File size: 21,019 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
import collections
import dataclasses
import io
import os
import pickle
import queue
import threading
from abc import ABC, abstractmethod
from contextlib import contextmanager
from dataclasses import dataclass
from pathlib import Path
from typing import (
    Callable,
    cast,
    Dict,
    Generator,
    IO,
    Iterable,
    Iterator,
    List,
    Optional,
    Tuple,
    Union,
)

import torch
from torch import Tensor
from torch._utils import _get_available_device_type, _get_device_module
from torch.distributed._shard._utils import narrow_tensor_by_index
from torch.futures import Future

from .metadata import Metadata, MetadataIndex
from .planner import (
    LoadItemType,
    LoadPlan,
    LoadPlanner,
    ReadItem,
    SavePlan,
    SavePlanner,
    WriteItem,
    WriteItemType,
)
from .storage import StorageReader, StorageWriter, WriteResult
from .utils import _create_file_view

__all__ = ["FileSystemWriter", "FileSystemReader"]


@dataclass
class _StorageInfo:
    """This is the per entry storage info."""

    relative_path: str
    offset: int
    length: int


@dataclass
class _StoragePrefix:
    prefix: str


DEFAULT_SUFFIX = ".distcp"


class _TensorLoader(ABC):
    @abstractmethod
    def add(self, size: int, obj: object) -> None:
        pass

    @abstractmethod
    def start_loading(self) -> None:
        pass

    @abstractmethod
    def values(self) -> Iterator[Tuple[torch.Tensor, object]]:
        pass


class _SerialCpuLoader(_TensorLoader):
    def __init__(self, resolve_fun: Callable) -> None:
        self.resolve_fun = resolve_fun
        self.items: List[Tuple[int, object]] = []

    def add(self, size: int, obj: object) -> None:
        self.items.append((size, obj))

    def start_loading(self) -> None:
        pass

    def values(self) -> Iterator[Tuple[torch.Tensor, object]]:
        for _, obj in self.items:
            tensor = self.resolve_fun(obj).detach()
            tensor = tensor.cpu()
            if tensor.storage().size() != tensor.numel():
                tensor = tensor.clone()
            yield (
                tensor,
                obj,
            )


class _OverlappingCpuLoader(_TensorLoader):
    def __init__(

        self,

        resolve_fun: Callable,

        stream: Optional[torch.Stream] = None,

        inflight_threshhold: int = 1_000_000,

    ) -> None:
        self.resolve_fun = resolve_fun
        self.items: List[Tuple[int, object]] = []
        self.inflight_threshhold = inflight_threshhold
        self.in_flight_data = 0
        self.current_items: collections.deque = collections.deque()
        self.idx = 0
        self.started = False
        self.device_type = (
            stream.device_type if stream else _get_available_device_type()
        )
        self.device_module = _get_device_module(self.device_type)
        self.stream = cast(
            torch.cuda.Stream, stream or self.device_module.current_stream()
        )
        if self.stream != self.device_module.current_stream():
            self.stream.wait_stream(self.device_module.current_stream())

    @property
    def _done(self) -> bool:
        return self.idx >= len(self.items)

    def _drain(self) -> List[Tuple[torch.Tensor, object]]:
        drained = []
        if self.in_flight_data >= self.inflight_threshhold:
            self.stream.synchronize()
        while self.in_flight_data >= self.inflight_threshhold:
            val = self.current_items.popleft()
            self.in_flight_data -= val[0].numel() * val[0].element_size()
            drained.append(val)
        return drained

    def _refill(self) -> None:
        with self.device_module.stream(self.stream):
            while not self._done and self.in_flight_data < self.inflight_threshhold:
                _, obj = self.items[self.idx]
                self.idx += 1
                tensor = self.resolve_fun(obj).detach()
                if tensor.device.type == self.device_type:
                    tensor = tensor.to(device="cpu", non_blocking=True)
                elif tensor.device == torch.device("cpu"):
                    if (
                        tensor.untyped_storage().size()
                        != tensor.numel() * tensor.itemsize
                    ):
                        # this forces the tensor to be both contiguous and with minimal storage
                        tensor = tensor.clone()

                self.current_items.append(
                    (
                        tensor,
                        obj,
                    )
                )
                self.in_flight_data += tensor.numel() * tensor.element_size()

    def _finish(self) -> Iterable[Tuple[torch.Tensor, object]]:
        assert self._done
        if len(self.current_items) > 0:
            self.stream.synchronize()
        return self.current_items

    def add(self, size: int, obj: object) -> None:
        if self.started:
            raise RuntimeError("cannot add items after loading started")
        self.items.append((size, obj))

    def start_loading(self) -> None:
        if self.started:
            return
        self.started = True
        self.items.sort(key=lambda x: x[0])
        self._refill()

    def values(self) -> Iterator[Tuple[torch.Tensor, object]]:
        self.start_loading()
        while not self._done:
            drained = self._drain()
            self._refill()
            yield from drained

        yield from self._finish()


def _item_size(item: WriteItem) -> int:
    size = 1
    assert item.tensor_data is not None
    # can't use math.prod as PT needs to support older python
    for s in item.tensor_data.size:
        size *= s

    dtype = item.tensor_data.properties.dtype
    return size * torch._utils._element_size(dtype)


def _split_by_size_and_type(bins: int, items: List[WriteItem]) -> List[List[WriteItem]]:
    if bins == 1:
        return [items]

    bytes_w = [wi for wi in items if wi.type == WriteItemType.BYTE_IO]
    tensor_w = [wi for wi in items if wi.type != WriteItemType.BYTE_IO]

    buckets: List[List[WriteItem]] = [[] for _ in range(bins)]
    bucket_sizes = [0 for _ in range(bins)]

    tensor_w.sort(key=_item_size, reverse=True)

    for i, wi in enumerate(bytes_w):
        buckets[i % bins].append(wi)

    for wi in tensor_w:
        # TODO replace with headq
        idx = min(enumerate(bucket_sizes), key=lambda x: x[1])[0]
        buckets[idx].append(wi)
        bucket_sizes[idx] += _item_size(wi)

    return buckets


def _write_item(

    stream: io.IOBase,

    data: Union[io.BytesIO, torch.Tensor],

    write_item: WriteItem,

    storage_key: str,

) -> WriteResult:
    offset = stream.tell()

    if write_item.type == WriteItemType.BYTE_IO:
        assert isinstance(data, io.BytesIO)
        stream.write(data.getbuffer())
    else:
        assert isinstance(data, torch.Tensor)
        assert data.device == torch.device("cpu")
        torch.save(data, cast(IO[bytes], stream))
    length = stream.tell() - offset

    return WriteResult(
        index=write_item.index,
        size_in_bytes=length,
        storage_data=_StorageInfo(storage_key, offset, length),
    )


def _write_files_from_queue(

    create_stream: Callable,

    file_queue: queue.Queue,

    result_queue: queue.Queue,

    planner: SavePlanner,

    inflight_threshhold: int,

    use_fsync: bool,

    thread_count: int,

) -> None:
    try:
        while True:
            file_name, storage_key, write_items = file_queue.get_nowait()
            loader: _TensorLoader

            custom_backend_name = torch._C._get_privateuse1_backend_name()
            custom_device_mod = getattr(torch, custom_backend_name, None)

            # TODO: Using the OverlappingCpuLoader with multiple threads creates significant
            # performance degredation, observed as being related to cuda stream syncs. We
            # should try to fix this and use _OverlappingCpuLoader for all threaded cases
            if (
                thread_count == 1
                and (
                    torch.cuda.is_available()
                    or (custom_device_mod and custom_device_mod.is_available())
                )
                and inflight_threshhold > 0
            ):
                loader = _OverlappingCpuLoader(
                    planner.resolve_data,
                    inflight_threshhold=inflight_threshhold,
                )
            else:
                loader = _SerialCpuLoader(
                    planner.resolve_data,
                )

            tensor_w = [wi for wi in write_items if wi.type != WriteItemType.BYTE_IO]
            for write_item in tensor_w:
                loader.add(_item_size(write_item), write_item)
            loader.start_loading()

            bytes_w = [wi for wi in write_items if wi.type == WriteItemType.BYTE_IO]
            write_results = []

            with create_stream(file_name, "wb") as stream:
                for write_item in bytes_w:
                    data = planner.resolve_data(write_item)
                    write_results.append(
                        _write_item(stream, data, write_item, storage_key)
                    )

                for tensor, write_item in loader.values():
                    assert tensor.is_cpu
                    write_results.append(
                        _write_item(stream, tensor, write_item, storage_key)
                    )

                if use_fsync:
                    try:
                        os.fsync(stream.fileno())
                    except AttributeError:
                        os.sync()
            result_queue.put(write_results)
    except queue.Empty:
        pass


class FileSystemBase(ABC):
    @contextmanager
    @abstractmethod
    def create_stream(

        self, path: Union[str, os.PathLike], mode: str

    ) -> Generator[io.IOBase, None, None]:
        ...

    @abstractmethod
    def concat_path(

        self, path: Union[str, os.PathLike], suffix: str

    ) -> Union[str, os.PathLike]:
        ...

    @abstractmethod
    def rename(

        self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike]

    ) -> None:
        ...

    @abstractmethod
    def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]:
        ...

    @abstractmethod
    def mkdir(self, path: Union[str, os.PathLike]) -> None:
        ...

    @classmethod
    @abstractmethod
    def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
        ...


class FileSystem(FileSystemBase):
    @contextmanager
    def create_stream(

        self, path: Union[str, os.PathLike], mode: str

    ) -> Generator[io.IOBase, None, None]:
        with cast(Path, path).open(mode) as stream:
            yield cast(io.IOBase, stream)

    def concat_path(

        self, path: Union[str, os.PathLike], suffix: str

    ) -> Union[str, os.PathLike]:
        return cast(Path, path) / suffix

    def init_path(self, path: Union[str, os.PathLike]) -> Union[str, os.PathLike]:
        if not isinstance(path, Path):
            path = Path(path)
        return path

    def rename(

        self, path: Union[str, os.PathLike], new_path: Union[str, os.PathLike]

    ) -> None:
        cast(Path, path).rename(cast(Path, new_path))

    def mkdir(self, path: Union[str, os.PathLike]) -> None:
        cast(Path, path).mkdir(parents=True, exist_ok=True)

    @classmethod
    def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
        if isinstance(checkpoint_id, Path):
            return True

        if "://" in str(checkpoint_id):
            return False

        for p in Path(checkpoint_id).parents:
            if p.exists() and os.access(str(p), os.W_OK):
                return True

        return False


class FileSystemWriter(StorageWriter):
    """

    Basic implementation of StorageWriter using file IO.



    This implementation makes the following assumptions and simplifications:



    * The checkpoint path is an empty or non-existing directory.

    * File creation is atomic



    The checkpoint consist of one file per write request plus

    a `.metadata` file with the serialized metadata.



    """

    def __init__(

        self,

        path: Union[str, os.PathLike],

        single_file_per_rank: bool = True,

        sync_files: bool = True,

        thread_count: int = 1,

        per_thread_copy_ahead: int = 10_000_000,

    ) -> None:
        """

        Initialize the writer pointing to `path`.



        Args:

            path: directory where the checkpoint will be written to.

            single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True.

            sync_files : force files to be synced to permanent storage. Default to True.

            thread_count: Number of IO threads to use to write. Default to 1.

            per_thread_copy_ahead: How many bytes to copy from the GPU ahead of saving then. Default 10Mb.



        N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure.

        """
        super().__init__()
        self.fs = FileSystem()
        self.path = self.fs.init_path(path)
        self.single_file_per_rank = single_file_per_rank
        self.sync_files = sync_files
        self.thread_count = thread_count
        self.per_thread_copy_ahead = per_thread_copy_ahead

    def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
        if checkpoint_id:
            self.path = self.fs.init_path(checkpoint_id)

    def set_up_storage_writer(self, is_coordinator: bool) -> None:
        pass

    def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
        self.fs.mkdir(self.path)
        return plan

    def prepare_global_plan(self, global_plan: List[SavePlan]) -> List[SavePlan]:
        new_plans = [
            dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_"))
            for i, plan in enumerate(global_plan)
        ]
        return new_plans

    def write_data(

        self,

        plan: SavePlan,

        planner: SavePlanner,

    ) -> Future[List[WriteResult]]:
        storage_plan: _StoragePrefix = plan.storage_data
        file_count = 0

        def gen_file():
            nonlocal file_count
            file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFFIX}"
            file_count += 1
            return file_name

        file_queue: queue.Queue = queue.Queue()
        if self.single_file_per_rank:
            for bucket in _split_by_size_and_type(self.thread_count, plan.items):
                file_name = gen_file()
                path = self.fs.concat_path(self.path, file_name)
                file_queue.put((path, file_name, bucket))
        else:
            for item in plan.items:
                file_name = gen_file()
                path = self.fs.concat_path(self.path, file_name)
                file_queue.put((path, file_name, [item]))

        result_queue: queue.Queue = queue.Queue()

        threads = []
        for _ in range(1, self.thread_count):
            t = threading.Thread(
                target=_write_files_from_queue,
                args=(
                    self.fs.create_stream,
                    file_queue,
                    result_queue,
                    planner,
                    self.per_thread_copy_ahead,
                    self.sync_files,
                    self.thread_count,
                ),
            )
            t.start()
            threads.append(t)

        _write_files_from_queue(
            create_stream=self.fs.create_stream,
            file_queue=file_queue,
            result_queue=result_queue,
            planner=planner,
            inflight_threshhold=self.per_thread_copy_ahead,
            use_fsync=self.sync_files,
            thread_count=self.thread_count,
        )

        for t in threads:
            t.join()

        res = []
        try:
            while True:
                res += result_queue.get_nowait()
        except queue.Empty:
            pass

            fut: Future[List[WriteResult]] = Future()
            fut.set_result(res)
            return fut

    def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
        storage_md = dict()
        for wr_list in results:
            storage_md.update({wr.index: wr.storage_data for wr in wr_list})
        metadata.storage_data = storage_md
        tmp_path = cast(Path, self.fs.concat_path(self.path, ".metadata.tmp"))
        meta_path = cast(Path, self.fs.concat_path(self.path, ".metadata"))
        with self.fs.create_stream(tmp_path, "wb") as metadata_file:
            pickle.dump(metadata, metadata_file)
            if self.sync_files:
                try:
                    os.fsync(metadata_file.fileno())
                except AttributeError:
                    os.sync()

        self.fs.rename(tmp_path, meta_path)

    @classmethod
    def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
        return FileSystem.validate_checkpoint_id(checkpoint_id)


class FileSystemReader(StorageReader):
    def __init__(self, path: Union[str, os.PathLike]) -> None:
        super().__init__()
        self.fs = FileSystem()
        self.path = self.fs.init_path(path)
        self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()

    def _slice_file(self, file, sinfo: _StorageInfo) -> io.IOBase:
        return _create_file_view(file, sinfo.offset, sinfo.length)

    def reset(self, checkpoint_id: Union[str, os.PathLike, None] = None) -> None:
        self.storage_data = dict()
        if checkpoint_id:
            self.path = self.fs.init_path(checkpoint_id)

    def read_data(self, plan: LoadPlan, planner: LoadPlanner) -> Future[None]:
        # group requests by file
        per_file: Dict[str, List[ReadItem]] = dict()
        for read_item in plan.items:
            item_md = self.storage_data[read_item.storage_index]
            path = item_md.relative_path
            per_file.setdefault(path, []).append(read_item)

        for relative_path, reqs in per_file.items():
            new_path = self.fs.concat_path(self.path, relative_path)
            with self.fs.create_stream(new_path, "rb") as stream:
                # TODO sort by offset and cache the reading
                for req in reqs:
                    item_md = self.storage_data[req.storage_index]
                    file_slice = self._slice_file(stream, item_md)
                    if req.type == LoadItemType.BYTE_IO:
                        read_bytes = io.BytesIO(file_slice.read(item_md.length))
                        read_bytes.seek(0)
                        planner.load_bytes(req, read_bytes)
                    else:
                        tensor = cast(
                            Tensor,
                            torch.load(cast(IO[bytes], file_slice), map_location="cpu"),
                        )
                        tensor = narrow_tensor_by_index(
                            tensor, req.storage_offsets, req.lengths
                        )
                        target_tensor = planner.resolve_tensor(req).detach()

                        assert (
                            target_tensor.size() == tensor.size()
                        ), f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
                        target_tensor.copy_(tensor)
                        planner.commit_tensor(req, target_tensor)

        fut: Future = Future()
        fut.set_result(None)
        return fut

    # Implementing the abstract function in StorageReader
    def read_metadata(self) -> Metadata:
        path = self.fs.concat_path(self.path, ".metadata")
        with self.fs.create_stream(path, "rb") as metadata_file:
            return pickle.load(metadata_file)

    def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
        self.storage_data = metadata.storage_data
        assert self.storage_data is not None

    def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
        return plan

    def prepare_global_plan(self, global_plan: List[LoadPlan]) -> List[LoadPlan]:
        return global_plan

    @classmethod
    def validate_checkpoint_id(cls, checkpoint_id: Union[str, os.PathLike]) -> bool:
        return FileSystem.validate_checkpoint_id(checkpoint_id)