File size: 13,313 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# Copyright (c) Meta Platforms, Inc. and affiliates

import dataclasses
from typing import cast, Dict, List, Optional, Sequence, Tuple, Union

import torch
import torch.distributed as dist
from torch._utils import _get_device_module
from torch.distributed._shard.sharded_tensor.api import ShardedTensor
from torch.distributed._shard.sharded_tensor.metadata import (
    TensorProperties as ShardTensorProperties,
)
from torch.distributed._shard.sharded_tensor.shard import Shard
from torch.distributed._shard.sharding_spec.chunk_sharding_spec import ChunkShardingSpec
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint._nested_dict import unflatten_state_dict
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner
from torch.distributed.checkpoint.metadata import (
    BytesStorageMetadata,
    ChunkStorageMetadata,
    Metadata,
    MetadataIndex,
    STATE_DICT_TYPE,
    TensorProperties,
    TensorStorageMetadata,
)
from torch.distributed.checkpoint.planner import LoadPlan, LoadPlanner
from torch.distributed.checkpoint.planner_helpers import (
    _create_read_items,
    create_read_items_for_chunk_list,
)
from torch.distributed.checkpoint.state_dict_loader import load_state_dict
from torch.distributed.checkpoint.storage import StorageReader
from torch.distributed.checkpoint.utils import (
    _element_wise_add,
    _element_wise_sub,
    _normalize_device_info,
)
from torch.distributed.distributed_c10d import _get_default_group
from torch.distributed.fsdp._shard_utils import _create_chunk_sharded_tensor
from torch.distributed.remote_device import _remote_device

STATE_DICT_2D_LAYOUT = Dict[str, Tuple[Optional[Sequence[int]], Sequence[int]]]


# TODO: Update docstrings for optimizer.py
__all__ = [
    "load_sharded_optimizer_state_dict",
]


def _gen_rank_device(global_rank: int, device_type: str = "cuda") -> str:
    if device_type == "cpu":
        return "cpu"
    device_module = _get_device_module(device_type)
    if device_module.is_available():
        return _normalize_device_info(
            device_type, global_rank % device_module.device_count()
        )
    return "cpu"


def _create_colwise_spec(

    pg: Optional[dist.ProcessGroup] = None,

) -> ChunkShardingSpec:
    pg_device_type = dist.distributed_c10d._get_pg_default_device(pg).type
    if pg is None:
        placements = [
            f"rank:{idx}/{_gen_rank_device(idx, pg_device_type)}"
            for idx in range(dist.get_world_size())
        ]
    else:
        placements = [
            f"rank:{idx}/{_gen_rank_device(dist.get_global_rank(pg, idx), pg_device_type)}"
            for idx in range(pg.size())
        ]
    return ChunkShardingSpec(
        dim=0,
        placements=cast(List[Union[_remote_device, str]], placements),
    )


def _is_nested_tensor(val: torch.Tensor) -> bool:
    if type(val) is ShardedTensor:
        if len(val.local_shards()) == 0:
            return False
        if type(val.local_shards()[0].tensor) is ShardedTensor:
            return True
        if type(val.local_shards()[0].tensor) is DTensor:
            raise ValueError("Cannot handle DTensor nested insided ShardedTensor")
    elif type(val) is DTensor and (
        type(val._local_tensor) is DTensor or type(val._local_tensor) is ShardedTensor
    ):
        raise ValueError("Cannot handle nested DTensor")
    return False


def _alloc_tensor(

    props: TensorProperties, size: Sequence[int], device_type: str = "cuda"

) -> torch.Tensor:
    return torch.empty(
        size=size,
        dtype=props.dtype,
        layout=props.layout,
        requires_grad=props.requires_grad,
        pin_memory=props.pin_memory,
        device=cast(torch.device, _get_device_module(device_type).current_device()),
    )


def _get_state_dict_2d_layout(

    state_dict: STATE_DICT_TYPE,

) -> Tuple[STATE_DICT_2D_LAYOUT, Optional[dist.ProcessGroup]]:
    """

    Load the right TP slice of the optimizer state.



    This is not easy since the per-tensor slicing can't be inferred from checkpoint metadata.

    We take advantage of the model state_dict producing a sliced ST to figure out what we need to load.

    This is pretty fragile and it might be easier for FSDP to compute this info for us.

    Returns a dictionary where keys are the same of the state_dict and the value is a tuple of

    (offset, size) for the current rank TP slice.

    N.B. The state_dict *MUST* come from FSDP.sharded_state_dict.

    """
    specs: STATE_DICT_2D_LAYOUT = {}
    dp_pg: Optional[dist.ProcessGroup] = None
    for key, value in state_dict.items():
        specs[key] = (None, value.size())
        if _is_nested_tensor(value):
            assert (
                len(value.local_shards()) == 1
            ), "Cannot handle ST with multiple shards"
            assert isinstance(
                value, ShardedTensor
            ), "Can only handle nested ShardedTensor"
            shard = value.local_shards()[0]
            specs[key] = (
                shard.metadata.shard_offsets,
                shard.metadata.shard_sizes,
            )
            dp_pg = shard.tensor._process_group  # type: ignore[attr-defined]

    return (
        specs,
        dp_pg,
    )


class _ReaderWithOffset(DefaultLoadPlanner):
    translation: Dict[MetadataIndex, MetadataIndex]
    state_dict: STATE_DICT_TYPE
    metadata: Metadata

    def __init__(self, fqn_to_offset: Dict[str, Sequence[int]]) -> None:
        super().__init__()
        self.fqn_to_offset = fqn_to_offset
        self.metadata = Metadata({})
        self.state_dict = {}
        self.translation = {}

    def create_local_plan(self) -> LoadPlan:
        requests = []
        self.translation = {}
        for fqn, obj in self.state_dict.items():
            md = self.metadata.state_dict_metadata[fqn]
            if not isinstance(obj, ShardedTensor):
                requests += _create_read_items(fqn, md, obj)
                continue

            if fqn not in self.fqn_to_offset:
                requests += _create_read_items(fqn, md, obj)
                continue

            offset = self.fqn_to_offset[fqn]

            assert len(obj.local_shards()) == 1
            original_shard = obj.local_shards()[0]
            local_chunks = [
                ChunkStorageMetadata(
                    offsets=torch.Size(
                        _element_wise_add(original_shard.metadata.shard_offsets, offset)
                    ),
                    sizes=torch.Size(original_shard.metadata.shard_sizes),
                )
            ]

            reqs = create_read_items_for_chunk_list(
                fqn, cast(TensorStorageMetadata, md), local_chunks
            )
            # TODO: The ReadItems will have a displaced MetadataIndex, fix it.
            # TODO: we should change _create_sharded_read_items to have more ergonomic API
            for ri in reqs:
                assert ri.dest_index.offset is not None
                original_offset = _element_wise_sub(ri.dest_index.offset, offset)
                original_index = dataclasses.replace(
                    ri.dest_index, offset=torch.Size(original_offset)
                )
                self.translation[ri.dest_index] = original_index

            requests += reqs
        return LoadPlan(requests)

    def lookup_tensor(self, index: MetadataIndex) -> torch.Tensor:
        return super().lookup_tensor(self.translation.get(index, index))


def load_sharded_optimizer_state_dict(

    model_state_dict: STATE_DICT_TYPE,

    optimizer_key: str,

    storage_reader: StorageReader,

    planner: Optional[LoadPlanner] = None,

) -> STATE_DICT_TYPE:
    """

    Load a state_dict in conjunction with FSDP sharded optimizer state.



    This is the current recommended way to checkpoint FSDP.

    >>> # xdoctest: +SKIP

    >>> import torch.distributed.checkpoint as dist_cp

    >>> # Save

    >>> model: torch.nn.Model

    >>> optim_params = model.parameters()

    >>> optim = torch.optim.SGD(optim_params, lr=0.01)

    >>> # Save

    >>> with FSDP.state_dict_type(model, StateDictType.SHARDED_STATE_DICT):

    >>>     state_dict = {

    >>>         "optimizer": FSDP.optim_state_dict(model, optim),

    >>>         "model": model.state_dict()

    >>>     }

    >>>     dist_cp.save_state_dict(

    >>>         state_dict=optim_state,

    >>>         storage_writer=dist_cp.FileSystemWriter("checkpoint"),

    >>>         planner=dist_cp.DefaultSavePlanner(),

    >>>     )

    >>>

    >>> # Load

    >>> with FSDP.state_dict_type(model_tp, StateDictType.SHARDED_STATE_DICT):

    >>>     model_state_dict = model_tp.state_dict()

    >>>     checkpoint = {

    >>>         "model": model_state_dict

    >>>     }

    >>>     dist_cp.load_state_dict(

    >>>         state_dict=checkpoint,

    >>>         storage_reader=dist_cp.FileSystemReader(checkpoint_file),

    >>>         planner=dist_cp.DefaultLoadPlanner(),

    >>>     )

    >>>     model.load_state_dict(checkpoint["model_state"])

    >>>

    >>>     optim_state = dist_cp.load_sharded_optimizer_state_dict(

    >>>         model_state_dict,

    >>>         optimizer_key="optimizer",

    >>>         storage_reader=dist_cp.FileSystemReader("checkpoint"),

    >>>     )

    >>>

    >>>     flattened_osd = FSDP.optim_state_dict_to_load(

    >>>        model, optim, optim_state["optimizer"]

    >>>     )

    >>>

    >>>     optim.load_state_dict(flattened_osd)

    """
    metadata = storage_reader.read_metadata()

    layout_specs, dp_pg = _get_state_dict_2d_layout(model_state_dict)
    dp_pg_device_type = dist.distributed_c10d._get_pg_default_device(dp_pg).type
    device_module = _get_device_module(dp_pg_device_type)

    if dp_pg is None:
        placements = []
        for i in range(dist.get_world_size()):
            device_info = _normalize_device_info(
                dp_pg_device_type, i % device_module.device_count()
            )
            placements.append(f"rank:{i}/{device_info}")
        sharding_spec = ChunkShardingSpec(dim=0, placements=placements)  # type: ignore[arg-type]
    else:
        sharding_spec = _create_colwise_spec(dp_pg)

    # Create a state_dict for optimizer state
    state_dict: STATE_DICT_TYPE = {}

    fqn_to_offset: Dict[str, Sequence[int]] = {}
    for key, value in metadata.state_dict_metadata.items():
        key_path = metadata.planner_data[key]
        if key_path[0] != optimizer_key:
            continue

        if isinstance(value, BytesStorageMetadata):
            state_dict[key] = "<bytes_io>"
            continue

        # value: TensorStorageMetadata
        if value.size.numel() == 1:
            state_dict[key] = _alloc_tensor(
                value.properties, value.size, dp_pg_device_type
            )
        elif dp_pg is None:
            state_dict[key] = _create_chunk_sharded_tensor(
                _alloc_tensor(value.properties, value.size, dp_pg_device_type),
                rank=dist.get_rank(),
                world_size=dist.get_world_size(),
                num_devices_per_node=device_module.device_count(),
                pg=_get_default_group(),
            )
        else:
            spec_key = key_path[2]
            alloc_size = layout_specs.get(spec_key, (None, value.size))[1]

            properties = ShardTensorProperties(
                dtype=value.properties.dtype,
                layout=value.properties.layout,
                requires_grad=value.properties.requires_grad,
                memory_format=value.properties.memory_format,
                pin_memory=value.properties.pin_memory,
            )

            st_md = sharding_spec.build_metadata(torch.Size(alloc_size), properties)
            local_shards = []
            current_rank = dist.get_rank(dp_pg)
            for shard_md in st_md.shards_metadata:
                if cast(_remote_device, shard_md.placement).rank() != current_rank:
                    continue
                local_shards.append(
                    Shard(
                        tensor=_alloc_tensor(
                            value.properties, shard_md.shard_sizes, dp_pg_device_type
                        ),
                        metadata=shard_md,
                    )
                )

            st = ShardedTensor._init_from_local_shards_and_global_metadata(
                local_shards, st_md, process_group=dp_pg
            )

            if spec_key in layout_specs and layout_specs[spec_key][0] is not None:
                fqn_to_offset[key] = cast(Sequence[int], layout_specs[spec_key][0])

            state_dict[key] = st

    # Whether we unflatten before or after doesn't matter
    load_state_dict(
        state_dict=state_dict,
        storage_reader=storage_reader,
        # FIXME the type of planner is wrong in load_state_dict
        planner=_ReaderWithOffset(fqn_to_offset) if dp_pg is not None else planner,
    )

    state_dict = unflatten_state_dict(state_dict, metadata.planner_data)

    return state_dict