Spaces:
Sleeping
Sleeping
File size: 13,313 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# Copyright (c) Meta Platforms, Inc. and affiliates
import dataclasses
from typing import cast, Dict, List, Optional, Sequence, Tuple, Union
import torch
import torch.distributed as dist
from torch._utils import _get_device_module
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
from torch.distributed._shard.sharded_tensor.metadata import (
TensorProperties as ShardTensorProperties,
)
from torch.distributed._shard.sharded_tensor.shard import Shard
from torch.distributed._shard.sharding_spec.chunk_sharding_spec import ChunkShardingSpec
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint._nested_dict import unflatten_state_dict
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner
from torch.distributed.checkpoint.metadata import (
BytesStorageMetadata,
ChunkStorageMetadata,
Metadata,
MetadataIndex,
STATE_DICT_TYPE,
TensorProperties,
TensorStorageMetadata,
)
from torch.distributed.checkpoint.planner import LoadPlan, LoadPlanner
from torch.distributed.checkpoint.planner_helpers import (
_create_read_items,
create_read_items_for_chunk_list,
)
from torch.distributed.checkpoint.state_dict_loader import load_state_dict
from torch.distributed.checkpoint.storage import StorageReader
from torch.distributed.checkpoint.utils import (
_element_wise_add,
_element_wise_sub,
_normalize_device_info,
)
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.remote_device import _remote_device
STATE_DICT_2D_LAYOUT = Dict[str, Tuple[Optional[Sequence[int]], Sequence[int]]]
# TODO: Update docstrings for optimizer.py
__all__ = [
"load_sharded_optimizer_state_dict",
]
def _gen_rank_device(global_rank: int, device_type: str = "cuda") -> str:
if device_type == "cpu":
return "cpu"
device_module = _get_device_module(device_type)
if device_module.is_available():
return _normalize_device_info(
device_type, global_rank % device_module.device_count()
)
return "cpu"
def _create_colwise_spec(
pg: Optional[dist.ProcessGroup] = None,
) -> ChunkShardingSpec:
pg_device_type = dist.distributed_c10d._get_pg_default_device(pg).type
if pg is None:
placements = [
f"rank:{idx}/{_gen_rank_device(idx, pg_device_type)}"
for idx in range(dist.get_world_size())
]
else:
placements = [
f"rank:{idx}/{_gen_rank_device(dist.get_global_rank(pg, idx), pg_device_type)}"
for idx in range(pg.size())
]
return ChunkShardingSpec(
dim=0,
placements=cast(List[Union[_remote_device, str]], placements),
)
def _is_nested_tensor(val: torch.Tensor) -> bool:
if type(val) is ShardedTensor:
if len(val.local_shards()) == 0:
return False
if type(val.local_shards()[0].tensor) is ShardedTensor:
return True
if type(val.local_shards()[0].tensor) is DTensor:
raise ValueError("Cannot handle DTensor nested insided ShardedTensor")
elif type(val) is DTensor and (
type(val._local_tensor) is DTensor or type(val._local_tensor) is ShardedTensor
):
raise ValueError("Cannot handle nested DTensor")
return False
def _alloc_tensor(
props: TensorProperties, size: Sequence[int], device_type: str = "cuda"
) -> torch.Tensor:
return torch.empty(
size=size,
dtype=props.dtype,
layout=props.layout,
requires_grad=props.requires_grad,
pin_memory=props.pin_memory,
device=cast(torch.device, _get_device_module(device_type).current_device()),
)
def _get_state_dict_2d_layout(
state_dict: STATE_DICT_TYPE,
) -> Tuple[STATE_DICT_2D_LAYOUT, Optional[dist.ProcessGroup]]:
"""
Load the right TP slice of the optimizer state.
This is not easy since the per-tensor slicing can't be inferred from checkpoint metadata.
We take advantage of the model state_dict producing a sliced ST to figure out what we need to load.
This is pretty fragile and it might be easier for FSDP to compute this info for us.
Returns a dictionary where keys are the same of the state_dict and the value is a tuple of
(offset, size) for the current rank TP slice.
N.B. The state_dict *MUST* come from FSDP.sharded_state_dict.
"""
specs: STATE_DICT_2D_LAYOUT = {}
dp_pg: Optional[dist.ProcessGroup] = None
for key, value in state_dict.items():
specs[key] = (None, value.size())
if _is_nested_tensor(value):
assert (
len(value.local_shards()) == 1
), "Cannot handle ST with multiple shards"
assert isinstance(
value, ShardedTensor
), "Can only handle nested ShardedTensor"
shard = value.local_shards()[0]
specs[key] = (
shard.metadata.shard_offsets,
shard.metadata.shard_sizes,
)
dp_pg = shard.tensor._process_group # type: ignore[attr-defined]
return (
specs,
dp_pg,
)
class _ReaderWithOffset(DefaultLoadPlanner):
translation: Dict[MetadataIndex, MetadataIndex]
state_dict: STATE_DICT_TYPE
metadata: Metadata
def __init__(self, fqn_to_offset: Dict[str, Sequence[int]]) -> None:
super().__init__()
self.fqn_to_offset = fqn_to_offset
self.metadata = Metadata({})
self.state_dict = {}
self.translation = {}
def create_local_plan(self) -> LoadPlan:
requests = []
self.translation = {}
for fqn, obj in self.state_dict.items():
md = self.metadata.state_dict_metadata[fqn]
if not isinstance(obj, ShardedTensor):
requests += _create_read_items(fqn, md, obj)
continue
if fqn not in self.fqn_to_offset:
requests += _create_read_items(fqn, md, obj)
continue
offset = self.fqn_to_offset[fqn]
assert len(obj.local_shards()) == 1
original_shard = obj.local_shards()[0]
local_chunks = [
ChunkStorageMetadata(
offsets=torch.Size(
_element_wise_add(original_shard.metadata.shard_offsets, offset)
),
sizes=torch.Size(original_shard.metadata.shard_sizes),
)
]
reqs = create_read_items_for_chunk_list(
fqn, cast(TensorStorageMetadata, md), local_chunks
)
# TODO: The ReadItems will have a displaced MetadataIndex, fix it.
# TODO: we should change _create_sharded_read_items to have more ergonomic API
for ri in reqs:
assert ri.dest_index.offset is not None
original_offset = _element_wise_sub(ri.dest_index.offset, offset)
original_index = dataclasses.replace(
ri.dest_index, offset=torch.Size(original_offset)
)
self.translation[ri.dest_index] = original_index
requests += reqs
return LoadPlan(requests)
def lookup_tensor(self, index: MetadataIndex) -> torch.Tensor:
return super().lookup_tensor(self.translation.get(index, index))
def load_sharded_optimizer_state_dict(
model_state_dict: STATE_DICT_TYPE,
optimizer_key: str,
storage_reader: StorageReader,
planner: Optional[LoadPlanner] = None,
) -> STATE_DICT_TYPE:
"""
Load a state_dict in conjunction with FSDP sharded optimizer state.
This is the current recommended way to checkpoint FSDP.
>>> # xdoctest: +SKIP
>>> import torch.distributed.checkpoint as dist_cp
>>> # Save
>>> model: torch.nn.Model
>>> optim_params = model.parameters()
>>> optim = torch.optim.SGD(optim_params, lr=0.01)
>>> # Save
>>> with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):
>>> state_dict = {
>>> "optimizer": FSDP.optim_state_dict(model, optim),
>>> "model": model.state_dict()
>>> }
>>> dist_cp.save_state_dict(
>>> state_dict=optim_state,
>>> storage_writer=dist_cp.FileSystemWriter("checkpoint"),
>>> planner=dist_cp.DefaultSavePlanner(),
>>> )
>>>
>>> # Load
>>> with FSDP.state_dict_type(model_tp, StateDictType.SHARDED_STATE_DICT):
>>> model_state_dict = model_tp.state_dict()
>>> checkpoint = {
>>> "model": model_state_dict
>>> }
>>> dist_cp.load_state_dict(
>>> state_dict=checkpoint,
>>> storage_reader=dist_cp.FileSystemReader(checkpoint_file),
>>> planner=dist_cp.DefaultLoadPlanner(),
>>> )
>>> model.load_state_dict(checkpoint["model_state"])
>>>
>>> optim_state = dist_cp.load_sharded_optimizer_state_dict(
>>> model_state_dict,
>>> optimizer_key="optimizer",
>>> storage_reader=dist_cp.FileSystemReader("checkpoint"),
>>> )
>>>
>>> flattened_osd = FSDP.optim_state_dict_to_load(
>>> model, optim, optim_state["optimizer"]
>>> )
>>>
>>> optim.load_state_dict(flattened_osd)
"""
metadata = storage_reader.read_metadata()
layout_specs, dp_pg = _get_state_dict_2d_layout(model_state_dict)
dp_pg_device_type = dist.distributed_c10d._get_pg_default_device(dp_pg).type
device_module = _get_device_module(dp_pg_device_type)
if dp_pg is None:
placements = []
for i in range(dist.get_world_size()):
device_info = _normalize_device_info(
dp_pg_device_type, i % device_module.device_count()
)
placements.append(f"rank:{i}/{device_info}")
sharding_spec = ChunkShardingSpec(dim=0, placements=placements) # type: ignore[arg-type]
else:
sharding_spec = _create_colwise_spec(dp_pg)
# Create a state_dict for optimizer state
state_dict: STATE_DICT_TYPE = {}
fqn_to_offset: Dict[str, Sequence[int]] = {}
for key, value in metadata.state_dict_metadata.items():
key_path = metadata.planner_data[key]
if key_path[0] != optimizer_key:
continue
if isinstance(value, BytesStorageMetadata):
state_dict[key] = "<bytes_io>"
continue
# value: TensorStorageMetadata
if value.size.numel() == 1:
state_dict[key] = _alloc_tensor(
value.properties, value.size, dp_pg_device_type
)
elif dp_pg is None:
state_dict[key] = _create_chunk_sharded_tensor(
_alloc_tensor(value.properties, value.size, dp_pg_device_type),
rank=dist.get_rank(),
world_size=dist.get_world_size(),
num_devices_per_node=device_module.device_count(),
pg=_get_default_group(),
)
else:
spec_key = key_path[2]
alloc_size = layout_specs.get(spec_key, (None, value.size))[1]
properties = ShardTensorProperties(
dtype=value.properties.dtype,
layout=value.properties.layout,
requires_grad=value.properties.requires_grad,
memory_format=value.properties.memory_format,
pin_memory=value.properties.pin_memory,
)
st_md = sharding_spec.build_metadata(torch.Size(alloc_size), properties)
local_shards = []
current_rank = dist.get_rank(dp_pg)
for shard_md in st_md.shards_metadata:
if cast(_remote_device, shard_md.placement).rank() != current_rank:
continue
local_shards.append(
Shard(
tensor=_alloc_tensor(
value.properties, shard_md.shard_sizes, dp_pg_device_type
),
metadata=shard_md,
)
)
st = ShardedTensor._init_from_local_shards_and_global_metadata(
local_shards, st_md, process_group=dp_pg
)
if spec_key in layout_specs and layout_specs[spec_key][0] is not None:
fqn_to_offset[key] = cast(Sequence[int], layout_specs[spec_key][0])
state_dict[key] = st
# Whether we unflatten before or after doesn't matter
load_state_dict(
state_dict=state_dict,
storage_reader=storage_reader,
# FIXME the type of planner is wrong in load_state_dict
planner=_ReaderWithOffset(fqn_to_offset) if dp_pg is not None else planner,
)
state_dict = unflatten_state_dict(state_dict, metadata.planner_data)
return state_dict
|