File size: 22,217 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import gc
from typing import Optional

import torch
from torch.utils import _pytree
from .._utils import _dummy_type

if not hasattr(torch._C, "_CudaStreamBase"):
    # Define dummy base classes
    torch._C.__dict__["_CUDAGraph"] = _dummy_type("_CUDAGraph")
    torch._C.__dict__["_graph_pool_handle"] = _dummy_type("_graph_pool_handle")
    torch._C.__dict__["_cuda_isCurrentStreamCapturing"] = _dummy_type(
        "_cuda_isCurrentStreamCapturing"
    )

from torch._C import (  # noqa: F401
    _cuda_isCurrentStreamCapturing,
    _CUDAGraph,
    _graph_pool_handle,
)


def is_current_stream_capturing():
    r"""Return True if CUDA graph capture is underway on the current CUDA stream, False otherwise.



    If a CUDA context does not exist on the current device, returns False without initializing the context.

    """
    return _cuda_isCurrentStreamCapturing()


# Python shim helps Sphinx process docstrings more reliably.
def graph_pool_handle():
    r"""Return an opaque token representing the id of a graph memory pool.



    See :ref:`Graph memory management<graph-memory-management>`.



    .. warning::

        This API is in beta and may change in future releases.

    """
    return _graph_pool_handle()


# Python shim helps Sphinx process docstrings more reliably.
class CUDAGraph(torch._C._CUDAGraph):
    r"""Wrapper around a CUDA graph.



    .. warning::

        This API is in beta and may change in future releases.

    """

    def __new__(cls):
        return super().__new__(cls)

    def capture_begin(self, pool=None, capture_error_mode="global"):
        r"""Begin capturing CUDA work on the current stream.



        Typically, you shouldn't call ``capture_begin`` yourself.

        Use :class:`~torch.cuda.graph` or :func:`~torch.cuda.make_graphed_callables`,

        which call ``capture_begin`` internally.



        Arguments:

            pool (optional): Token (returned by :func:`~torch.cuda.graph_pool_handle` or

                :meth:`other_Graph_instance.pool()<torch.cuda.CUDAGraph.pool>`) that hints this graph may share memory

                with the indicated pool.  See :ref:`Graph memory management<graph-memory-management>`.

            capture_error_mode (str, optional): specifies the cudaStreamCaptureMode for the graph capture stream.

                Can be "global", "thread_local" or "relaxed". During cuda graph capture, some actions, such as cudaMalloc,

                may be unsafe. "global" will error on actions in other threads, "thread_local" will only error for

                actions in the current thread, and "relaxed" will not error on these actions. Do NOT change this setting

                unless you're familiar with `cudaStreamCaptureMode <https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g9d0535d93a214cbf126835257b16ba85>`_

        """  # noqa: B950
        super().capture_begin(pool=pool, capture_error_mode=capture_error_mode)

    def capture_end(self):
        r"""End CUDA graph capture on the current stream.



        After ``capture_end``, ``replay`` may be called on this instance.



        Typically, you shouldn't call ``capture_end`` yourself.

        Use :class:`~torch.cuda.graph` or :func:`~torch.cuda.make_graphed_callables`,

        which call ``capture_end`` internally.

        """
        super().capture_end()

    def replay(self):
        r"""Replay the CUDA work captured by this graph."""
        super().replay()

    def reset(self):
        r"""Delete the graph currently held by this instance."""
        super().reset()

    def pool(self):
        r"""Return an opaque token representing the id of this graph's memory pool.



        This id can optionally be passed to another graph's ``capture_begin``,

        which hints the other graph may share the same memory pool.

        """
        return super().pool()

    def enable_debug_mode(self):
        r"""Enable debugging mode for CUDAGraph.debug_dump."""
        return super().enable_debug_mode()

    def debug_dump(self, debug_path):
        r"""

        Arguments:

            debug_path (required): Path to dump the graph to.



        Calls a debugging function to dump the graph if the debugging is

        enabled via CUDAGraph.enable_debug_mode()

        """
        return super().debug_dump(debug_path)


class graph:
    r"""Context-manager that captures CUDA work into a :class:`torch.cuda.CUDAGraph` object for later replay.



    See :ref:`CUDA Graphs <cuda-graph-semantics>` for a general introduction,

    detailed use, and constraints.



    Arguments:

        cuda_graph (torch.cuda.CUDAGraph): Graph object used for capture.

        pool (optional): Opaque token (returned by a call to :func:`~torch.cuda.graph_pool_handle()` or

            :meth:`other_Graph_instance.pool()<torch.cuda.CUDAGraph.pool>`) hinting this graph's capture

            may share memory from the specified pool. See :ref:`Graph memory management<graph-memory-management>`.

        stream (torch.cuda.Stream, optional): If supplied, will be set as the current stream in the context.

            If not supplied, ``graph`` sets its own internal side stream as the current stream in the context.

        capture_error_mode (str, optional): specifies the cudaStreamCaptureMode for the graph capture stream.

            Can be "global", "thread_local" or "relaxed". During cuda graph capture, some actions, such as cudaMalloc,

            may be unsafe. "global" will error on actions in other threads, "thread_local" will only error for

            actions in the current thread, and "relaxed" will not error on actions. Do NOT change this setting

            unless you're familiar with `cudaStreamCaptureMode <https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g9d0535d93a214cbf126835257b16ba85>`_



    .. note::

        For effective memory sharing, if you pass a ``pool`` used by a previous capture and the previous capture

        used an explicit ``stream`` argument, you should pass the same ``stream`` argument to this capture.



    .. warning::

        This API is in beta and may change in future releases.



    .. _cudaStreamCaptureMode:

        https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__STREAM.html#group__CUDART__STREAM_1g9d0535d93a214cbf126835257b16ba85

    """  # noqa: B950

    default_capture_stream: Optional["torch.cuda.Stream"] = None

    def __init__(

        self,

        cuda_graph,

        pool=None,

        stream=None,

        capture_error_mode: str = "global",

    ):
        # Lazy-init of default_capture_stream helps avoid circular-import errors.
        # Not thread safe, but graphs already have the general (explicitly documented)
        # restriction that only one capture may be underway at a time in the process.
        if self.__class__.default_capture_stream is None:
            self.__class__.default_capture_stream = torch.cuda.Stream()

        self.pool = () if pool is None else (pool,)
        self.capture_stream = (
            stream if stream is not None else self.__class__.default_capture_stream
        )
        assert self.capture_stream is not None
        self.stream_ctx = torch.cuda.stream(self.capture_stream)
        self.cuda_graph = cuda_graph
        self.capture_error_mode = capture_error_mode

    def __enter__(self):
        # Free as much memory as we can for the graph
        torch.cuda.synchronize()
        gc.collect()
        torch.cuda.empty_cache()

        # Stackoverflow seems comfortable with this pattern
        # https://stackoverflow.com/questions/26635684/calling-enter-and-exit-manually#39172487
        self.stream_ctx.__enter__()

        self.cuda_graph.capture_begin(
            *self.pool, capture_error_mode=self.capture_error_mode
        )

    def __exit__(self, exc_type, exc_value, traceback):
        self.cuda_graph.capture_end()
        self.stream_ctx.__exit__(exc_type, exc_value, traceback)
        # returning None should propagate exceptions from either capture_end or stream_ctx.__exit__()


def make_graphed_callables(

    callables, sample_args, num_warmup_iters=3, allow_unused_input=False, pool=None

):
    r"""Accept callables (functions or :class:`nn.Module<torch.nn.Module>`\ s) and returns graphed versions.



    Each graphed callable's forward pass runs its source callable's

    forward CUDA work as a CUDA graph inside a single autograd node.



    The graphed callable's forward pass also appends

    a backward node to the autograd graph. During backward, this node runs the

    callable's backward work as a CUDA graph.



    Therefore, each graphed callable should be a drop-in replacement for its source callable

    in an autograd-enabled training loop.



    See :ref:`Partial-network capture<partial-network-capture>` for detailed use and constraints.



    If you pass a tuple of several callables, their captures will use the same memory pool.

    See :ref:`Graph memory management<graph-memory-management>` for when this is appropriate.



    Arguments:

        callables (torch.nn.Module or Python function, or tuple of these): Callable or callables to graph.

            See :ref:`Graph memory management<graph-memory-management>` for when passing a tuple of callables

            is appropriate.  If you pass a tuple of callables, their order in the tuple must be the same order

            they'll run in the live workload.

        sample_args (tuple of Tensors, or tuple of tuples of Tensors): Samples args for each callable.

            If a single callable was passed, ``sample_args`` must be a single tuple of argument Tensors.

            If a tuple of callables was passed, ``sample_args`` must be tuple of tuples of argument Tensors.

        num_warmup_iters (int): The number of warmup iterations. Currently, ``DataDistributedParallel`` needs

            11 iterations for warm up. Default: ``3``.

        allow_unused_input (bool): If False, specifying inputs that were not used when computing outputs

            (and therefore their grad is always zero) is an error. Defaults to False.

        pool (optional): Token (returned by :func:`~torch.cuda.graph_pool_handle` or

            :meth:`other_Graph_instance.pool()<torch.cuda.CUDAGraph.pool>`) that hints this graph may share memory

            with the indicated pool.  See :ref:`Graph memory management<graph-memory-management>`.

    .. note::

        The ``requires_grad`` state of each Tensor in ``sample_args`` must match the state

        that's expected for the corresponding real input in the training loop.



    .. warning::

        This API is in beta and may change in future releases.



    .. warning::

        ``sample_args`` for each callable must contain only Tensors. Other types are not allowed.



    .. warning::

        Returned callables do not support higher order differentiation (e.g., double backward).



    .. warning::

        In any :class:`~torch.nn.Module` passed to :func:`~make_graphed_callables`, only parameters

        may be trainable. Buffers must have ``requires_grad=False``.



    .. warning::

        After you pass a :class:`torch.nn.Module` through :func:`~make_graphed_callables`,

        you may not add or remove any of that Module's parameters or buffers.



    .. warning::

        :class:`torch.nn.Module`\s passed to :func:`~torch.cuda.make_graphed_callables` must not have module hooks

        registered on them at the time they are passed. However, registering hooks on modules *after* passing them

        through :func:`~torch.cuda.make_graphed_callables` is allowed.



    .. warning::

        When running a graphed callable, you must pass its arguments in the same order and format

        they appeared in that callable's ``sample_args``.



    .. warning::

        The automatic mixed precision is supported in :func:`~torch.cuda.make_graphed_callables` only with disabled

        caching. The context manager `torch.cuda.amp.autocast()` must have `cache_enabled=False`.

    """
    if torch.is_autocast_enabled() and torch.is_autocast_cache_enabled():
        raise RuntimeError(
            "make_graphed_callables does not support the autocast caching. Please set `cache_enabled=False`."
        )

    just_one_callable = False

    if not isinstance(callables, tuple):
        just_one_callable = True
        callables = (callables,)
        sample_args = (sample_args,)

    flatten_sample_args = []

    for c, args in zip(callables, sample_args):
        if isinstance(c, torch.nn.Module):
            assert (
                len(c._backward_hooks) == 0
                and len(c._forward_hooks) == 0
                and len(c._forward_pre_hooks) == 0
            ), (
                "Modules must not have hooks registered at the time they are passed. However, registering hooks "
                + "on modules after passing them through make_graphed_callables is allowed."
            )
            assert all(b.requires_grad is False for b in c.buffers()), (
                "In any :class:`~torch.nn.Module` passed to "
                + ":func:`~make_graphed_callables`, only parameters may be trainable. All buffers must have "
                + "``requires_grad=False``."
            )
        flatten_arg = _pytree.arg_tree_leaves(*args)
        flatten_sample_args.append(tuple(flatten_arg))
        assert all(isinstance(arg, torch.Tensor) for arg in flatten_arg), (
            "In the beta API, sample_args "
            + "for each callable must contain only Tensors. Other types are not allowed."
        )

    # If a callable is an nn.Module, its graph's full input surface is the args the user explicitly
    # passes to forward (ie, its sample_args) AND the module's parameter attributes.
    per_callable_len_user_args = [len(args) for args in flatten_sample_args]
    per_callable_module_params = [
        tuple(c.parameters()) if isinstance(c, torch.nn.Module) else ()
        for c in callables
    ]
    per_callable_static_input_surfaces = [
        flatten_sample_args[i] + per_callable_module_params[i]
        for i in range(len(callables))
    ]

    fwd_graphs = [torch.cuda.CUDAGraph() for _ in range(len(callables))]
    bwd_graphs = [torch.cuda.CUDAGraph() for _ in range(len(callables))]

    mempool = graph_pool_handle() if pool is None else pool

    # Warmup
    # Hopefully prevents cudnn benchmarking and other lazy-initialization cuda work
    # from ending up in any captures.
    torch.cuda.synchronize()
    with torch.cuda.stream(torch.cuda.Stream()):
        for func, args, static_input_surface in zip(
            callables, sample_args, per_callable_static_input_surfaces
        ):
            for _ in range(num_warmup_iters):
                outputs = _pytree.tree_leaves(func(*args))
                grad_inputs = torch.autograd.grad(
                    outputs=tuple(o for o in outputs if o.requires_grad),
                    inputs=tuple(i for i in static_input_surface if i.requires_grad),
                    grad_outputs=tuple(
                        torch.empty_like(o) for o in outputs if o.requires_grad
                    ),
                    only_inputs=True,
                    allow_unused=allow_unused_input,
                )
            del outputs, grad_inputs  # type: ignore[possibly-undefined]
    torch.cuda.synchronize()

    # All captures here share a mempool. To avoid replays corrupting each other's memory,
    # the safest approach is to capture all passes in the same order they'll run:
    # fwd 1, fwd 2, ... fwd N, then bwd N, bwd N-1, ... bwd 1.

    # Capture forward graphs
    per_callable_static_outputs = []
    per_callable_output_unflatten_spec = []
    for func, args, fwd_graph in zip(callables, sample_args, fwd_graphs):
        with torch.cuda.graph(fwd_graph, pool=mempool):
            outputs = func(*args)

        flatten_outputs, spec = _pytree.tree_flatten(outputs)
        per_callable_static_outputs.append(tuple(flatten_outputs))
        per_callable_output_unflatten_spec.append(spec)

    # Capture backward graphs in reverse order
    per_callable_static_grad_outputs = []
    per_callable_static_grad_inputs = []
    for static_input_surface, static_outputs, bwd_graph, module_params in zip(
        reversed(per_callable_static_input_surfaces),
        reversed(per_callable_static_outputs),
        reversed(bwd_graphs),
        reversed(per_callable_module_params),
    ):
        # For now, assumes all static_outputs require grad
        # assert all(o.requires_grad for o in static_outputs), "Outputs of graphed callables must require grad."
        static_grad_outputs = tuple(
            torch.empty_like(o) if o.requires_grad else None for o in static_outputs
        )

        with torch.cuda.graph(bwd_graph, pool=mempool):
            grad_inputs = torch.autograd.grad(
                outputs=tuple(o for o in static_outputs if o.requires_grad),
                inputs=tuple(i for i in static_input_surface if i.requires_grad),
                grad_outputs=tuple(o for o in static_grad_outputs if o is not None),
                only_inputs=True,
                allow_unused=allow_unused_input,
            )

        # Constructs a tuple suitable for returning from Graphed.backward:
        # Pads out the actually-needed grads with Nones in gradient slots for inputs that don't require grad.
        # I couldn't think of a slick one-liner for this pattern.
        static_grad_inputs = []
        grad_idx = 0
        for arg in static_input_surface:
            if arg.requires_grad:
                static_grad_inputs.append(grad_inputs[grad_idx])
                grad_idx += 1
            else:
                static_grad_inputs.append(None)  # type: ignore[arg-type]
        static_grad_inputs = tuple(static_grad_inputs)  # type: ignore[assignment]

        per_callable_static_grad_outputs.append(static_grad_outputs)
        per_callable_static_grad_inputs.append(static_grad_inputs)

    # Reverses the most recent two lists
    per_callable_static_grad_outputs.reverse()
    per_callable_static_grad_inputs.reverse()
    # Now for every per_callable list, per_callable_*[i] holds the stuff for the ith callable.

    def make_graphed_autograd_function(

        fwd_graph,

        bwd_graph,

        module_params,

        len_user_args,

        output_unflatten_spec,

        static_input_surface,

        static_outputs,

        static_grad_outputs,

        static_grad_inputs,

    ):
        class Graphed(torch.autograd.Function):
            @staticmethod
            def forward(ctx, *inputs):
                # At this stage, only the user args may (potentially) be new tensors.
                for i in range(len_user_args):
                    if static_input_surface[i].data_ptr() != inputs[i].data_ptr():
                        static_input_surface[i].copy_(inputs[i])
                fwd_graph.replay()
                assert isinstance(static_outputs, tuple)
                return tuple(o.detach() for o in static_outputs)

            @staticmethod
            @torch.autograd.function.once_differentiable
            def backward(ctx, *grads):
                assert len(grads) == len(static_grad_outputs)
                for g, grad in zip(static_grad_outputs, grads):
                    if g is not None:
                        # don't copy if autograd gods have been kind and the
                        # incoming grad is already in the right place
                        if g.data_ptr() != grad.data_ptr():
                            g.copy_(grad)
                bwd_graph.replay()

                # Input args that didn't require grad expect a None gradient.
                assert isinstance(static_grad_inputs, tuple)
                return tuple(
                    b.detach() if b is not None else b for b in static_grad_inputs
                )

        def functionalized(*user_args):
            # Runs the autograd function with inputs == all inputs to the graph that might require grad
            # (explicit user args + module parameters)
            # Assumes module params didn't change since capture.
            flatten_user_args = _pytree.arg_tree_leaves(*user_args)
            out = Graphed.apply(*(tuple(flatten_user_args) + module_params))
            return _pytree.tree_unflatten(out, output_unflatten_spec)

        return functionalized

    # Put together the final graphed callables
    ret = []
    for i, func in enumerate(callables):
        graphed = make_graphed_autograd_function(
            fwd_graphs[i],
            bwd_graphs[i],
            per_callable_module_params[i],
            per_callable_len_user_args[i],
            per_callable_output_unflatten_spec[i],
            per_callable_static_input_surfaces[i],
            per_callable_static_outputs[i],
            per_callable_static_grad_outputs[i],
            per_callable_static_grad_inputs[i],
        )

        if isinstance(func, torch.nn.Module):

            def make_graphed_forward(func, graph_training_state, graphed, orig_fwd):
                def new_fwd(*user_args):
                    # If the module's training-or-eval state matches what we graphed,
                    # run the graph, otherwise run the original forward method
                    if func.training == graph_training_state:
                        return graphed(*user_args)
                    else:
                        return orig_fwd(*user_args)

                return new_fwd

            func.forward = make_graphed_forward(func, func.training, graphed, func.forward)  # type: ignore[assignment]
            ret.append(func)
        else:
            ret.append(graphed)

    if just_one_callable:
        return ret[0]

    return tuple(ret)