rank 1



    .. warning::

        The Gloo backend does not support this API.



    """
    _check_single_tensor(input_tensor, "input_tensor")
    _check_single_tensor(output_tensor, "output_tensor")
    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather_into_tensor")
        return

    output_tensor = (
        output_tensor
        if not output_tensor.is_complex()
        else torch.view_as_real(output_tensor)
    )
    input_tensor = (
        input_tensor
        if not input_tensor.is_complex()
        else torch.view_as_real(input_tensor)
    )

    opts = AllgatherOptions()
    opts.asyncOp = async_op

    group = group or _get_default_group()

    if group in _world.pg_coalesce_state.keys():
        # We are in coalescing context, do not issue single operation, just append a collective representation
        coll = _CollOp(all_gather_into_tensor, input_tensor, output_tensor)
        _world.pg_coalesce_state[group].append(coll)
        if async_op:
            return _IllegalWork()
        else:
            return None

    work = group._allgather_base(output_tensor, input_tensor, opts)

    if async_op:
        return work
    else:
        work.wait()


@_exception_logger
def _all_gather_base(output_tensor, input_tensor, group=None, async_op=False):
    """

    Single tensor all gather. Gathers a single tensor from all ranks, and puts them in a single output tensor.



    Args:

        output_tensor (Tensor): Output tensor. It should contain

            correctly-sized tensors to be used for output of the collective.

        input_tensor (Tensor): Tensor to be broadcast from current process.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    .. warning::

        `_all_gather_base` is a private function. Users should use

        `all_gather_into_tensor` instead.



    """
    warnings.warn(
        "torch.distributed._all_gather_base is a private function and will be "
        "deprecated. Please use torch.distributed.all_gather_into_tensor "
        "instead."
    )
    return all_gather_into_tensor(output_tensor, input_tensor, group, async_op)


@_exception_logger
def all_gather_coalesced(

    output_tensor_lists, input_tensor_list, group=None, async_op=False

):
    """

    Gathers input tensors from the whole group in a list in a coalesced manner.



    Complex tensors are supported.



    Args:

        output_tensor_lists (list[list[Tensor]]): Output list. It should contain

            correctly-sized tensors to be used for output of the collective.

        input_tensor_list (list[Tensor]): Tensors to be broadcast from

            current process. At least one tensor has to be non empty.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op.



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    Example:

        we have 2 process groups, 2 ranks.

        rank 0 passes:

            input_tensor_list = [[[1, 1], [1, 1]], [2], [3, 3]]

            output_tensor_lists =

               [[[[-1, -1], [-1, -1]], [-1], [-1, -1]],

                [[[-1, -1], [-1, -1]], [-1], [-1, -1]]]

        rank 1 passes:

            input_tensor_list = [[[3, 3], [3, 3]], [5], [1, 1]]

            output_tensor_lists =

               [[[[-1, -1], [-1, -1]], [-1], [-1, -1]],

                [[[-1, -1], [-1, -1]], [-1], [-1, -1]]]

        both rank 0 and 1 get:

            output_tensor_lists =

               [[[1, 1], [1, 1]], [2], [3, 3]],

                [[3, 3], [3, 3]], [5], [1, 1]]].



    WARNING: at this time individual shape checking is not implemented across nodes.

    For example, if the rank 0 node passes [torch.rand(4), torch.rand(2)] and the

    rank 1 node passes [torch.rand(2), torch.rand(2), torch.rand(2)], the

    all_gather_coalesced operation will proceed without complaint and return

    erroneous outputs. This lack of shape checking results in significant

    performance improvements but users of this function should take extra care

    to ensure that each node passes in tensors whose shapes match across nodes.

    """
    warnings.warn(
        "torch.distributed.all_gather_coalesced will be deprecated. If you must "
        "use it, please revisit our documentation later at "
        "https://pytorch.org/docs/master/distributed.html#collective-functions"
    )
    # We only check basic compatibility with C++ params here, C++ code will
    # do shape and type checking.
    if _rank_not_in_group(group):
        _warn_not_in_group("all_gather_coalesced")
        return
    _check_tensor_list(input_tensor_list, "input_tensor_list")
    _ensure_all_tensors_same_dtype(input_tensor_list)
    if not isinstance(output_tensor_lists, list):
        raise TypeError(
            "Invalid function argument: output_tensor_lists should be a list"
        )
    for output_tensor_list in output_tensor_lists:
        _check_tensor_list(output_tensor_list, "output_tensor_lists")
        _ensure_all_tensors_same_dtype(output_tensor_list)

    output_tensor_lists = [
        [t if not t.is_complex() else torch.view_as_real(t) for t in l]
        for l in output_tensor_lists
    ]
    input_tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in input_tensor_list
    ]

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.allgather_coalesced(output_tensor_lists, input_tensor_list)
    else:
        work = group.allgather_coalesced(output_tensor_lists, input_tensor_list)

    if async_op:
        return work.get_future()
    else:
        work.wait()


def _validate_output_list_for_rank(my_rank, dst, gather_list):
    if dst == my_rank:
        if not gather_list:
            raise ValueError(
                "Argument ``gather_list`` must be specified on destination rank."
            )
    elif gather_list:
        raise ValueError(
            "Argument ``gather_list`` must NOT be specified "
            "on non-destination ranks."
        )


@_exception_logger
def gather(tensor, gather_list=None, dst=0, group=None, async_op=False):
    """

    Gathers a list of tensors in a single process.



    Args:

        tensor (Tensor): Input tensor.

        gather_list (list[Tensor], optional): List of appropriately-sized

            tensors to use for gathered data (default is None, must be specified

            on the destination rank)

        dst (int, optional): Destination rank on global process group (regardless of ``group`` argument). (default is 0)

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    """
    _check_single_tensor(tensor, "tensor")

    # Parameter ``gather_list`` may be left unspecified on non-dst ranks.
    if gather_list:
        _check_tensor_list(gather_list, "gather_list")
    else:
        gather_list = []
    _ensure_all_tensors_same_dtype(tensor, gather_list)

    if _rank_not_in_group(group):
        _warn_not_in_group("gather")
        return

    my_rank = get_rank()
    _validate_output_list_for_rank(my_rank, dst, gather_list)
    output_tensors = [gather_list] if dst == my_rank else []
    input_tensors = [tensor]

    opts = GatherOptions()
    opts.rootRank = dst

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.gather(output_tensors, input_tensors, opts)
    else:
        group_dst_rank = get_group_rank(group, dst)
        opts.rootRank = group_dst_rank
        work = group.gather(output_tensors, input_tensors, opts)

    if async_op:
        return work
    else:
        work.wait()


@_exception_logger
def scatter(tensor, scatter_list=None, src=0, group=None, async_op=False):
    """

    Scatters a list of tensors to all processes in a group.



    Each process will receive exactly one tensor and store its data in the

    ``tensor`` argument.



    Complex tensors are supported.



    Args:

        tensor (Tensor): Output tensor.

        scatter_list (list[Tensor]): List of tensors to scatter (default is

            None, must be specified on the source rank)

        src (int): Source rank on global process group (regardless of ``group`` argument).

            Default is 0

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    .. note:: Note that all Tensors in scatter_list must have the same size.



    Example::

        >>> # xdoctest: +SKIP("need process group init")

        >>> # Note: Process group initialization omitted on each rank.

        >>> import torch.distributed as dist

        >>> tensor_size = 2

        >>> t_ones = torch.ones(tensor_size)

        >>> t_fives = torch.ones(tensor_size) * 5

        >>> output_tensor = torch.zeros(tensor_size)

        >>> if dist.get_rank() == 0:

        >>>     # Assumes world_size of 2.

        >>>     # Only tensors, all of which must be the same size.

        >>>     scatter_list = [t_ones, t_fives]

        >>> else:

        >>>     scatter_list = None

        >>> dist.scatter(output_tensor, scatter_list, src=0)

        >>> # Rank i gets scatter_list[i]. For example, on rank 1:

        >>> output_tensor

        tensor([5., 5.])



    """
    _check_single_tensor(tensor, "tensor")

    # Parameter ``scatter_list`` may be left unspecified on non-src ranks.
    if scatter_list:
        _check_tensor_list(scatter_list, "scatter_list")
    else:
        scatter_list = []
    _ensure_all_tensors_same_dtype(tensor, scatter_list)

    if _rank_not_in_group(group):
        _warn_not_in_group("scatter")
        return
    scatter_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in scatter_list
    ]
    tensor = tensor if not tensor.is_complex() else torch.view_as_real(tensor)

    my_rank = get_rank()
    if src == my_rank:
        if not scatter_list:
            raise ValueError(
                "Argument ``scatter_list`` must be specified on source rank."
            )
        input_tensors = [scatter_list]
        output_tensors = [tensor]
    else:
        if scatter_list:
            raise ValueError(
                "Argument ``scatter_list`` must NOT be specified "
                "on non-source ranks."
            )
        input_tensors = []
        output_tensors = [tensor]

    opts = ScatterOptions()
    opts.rootRank = src
    opts.asyncOp = async_op

    if group is None or group is GroupMember.WORLD:
        default_pg = _get_default_group()
        work = default_pg.scatter(output_tensors, input_tensors, opts)
    else:
        group_src_rank = get_group_rank(group, src)
        opts.rootRank = group_src_rank
        work = group.scatter(output_tensors, input_tensors, opts)

    if async_op:
        return work
    else:
        work.wait()


@_exception_logger
def reduce_scatter(output, input_list, op=ReduceOp.SUM, group=None, async_op=False):
    """

    Reduces, then scatters a list of tensors to all processes in a group.



    Args:

        output (Tensor): Output tensor.

        input_list (list[Tensor]): List of tensors to reduce and scatter.

        op (optional): One of the values from

            ``torch.distributed.ReduceOp``

            enum.  Specifies an operation used for element-wise reductions.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op.



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group.



    """
    _check_single_tensor(output, "output")
    _check_tensor_list(input_list, "input_list")
    _ensure_all_tensors_same_dtype(output, input_list)
    if _rank_not_in_group(group):
        _warn_not_in_group("reduce_scatter")
        return

    opts = ReduceScatterOptions()
    opts.reduceOp = op

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.reduce_scatter([output], [input_list], opts)
    else:
        work = group.reduce_scatter([output], [input_list], opts)

    if async_op:
        return work
    else:
        work.wait()


@_exception_logger
def reduce_scatter_tensor(output, input, op=ReduceOp.SUM, group=None, async_op=False):
    """

    Reduces, then scatters a tensor to all ranks in a group.



    Args:

        output (Tensor): Output tensor. It should have the same size across all

            ranks.

        input (Tensor): Input tensor to be reduced and scattered. Its size

            should be output tensor size times the world size. The input tensor

            can have one of the following shapes:

            (i) a concatenation of the output tensors along the primary

            dimension, or

            (ii) a stack of the output tensors along the primary dimension.

            For definition of "concatenation", see ``torch.cat()``.

            For definition of "stack", see ``torch.stack()``.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op.



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group.



    Examples:

        >>> # xdoctest: +SKIP("need process group init")

        >>> # All tensors below are of torch.int64 dtype and on CUDA devices.

        >>> # We have two ranks.

        >>> device = torch.device(f'cuda:{rank}')

        >>> tensor_out = torch.zeros(2, dtype=torch.int64, device=device)

        >>> # Input in concatenation form

        >>> tensor_in = torch.arange(world_size * 2, dtype=torch.int64, device=device)

        >>> tensor_in

        tensor([0, 1, 2, 3], device='cuda:0') # Rank 0

        tensor([0, 1, 2, 3], device='cuda:1') # Rank 1

        >>> dist.reduce_scatter_tensor(tensor_out, tensor_in)

        >>> tensor_out

        tensor([0, 2], device='cuda:0') # Rank 0

        tensor([4, 6], device='cuda:1') # Rank 1

        >>> # Input in stack form

        >>> tensor_in = torch.reshape(tensor_in, (world_size, 2))

        >>> tensor_in

        tensor([[0, 1],

                [2, 3]], device='cuda:0') # Rank 0

        tensor([[0, 1],

                [2, 3]], device='cuda:1') # Rank 1

        >>> dist.reduce_scatter_tensor(tensor_out, tensor_in)

        >>> tensor_out

        tensor([0, 2], device='cuda:0') # Rank 0

        tensor([4, 6], device='cuda:1') # Rank 1



    .. warning::

        The Gloo backend does not support this API.



    """
    _check_single_tensor(output, "output")
    _check_single_tensor(input, "input")

    if _rank_not_in_group(group):
        _warn_not_in_group("reduce_scatter_tensor")
        return

    opts = ReduceScatterOptions()
    opts.reduceOp = op
    opts.asyncOp = async_op

    group = group or _get_default_group()

    # Check if we are in coalescing context
    # If we are, do not issue single operation, just append a collective representation
    if group in _world.pg_coalesce_state.keys():
        coll = _CollOp(reduce_scatter_tensor, input, output, op, None)
        _world.pg_coalesce_state[group].append(coll)
        if async_op:
            return _IllegalWork()
        else:
            return None

    work = group._reduce_scatter_base(output, input, opts)

    if async_op:
        return work
    else:
        work.wait()


def _reduce_scatter_base(output, input, op=ReduceOp.SUM, group=None, async_op=False):
    """

    Reduces, then scatters a flattened tensor to all processes in a group.



    Args:

        output (Tensor): Output tensor.

        input (Tensor): Input tensor that is of size output tensor size times world size

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op.



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group.



    .. warning::

        `_reduce_scatter_base` is a private function. Users should use

        `reduce_scatter_tensor` instead.



    """
    warnings.warn(
        "torch.distributed._reduce_scatter_base is a private function and will "
        "be deprecated. Please use torch.distributed.reduce_scatter_tensor "
        "instead."
    )
    return reduce_scatter_tensor(output, input, op, group, async_op)


@_exception_logger
def all_to_all_single(

    output,

    input,

    output_split_sizes=None,

    input_split_sizes=None,

    group=None,

    async_op=False,

):
    """

    Split input tensor and then scatter the split list to all processes in a group.



    Later the received tensors are concatenated from all the processes in the group

    and returned as a single output tensor.



    Complex tensors are supported.



    Args:

        output (Tensor): Gathered concatenated output tensor.

        input (Tensor): Input tensor to scatter.

        output_split_sizes: (list[Int], optional): Output split sizes for dim 0

            if specified None or empty, dim 0 of ``output`` tensor must divide

            equally by ``world_size``.

        input_split_sizes: (list[Int], optional): Input split sizes for dim 0

            if specified None or empty, dim 0 of ``input`` tensor must divide

            equally by ``world_size``.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op.



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group.



    .. warning::

        `all_to_all_single` is experimental and subject to change.



    Examples:

        >>> # xdoctest: +SKIP("Undefined rank")

        >>> input = torch.arange(4) + rank * 4

        >>> input

        tensor([0, 1, 2, 3])     # Rank 0

        tensor([4, 5, 6, 7])     # Rank 1

        tensor([8, 9, 10, 11])   # Rank 2

        tensor([12, 13, 14, 15]) # Rank 3

        >>> output = torch.empty([4], dtype=torch.int64)

        >>> dist.all_to_all_single(output, input)

        >>> output

        tensor([0, 4, 8, 12])    # Rank 0

        tensor([1, 5, 9, 13])    # Rank 1

        tensor([2, 6, 10, 14])   # Rank 2

        tensor([3, 7, 11, 15])   # Rank 3



        >>> # Essentially, it is similar to following operation:

        >>> scatter_list = list(input.chunk(world_size))

        >>> gather_list  = list(output.chunk(world_size))

        >>> for i in range(world_size):

        >>>     dist.scatter(gather_list[i], scatter_list if i == rank else [], src = i)



        >>> # Another example with uneven split

        >>> input

        tensor([0, 1, 2, 3, 4, 5])                                       # Rank 0

        tensor([10, 11, 12, 13, 14, 15, 16, 17, 18])                     # Rank 1

        tensor([20, 21, 22, 23, 24])                                     # Rank 2

        tensor([30, 31, 32, 33, 34, 35, 36])                             # Rank 3

        >>> input_splits

        [2, 2, 1, 1]                                                     # Rank 0

        [3, 2, 2, 2]                                                     # Rank 1

        [2, 1, 1, 1]                                                     # Rank 2

        [2, 2, 2, 1]                                                     # Rank 3

        >>> output_splits

        [2, 3, 2, 2]                                                     # Rank 0

        [2, 2, 1, 2]                                                     # Rank 1

        [1, 2, 1, 2]                                                     # Rank 2

        [1, 2, 1, 1]                                                     # Rank 3

        >>> output = ...

        >>> dist.all_to_all_single(output, input, output_splits, input_splits)

        >>> output

        tensor([ 0,  1, 10, 11, 12, 20, 21, 30, 31])                     # Rank 0

        tensor([ 2,  3, 13, 14, 22, 32, 33])                             # Rank 1

        tensor([ 4, 15, 16, 23, 34, 35])                                 # Rank 2

        tensor([ 5, 17, 18, 24, 36])                                     # Rank 3





        >>> # Another example with tensors of torch.cfloat type.

        >>> input = torch.tensor([1+1j, 2+2j, 3+3j, 4+4j], dtype=torch.cfloat) + 4 * rank * (1+1j)

        >>> input

        tensor([1+1j, 2+2j, 3+3j, 4+4j])                                # Rank 0

        tensor([5+5j, 6+6j, 7+7j, 8+8j])                                # Rank 1

        tensor([9+9j, 10+10j, 11+11j, 12+12j])                          # Rank 2

        tensor([13+13j, 14+14j, 15+15j, 16+16j])                        # Rank 3

        >>> output = torch.empty([4], dtype=torch.int64)

        >>> dist.all_to_all_single(output, input)

        >>> output

        tensor([1+1j, 5+5j, 9+9j, 13+13j])                              # Rank 0

        tensor([2+2j, 6+6j, 10+10j, 14+14j])                            # Rank 1

        tensor([3+3j, 7+7j, 11+11j, 15+15j])                            # Rank 2

        tensor([4+4j, 8+8j, 12+12j, 16+16j])                            # Rank 3

    """
    if _rank_not_in_group(group):
        _warn_not_in_group("all_to_all_single")
        return

    opts = AllToAllOptions()
    _check_single_tensor(output, "output")
    _check_single_tensor(input, "input")
    _ensure_all_tensors_same_dtype(output, input)

    if input.is_complex():
        input = torch.view_as_real(input)
    if output.is_complex():
        output = torch.view_as_real(output)

    output_split_sizes = [] if output_split_sizes is None else output_split_sizes
    input_split_sizes = [] if input_split_sizes is None else input_split_sizes

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.alltoall_base(
            output, input, output_split_sizes, input_split_sizes, opts
        )
    else:
        work = group.alltoall_base(
            output, input, output_split_sizes, input_split_sizes, opts
        )

    if async_op:
        return work
    else:
        work.wait()


@_exception_logger
def all_to_all(output_tensor_list, input_tensor_list, group=None, async_op=False):
    """

    Scatters list of input tensors to all processes in a group and return gathered list of tensors in output list.



    Complex tensors are supported.



    Args:

        output_tensor_list (list[Tensor]): List of tensors to be gathered one

            per rank.

        input_tensor_list (list[Tensor]): List of tensors to scatter one per rank.

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op.



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group.



    .. warning::

        `all_to_all` is experimental and subject to change.



    Examples:

        >>> # xdoctest: +SKIP("Undefined rank")

        >>> input = torch.arange(4) + rank * 4

        >>> input = list(input.chunk(4))

        >>> input

        [tensor([0]), tensor([1]), tensor([2]), tensor([3])]     # Rank 0

        [tensor([4]), tensor([5]), tensor([6]), tensor([7])]     # Rank 1

        [tensor([8]), tensor([9]), tensor([10]), tensor([11])]   # Rank 2

        [tensor([12]), tensor([13]), tensor([14]), tensor([15])] # Rank 3

        >>> output = list(torch.empty([4], dtype=torch.int64).chunk(4))

        >>> dist.all_to_all(output, input)

        >>> output

        [tensor([0]), tensor([4]), tensor([8]), tensor([12])]    # Rank 0

        [tensor([1]), tensor([5]), tensor([9]), tensor([13])]    # Rank 1

        [tensor([2]), tensor([6]), tensor([10]), tensor([14])]   # Rank 2

        [tensor([3]), tensor([7]), tensor([11]), tensor([15])]   # Rank 3



        >>> # Essentially, it is similar to following operation:

        >>> scatter_list = input

        >>> gather_list  = output

        >>> for i in range(world_size):

        >>>     dist.scatter(gather_list[i], scatter_list if i == rank else [], src=i)



        >>> input

        tensor([0, 1, 2, 3, 4, 5])                                       # Rank 0

        tensor([10, 11, 12, 13, 14, 15, 16, 17, 18])                     # Rank 1

        tensor([20, 21, 22, 23, 24])                                     # Rank 2

        tensor([30, 31, 32, 33, 34, 35, 36])                             # Rank 3

        >>> input_splits

        [2, 2, 1, 1]                                                     # Rank 0

        [3, 2, 2, 2]                                                     # Rank 1

        [2, 1, 1, 1]                                                     # Rank 2

        [2, 2, 2, 1]                                                     # Rank 3

        >>> output_splits

        [2, 3, 2, 2]                                                     # Rank 0

        [2, 2, 1, 2]                                                     # Rank 1

        [1, 2, 1, 2]                                                     # Rank 2

        [1, 2, 1, 1]                                                     # Rank 3

        >>> input = list(input.split(input_splits))

        >>> input

        [tensor([0, 1]), tensor([2, 3]), tensor([4]), tensor([5])]                   # Rank 0

        [tensor([10, 11, 12]), tensor([13, 14]), tensor([15, 16]), tensor([17, 18])] # Rank 1

        [tensor([20, 21]), tensor([22]), tensor([23]), tensor([24])]                 # Rank 2

        [tensor([30, 31]), tensor([32, 33]), tensor([34, 35]), tensor([36])]         # Rank 3

        >>> output = ...

        >>> dist.all_to_all(output, input)

        >>> output

        [tensor([0, 1]), tensor([10, 11, 12]), tensor([20, 21]), tensor([30, 31])]   # Rank 0

        [tensor([2, 3]), tensor([13, 14]), tensor([22]), tensor([32, 33])]           # Rank 1

        [tensor([4]), tensor([15, 16]), tensor([23]), tensor([34, 35])]              # Rank 2

        [tensor([5]), tensor([17, 18]), tensor([24]), tensor([36])]                  # Rank 3



        >>> # Another example with tensors of torch.cfloat type.

        >>> input = torch.tensor([1+1j, 2+2j, 3+3j, 4+4j], dtype=torch.cfloat) + 4 * rank * (1+1j)

        >>> input = list(input.chunk(4))

        >>> input

        [tensor([1+1j]), tensor([2+2j]), tensor([3+3j]), tensor([4+4j])]            # Rank 0

        [tensor([5+5j]), tensor([6+6j]), tensor([7+7j]), tensor([8+8j])]            # Rank 1

        [tensor([9+9j]), tensor([10+10j]), tensor([11+11j]), tensor([12+12j])]      # Rank 2

        [tensor([13+13j]), tensor([14+14j]), tensor([15+15j]), tensor([16+16j])]    # Rank 3

        >>> output = list(torch.empty([4], dtype=torch.int64).chunk(4))

        >>> dist.all_to_all(output, input)

        >>> output

        [tensor([1+1j]), tensor([5+5j]), tensor([9+9j]), tensor([13+13j])]          # Rank 0

        [tensor([2+2j]), tensor([6+6j]), tensor([10+10j]), tensor([14+14j])]        # Rank 1

        [tensor([3+3j]), tensor([7+7j]), tensor([11+11j]), tensor([15+15j])]        # Rank 2

        [tensor([4+4j]), tensor([8+8j]), tensor([12+12j]), tensor([16+16j])]        # Rank 3



    """
    if _rank_not_in_group(group):
        _warn_not_in_group("all_to_all")
        return

    opts = AllToAllOptions()
    _check_tensor_list(output_tensor_list, "output_tensor_list")
    _check_tensor_list(input_tensor_list, "input_tensor_list")
    _ensure_all_tensors_same_dtype(output_tensor_list, input_tensor_list)

    input_tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in input_tensor_list
    ]
    output_tensor_list = [
        t if not t.is_complex() else torch.view_as_real(t) for t in output_tensor_list
    ]

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.alltoall(output_tensor_list, input_tensor_list, opts)
    else:
        work = group.alltoall(output_tensor_list, input_tensor_list, opts)

    if async_op:
        return work
    else:
        work.wait()

@_exception_logger
def barrier(group=GroupMember.WORLD, async_op=False, device_ids=None):
    """

    Synchronize all processes.



    This collective blocks processes until the whole group enters this function,

    if async_op is False, or if async work handle is called on wait().



    Args:

        group (ProcessGroup, optional): The process group to work on. If None,

            the default process group will be used.

        async_op (bool, optional): Whether this op should be an async op

        device_ids ([int], optional): List of device/GPU ids.



    Returns:

        Async work handle, if async_op is set to True.

        None, if not async_op or if not part of the group



    .. note:: `ProcessGroupNCCL` now relies on stream synchronization instead of

              device synchronization to block the CPU. Thus, please do not assume that

              `barrier()` would perform a device synchronization.

    """
    if _rank_not_in_group(group):
        _warn_not_in_group("barrier")
        return

    opts = BarrierOptions()
    opts.device = _get_pg_default_device(group)
    if device_ids is not None:
        if isinstance(device_ids, list):
            opts.device_ids = device_ids
        else:
            raise TypeError(
                "Invalid function argument: device_ids type should be List[int]"
            )

    if group is None:
        default_pg = _get_default_group()
        work = default_pg.barrier(opts=opts)
    else:
        work = group.barrier(opts=opts)

    if async_op:
        return work
    else:
        work.wait()


def monitored_barrier(group=GroupMember.WORLD, timeout=None, wait_all_ranks=False):
    """

    Synchronize processes similar to ``torch.distributed.barrier``, but consider a configurable timeout.



    It is able to report ranks that did not pass this barrier within the provided timeout.

    Specifically, for non-zero ranks, will block until a send/recv is processed from rank 0.

    Rank 0 will block until all send /recv from other ranks are processed, and will report

    failures for ranks that failed to respond in time. Note that if one rank does not reach the

    monitored_barrier (for example due to a hang), all other ranks would fail in monitored_barrier.



    This collective will block all processes/ranks in the group, until the

    whole group exits the function successfully, making it useful for debugging

    and synchronizing. However, it can have a performance impact and should only

    be used for debugging or scenarios that require full synchronization points

    on the host-side. For debugging purposes, this barrier can be inserted

    before the application's collective calls to check if any ranks are

    desynchronized.



    .. note:: Note that this collective is only supported with the GLOO backend.



    Args:

        group (ProcessGroup, optional): The process group to work on. If

            ``None``, the default process group will be used.

        timeout (datetime.timedelta, optional): Timeout for monitored_barrier.

            If ``None``, the default process group timeout will be used.

        wait_all_ranks (bool, optional): Whether to collect all failed ranks or

            not. By default, this is ``False`` and ``monitored_barrier`` on rank 0

            will throw on the first failed rank it encounters in order to fail

            fast. By setting ``wait_all_ranks=True`` ``monitored_barrier`` will

            collect all failed ranks and throw an error containing information

            about all failed ranks.



    Returns:

        ``None``.



    Example::

        >>> # xdoctest: +SKIP("need process group init")

        >>> # Note: Process group initialization omitted on each rank.

        >>> import torch.distributed as dist

        >>> if dist.get_rank() != 1:

        >>>     dist.monitored_barrier() # Raises exception indicating that

        >>> # rank 1 did not call into monitored_barrier.

        >>> # Example with wait_all_ranks=True

        >>> if dist.get_rank() == 0:

        >>>     dist.monitored_barrier(wait_all_ranks=True) # Raises exception

        >>> # indicating that ranks 1, 2, ... world_size - 1 did not call into

        >>> # monitored_barrier.

    """
    # Need to call rank not in group before using the group, otherwise
    # "Invalid process group" error is raised.
    if _rank_not_in_group(group):
        _warn_not_in_group("monitored_barrier")
        return

    if get_backend(group) != Backend.GLOO:
        raise ValueError("monitored_barrier is only implemented for GLOO backend.")

    if timeout is None:
        timeout = _get_default_timeout(get_backend(group))
    elif isinstance(timeout, float):
        # TODO(whc) aparently some existing test case for monitored_barrier passes in a timeout in float format?
        warnings.warn(
            "Please specify timeout arg as a timedelta. "
            f"Converting current value of {timeout} assuming it represents seconds",
        )
        timeout = timedelta(seconds=timeout)

    _check_valid_timeout(timeout)

    group_to_use = _get_default_group() if group is None else group
    return group_to_use.monitored_barrier(timeout, wait_all_ranks=wait_all_ranks)


def _create_process_group_wrapper(

    wrapped_pg: torch._C._distributed_c10d.Backend,

    store_prefix: str,

    store: Store,

    rank: int,

    world_size: int,

    timeout: timedelta = default_pg_timeout,

):
    # (whc) this appears to be just for the gloo backend? if so, `default_pg_timeout` is appropriate...

    # Create a separate prefix store for the helper process group.
    prefix = f"{PG_WRAPPER_STORE_PREFIX}:{store_prefix}"
    store = PrefixStore(prefix, store)
    helper_pg = ProcessGroupGloo(store, rank, world_size, timeout=timeout)
    # Wrap the underlying pg with ProcessGroupWrapper.
    wrapped_pg = _ProcessGroupWrapper(wrapped_pg, helper_pg)
    return wrapped_pg

# helper function for deterministically hashing a list of ranks
def _hash_ranks(ranks: List[int]):
    return hashlib.sha1(bytes("_".join(map(str, ranks)), "utf-8")).hexdigest()

# Takes a list of ranks and computes an integer color
def _process_group_color(ranks: List[int]) -> int:
    # Convert our hash to an int, but avoid negative numbers by shifting a bit.
    return int(_hash_ranks(ranks), 16) % (sys.maxsize >> 1)

def _process_group_name(ranks, use_hashed_name):
    global _world
    if use_hashed_name:
        pg_name = _hash_ranks(ranks)
        while pg_name in _world.pg_names.values():
            pg_name = hashlib.sha1(bytes(pg_name + "_", "utf-8")).hexdigest()
    else:
        pg_name = str(_world.group_count)
        _world.group_count += 1
    return pg_name

def _get_backend_from_str(backend: Optional[str] = None) -> Backend:
    # Default to the same backend as the global process group
    #  if backend is not specified.
    if not backend:
        backend = get_backend(_get_default_group())
    return Backend(backend)


@_time_logger
def new_group(ranks=None, timeout=None, backend=None, pg_options=None, use_local_synchronization=False):
    """

    Create a new distributed group.



    This function requires that all processes in the main group (i.e. all

    processes that are part of the distributed job) enter this function, even

    if they are not going to be members of the group. Additionally, groups

    should be created in the same order in all processes.



    .. warning::

        Using multiple process groups with the ``NCCL`` backend concurrently

        is not safe and the user should perform explicit synchronization in

        their application to ensure only one process group is used at a time.

        This means collectives from one process group should have completed

        execution on the device (not just enqueued since CUDA execution is

        async) before collectives from another process group are enqueued.

        See `Using multiple NCCL communicators concurrently <https://docs.nvid

        ia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#using

        -multiple-nccl-communicators-concurrently>`_ for more details.



    Args:

        ranks (list[int]): List of ranks of group members. If ``None``, will be

            set to all ranks. Default is ``None``.

        timeout (timedelta, optional): see `init_process_group` for details and default value.

        backend (str or Backend, optional): The backend to use. Depending on

            build-time configurations, valid values are ``gloo`` and ``nccl``.

            By default uses the same backend as the global group. This field

            should be given as a lowercase string (e.g., ``"gloo"``), which can

            also be accessed via :class:`Backend` attributes (e.g.,

            ``Backend.GLOO``). If ``None`` is passed in, the backend

            corresponding to the default process group will be used. Default is

            ``None``.

        pg_options (ProcessGroupOptions, optional): process group options

            specifying what additional options need to be passed in during

            the construction of specific process groups. i.e. for the ``nccl``

            backend, ``is_high_priority_stream`` can be specified so that

            process group can pick up high priority cuda streams.

        use_local_synchronization (bool, optional): perform a group-local

            barrier at the end of the process group creation. This is different

            in that non-member ranks don't need to call into API and don't

            join the barrier.



    Returns:

        A handle of distributed group that can be given to collective calls or None if the rank is not part of ``ranks``.



    N.B. use_local_synchronization doesn't work with MPI.



    N.B. While use_local_synchronization=True can be significantly faster with larger

    clusters and small process groups, care must be taken since it changes cluster behavior

    as non-member ranks don't join the group barrier().



    N.B. use_local_synchronization=True can lead to deadlocks when each rank creates

    multiple overlaping process groups. To avoid that, make sure all ranks follow the

    same global creation order.

    """
    return _new_group_with_tag(ranks, timeout, backend, pg_options, None, use_local_synchronization=use_local_synchronization)

def _new_group_with_tag(

    ranks=None,

    timeout=None,

    backend=None,

    pg_options=None,

    pg_tag=None,

    use_local_synchronization=False

):
    """

    Variant of ``new_group`` that exposes tag creation.



    :: N.B. The mechanism is experimental and tied to the functional collectives effort, see

    ``torch.distributed._functional_collectives`` for reference on how to use it.

    """
    global _world

    default_pg = _get_default_group()
    default_backend, default_store = _world.pg_map[default_pg]
    global_rank = default_pg.rank()
    global_world_size = default_pg.size()


    # Default to the same backend as the global process group
    # if the backend is not specified.
    if not backend:
        backend = default_backend
    backend = Backend(backend)

    # this timeout defaulting/validation is used for all the new_groups/new_subgroups variants,
    # which may just pass their timeout value (or None)
    if timeout is None:
        timeout = _get_default_timeout(backend)
    _check_valid_timeout(timeout)

    if use_local_synchronization:
        # MPI backend doesn't have have a way for us to perform a partial sync
        if backend == Backend.MPI:
            raise ValueError("MPI backend doesn't support use_local_synchronization=True")
        if ranks is not None and get_rank() not in ranks:
            return None

    # checks the input ranks
    if ranks is not None:
        ranks = sorted(ranks)
        group_world_size = len(ranks)
        if group_world_size > global_world_size:
            raise ValueError(
                "the new group's world size should be less or "
                "equal to the world size set by "
                "init_process_group"
            )
        # check ranks' sanity
        for rank in ranks:
            if rank < 0 or rank >= global_world_size:
                raise ValueError(
                    "The new group's rank should be within "
                    "the world_size set by init_process_group"
                )
        if global_rank in ranks:
            group_rank = ranks.index(global_rank)
        else:
            group_rank = None
    else:
        ranks = list(range(global_world_size))
        group_world_size = global_world_size
        group_rank = global_rank

    group_name = _process_group_name(ranks, use_hashed_name=use_local_synchronization)

    pg, pg_store = _new_process_group_helper(
        group_world_size,
        group_rank,
        ranks,
        backend,
        default_store,
        group_name,
        pg_options=pg_options,
        timeout=timeout,
        pg_tag=pg_tag
    )

    # Create the global rank to group rank mapping
    _world.pg_group_ranks[pg] = {
        global_rank: group_rank for group_rank, global_rank in enumerate(ranks)
    }

    if _is_barrier_after_init() == 1:
        # barrier at the end to ensure that once we return from this method, all
        # process groups including global variables (if any) are updated
        # correctly on all ranks.
        # Update 04/2023: for large-scale runs, this barrier (esp. store-based
        # barrier) may be costly and/or unscalable. Also, in a lot of cases,
        # these barriers may be unnecessary, as proven by a green CI after
        # removal. An environment variable `TORCH_DIST_INIT_BARRIER` has been
        # added which enables this barrier only when set to 1.
        logger.info(
            "Performing barrier after ProcessGroup initialization since "
            "TORCH_DIST_INIT_BARRIER = 1"
        )
        if backend == Backend.MPI:
            # MPI doesn't have store.
            barrier()
        else:
            barrier_store = pg_store if use_local_synchronization else default_store
            world_size = len(ranks) if use_local_synchronization else get_world_size()
            # Use store based barrier here since barrier() used a bunch of
            # default devices and messes up NCCL internal state.
            _store_based_barrier(global_rank, barrier_store, group_name, world_size, timeout)

    return pg


def new_subgroups(

    group_size=None,

    group=None,

    timeout=None,

    backend=None,

    pg_options=None,

):
    """

    Create subgroups of equal size.



    By default, it creates intra-machine subgroups,

    where each of which contains all the ranks of a machine, based on the assumption

    that each machine has the same number of devices.



    This is a convenience API that calls ``new_group`` to generate multiple subgroups.

    It requires that all processes in the main group (i.e. all

    processes that are part of the distributed job) enter this function, even

    if they are not going to be members of the group.



    .. warning::

        If ``group_size`` is passed in, the world size must be divisible by ``group_size``.

        If no ``group_size`` is passed in, it believe that you are creating a group based

        on CUDA and determining the group size by number of CUDA devices, and if not all

        the machines have the same number of devices, the subgroup division will be

        different across nodes and can cause unexpected behaviors. Therefore, if you are

        creating a subgroup that does not depend on CUDA (such as Gloo on CPU), please

        pass in ``group_size`` correctly.



    .. warning::

        Using multiple process groups with the ``NCCL`` backend concurrently

        is not safe and the user should perform explicit synchronization in

        their application to ensure only one process group is used at a time.

        This means collectives from one process group should have completed

        execution on the device (not just enqueued since CUDA execution is

        async) before collectives from another process group are enqueued.

        See `Using multiple NCCL communicators concurrently <https://docs.nvid

        ia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#using

        -multiple-nccl-communicators-concurrently>`_ for more details.



    Args:

        group_size (int, optional): The size of each subgroup. If ``None``,

            the default subgroup size is equal to the number of devices on each machine,

            based on the assumption that each machine has exactly the same

            number of devices. Default is ``None``.

        timeout (timedelta, optional): see `init_process_group` for details and default value.

        backend (str or Backend, optional): The backend to use. Depending on

            build-time configurations, valid values are ``gloo`` and ``nccl``.

            By default uses the same backend as the global group. This field

            should be given as a lowercase string (e.g., ``"gloo"``), which can

            also be accessed via :class:`Backend` attributes (e.g.,

            ``Backend.GLOO``). If ``None`` is passed in, the backend

            corresponding to the default process group will be used. Default is

            ``None``.

        pg_options (ProcessGroupOptions, optional): process group options

            specifying what additional options need to be passed in during

            the construction of specific process groups. i.e. for the ``nccl``

            backend, ``is_high_priority_stream`` can be specified so that

            process group can pick up high priority cuda streams.



    Returns:

        The subgroup containing the current rank, and all the subgroups used for cleanup.



    Examples:

        >>> # Create intra-machine subgroups.

        >>> # xdoctest: +SKIP("need process group init")

        >>> cur_subgroup, subgroups = dist.new_subgroups()

        >>> # Allreduce within the machine.

        >>> rank = dist.get_rank()

        >>> tensor = torch.ones(1, device=rank) * rank

        >>> dist.all_reduce(tensor, group=cur_subgroup)

        >>> tensor

        tensor([8])     # Assume 8 is the number of CUDA devices per machine.

        >>> # Cleanup.

        >>> for subgroup in subgroups:

        >>>     dist.destroy_process_group(subgroup)

    """
    if group_size is None:
        if not torch.cuda.is_available():
            raise ValueError("Default group size only takes effect when CUDA is available."
                             "If your subgroup using a backend that does not depend on CUDA,"
                             "please pass in 'group_size' correctly.")
        group_size = torch.cuda.device_count()
    if group_size <= 0:
        raise ValueError(f"The arg 'group_size' ({group_size}) must be positive")

    world_size = get_world_size()
    if world_size < group_size:
        raise ValueError(f"The arg 'group_size' ({group_size}) must not exceed the world size ({world_size})")
    if world_size % group_size != 0:
        raise ValueError("The world size must be divisible by 'group_size'")

    subgroups = []
    cur_subgroup = None

    for subgroup_id in range(world_size // group_size):
        start_rank = subgroup_id * group_size
        end_rank = start_rank + group_size
        ranks_in_subgroup = list(range(start_rank, end_rank))
        subgroup = new_group(
            ranks=ranks_in_subgroup,
            timeout=timeout,
            backend=backend,
            pg_options=pg_options,
        )
        subgroups.append(subgroup)

        rank = get_rank()
        if rank in ranks_in_subgroup:
            cur_subgroup = subgroup
            logger.info(
                "Rank %s is assigned to subgroup %s",
                rank, ranks_in_subgroup
            )

    return cur_subgroup, subgroups


def new_subgroups_by_enumeration(

    ranks_per_subgroup_list,

    timeout=None,

    backend=None,

    pg_options=None,

):
    """

    Create subgroups by dividing the global world.



    The division is specified by a nested list of ranks. The subgroups cannot have

    overlap, and some ranks may not have to be in any subgroup.



    This is a convenience API that calls ``new_group`` to generate multiple subgroups.

    It requires that all processes in the main group (i.e. all

    processes that are part of the distributed job) enter this function, even

    if they are not going to be members of the group.



    .. warning::

        Using multiple process groups with the ``NCCL`` backend concurrently

        is not safe and the user should perform explicit synchronization in

        their application to ensure only one process group is used at a time.

        This means collectives from one process group should have completed

        execution on the device (not just enqueued since CUDA execution is

        async) before collectives from another process group are enqueued.

        See `Using multiple NCCL communicators concurrently <https://docs.nvid

        ia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html#using

        -multiple-nccl-communicators-concurrently>`_ for more details.



    Args:

        ranks_per_subgroup_list (list[list[int]]): A nested list of ranks of

            group members.

        timeout (timedelta, optional): see `init_process_group` for details and default value.

        backend (str or Backend, optional): The backend to use. Depending on

             build-time configurations, valid values are ``gloo`` and ``nccl``.

             By default uses the same backend as the global group. This field

             should be given as a lowercase string (e.g., ``"gloo"``), which can

             also be accessed via :class:`Backend` attributes (e.g.,

             ``Backend.GLOO``). If ``None`` is passed in, the backend

             corresponding to the default process group will be used. Default is

             ``None``.

        pg_options (ProcessGroupOptions, optional): process group options

            specifying what additional options need to be passed in during

            the construction of specific process groups. i.e. for the ``nccl``

            backend, ``is_high_priority_stream`` can be specified so that

            process group can pick up high priority cuda streams.



    Returns:

        The subgroup containing the current rank, and all the subgroups used for cleanup.



    Examples:

        >>> # Create two subgroups, where each has 2 processes.

        >>> # xdoctest: +SKIP("need process group init")

        >>> cur_subgroup, subgroups = dist.new_subgroups(ranks=[[0, 2], [1, 3]])

        >>> rank = dist.get_rank()

        >>> tensor = torch.ones(1, device=rank) * rank

        >>> dist.all_reduce(tensor, group=cur_subgroup)

        >>> tensor

        tensor([2])     # Subgroup 0: ranks 0 and 2

        tensor([4])     # Subgroup 1: ranks 1 and 3

    """
    if ranks_per_subgroup_list is None or len(ranks_per_subgroup_list) == 0:
        raise ValueError("The arg 'ranks_per_subgroup_list' cannot be empty")

    subgroups = []
    cur_subgroup = None
    # Create a mapping from rank to subgroup to check if there is any subgroup overlap.
    rank_to_ranks_dict = {}  # type: ignore[var-annotated]
    for ranks in ranks_per_subgroup_list:
        subgroup = new_group(
            ranks=ranks,
            timeout=timeout,
            backend=backend,
            pg_options=pg_options,
        )
        subgroups.append(subgroup)
        my_rank = get_rank()
        for rank in ranks:
            if rank in rank_to_ranks_dict:
                raise ValueError(
                    f"Rank {rank} has appeared in both subgroup {rank_to_ranks_dict[rank]} and {ranks}"
                )
            rank_to_ranks_dict[rank] = ranks
            if my_rank == rank:
                cur_subgroup = subgroup
                logger.info("Rank %s is assigned to subgroup %s", rank, ranks)

    return cur_subgroup, subgroups


def _find_pg_by_ranks_and_tag(tag: str, ranks: List[int]) -> Optional[ProcessGroup]:
    if len(tag) > 0 and not tag.startswith("ptd:") and not tag.startswith("user:"):
        tag = f"user:{tag}"

    for group in _world.tags_to_pg.get(tag, []):
        if group.size() != len(ranks):
            continue

        group_ranks = get_process_group_ranks(group)
        good = all(r in group_ranks for r in ranks)
        if good:
            return group
    return None

def _find_or_create_pg_by_ranks_and_tag(tag: str, ranks: List[int], stride: int) -> ProcessGroup:
    assert len(ranks) % stride == 0, f"Ranks length ({len(ranks)}) must be divisible by stride ({stride})"

    my_rank = get_rank()
    my_ranks = None

    if stride == len(ranks):
        my_ranks = ranks.copy()
        assert my_rank in my_ranks, "rankset doesn't include the current node"
    else:
        for i in range(0, len(ranks), stride):
            rank_set = ranks[i : i + stride]
            if my_rank in rank_set:
                my_ranks = rank_set
        assert my_ranks is not None, "rankset doesn't include the current node"

    my_ranks.sort()

    pg = _find_pg_by_ranks_and_tag(tag, my_ranks)
    if pg is not None:
        return pg
    if tag == "":
        raise ValueError("Cannot automatically create PG with empty tag")
    # TODO copy settings and timeout from default PG
    return _new_group_with_tag(my_ranks, pg_tag=tag)

def _get_group_tag(pg: ProcessGroup) -> str:
    """Return the tag associated with ``pg``."""
    tag = _world.pg_to_tag[pg]
    if tag.startswith("user:"):
        tag = tag[5:]
    return tag

def _get_process_group_name(pg: ProcessGroup) -> str:
    return _world.pg_names.get(pg, "None")

def _get_process_group_store(pg: ProcessGroup) -> Store:
    return _world.pg_map[pg][1]

# This ops are not friendly to TorchDynamo. So, we decide to disallow these ops
# in FX graph, allowing them to run them on eager, with torch.compile.
dynamo_unsupported_distributed_c10d_ops = [
    recv,
    all_gather_object,
    all_gather_coalesced,
    all_to_all_single,
    all_reduce,
    gather_object,
    all_to_all,
    all_reduce_coalesced,
    gather,
    broadcast_object_list,
    barrier,
    scatter,
    scatter_object_list,
    reduce,
    all_gather,
    reduce_scatter,
    all_gather_into_tensor,
    broadcast,
    reduce_scatter_tensor,
    send,
]