File size: 23,054 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
r"""

This module introduces CUDA Sanitizer, a tool for detecting synchronization errors between kernels ran on different streams.



It stores information on accesses to tensors to determine if they are synchronized

or not. When enabled in a python program and a possible data race is detected, a

detailed warning will be printed and the program will exit.



It can be enabled either by importing this module and calling

:func:`enable_cuda_sanitizer()` or by exporting the ``TORCH_CUDA_SANITIZER``

environment variable.

"""

import enum
import functools
import inspect
import io
import logging
import sys
import textwrap
import traceback
from dataclasses import dataclass, field
from typing import Any, Dict, Iterator, List, Optional, Set, Tuple, TypeVar

import torch
import torch.utils._cuda_trace as cuda_trace
from torch.utils import _pytree as pytree
from torch.utils._python_dispatch import TorchDispatchMode


DEFAULT_STREAM_ID = 0

TK = TypeVar("TK")
TVa = TypeVar("TVa")
TVb = TypeVar("TVb")

DataPtr = int
StreamId = int
EventId = int
SeqNum = int

logger = logging.getLogger(__name__)


class AccessType(enum.Enum):
    READ = enum.auto()
    WRITE = enum.auto()

    def __str__(self):
        return "reading from" if self is AccessType.READ else "writing to"


@dataclass
class Access:
    r"""Stores information about a single access to a tensor by a kernel.



    Args:

        type: either AccessType.READ or AccessType.Write.

        seq_num: the sequential number of the kernel performing the access.

        stream: the stream id of the stream executing the kernel.

        operator: the schema of the launched kernel, which lists the

            arguments and return type.

        aliases: the arguments in the schema this access corresponds to.

        is_output: Whether the tensor was an output of the kernel.

        stack_trace: the stack summary object captured during access.

    """

    type: AccessType
    seq_num: SeqNum
    stream: StreamId
    operator: str
    aliases: List[str]
    is_output: bool
    stack_trace: traceback.StackSummary


class SynchronizationError(Exception):
    """Base class for errors detected by CUDA Sanitizer."""

    pass


class UnsynchronizedAccessError(SynchronizationError):
    """Stores information about two unsynchronized accesses to one data pointer."""

    def __init__(

        self,

        data_ptr: DataPtr,

        allocation_stack_trace: Optional[traceback.StackSummary],

        current_access: Access,

        previous_access: Access,

    ):
        self.data_ptr = data_ptr
        self.allocation_stack_trace = allocation_stack_trace
        self.current_access = current_access
        self.previous_access = previous_access

    def __str__(self):
        def format_access(access: Access):
            message.write(f"{access.operator}\n{access.type}")
            if access.aliases:
                message.write(" argument(s) " + ", ".join(access.aliases))
                if access.is_output:
                    message.write(", and to")
            if access.is_output:
                message.write(" the output")
            message.write(
                f"\nWith stack trace:\n{''.join(access.stack_trace.format())}\n"
            )

        with io.StringIO() as message:
            message.write(
                textwrap.dedent(
                    f"""\

                    ============================

                    CSAN detected a possible data race on tensor with data pointer {self.data_ptr}

                    Access by stream {self.current_access.stream} during kernel:

                    """
                )
            )
            format_access(self.current_access)

            message.write(
                f"Previous access by stream {self.previous_access.stream} during kernel:\n"
            )
            format_access(self.previous_access)

            if self.allocation_stack_trace:
                message.write(
                    "Tensor was allocated with stack trace:\n"
                    f"{''.join(self.allocation_stack_trace.format())}"
                )
            else:
                message.write("Trace for tensor allocation not found.")
            return message.getvalue()


class CUDASanitizerErrors(Exception):
    """Wrapper class for errors reported by CUDA Sanitizer."""

    def __init__(self, errors: List[SynchronizationError]):
        self.errors = errors

    def __str__(self):
        return f"detected {len(self.errors)} errors"


@dataclass
class TensorInfo:
    r"""Stores information about a single tensor and recent accesses to it.



    Args:

        allocation_stack_trace: the stack summary object captured during tensor

            allocation. Can be ``None`` if the allocation wasn't caught by CSAN.

        reads: list of read accesses to the tensor that were performed since

            the last write.

        write: the last write access to the tensor.

    """

    allocation_stack_trace: Optional[traceback.StackSummary]
    reads: List[Access] = field(default_factory=list)
    write: Optional[Access] = None


class _TensorsAccessed:
    def __init__(self):
        self.accesses: Dict[DataPtr, TensorInfo] = {}

    def ensure_tensor_exists(self, data_ptr: DataPtr) -> None:
        if data_ptr not in self.accesses:
            logger.info(
                "Found tensor with pointer: %s, but no matching tensor "
                "allocation in the trace. Backfilling the trace now. "
                "Perhaps the sanitizer was enabled after some torch operations?",
                data_ptr,
            )
            self.create_tensor(data_ptr, None)

    def ensure_tensor_does_not_exist(self, data_ptr: DataPtr) -> None:
        if data_ptr in self.accesses:
            logger.info(
                "Found duplicate tensor allocation in the trace for tensor with "
                "pointer: %s. Assuming the trace for tensor deallocation "
                "wasn't caught and backfilling it now. "
                "Perhaps the sanitizer was enabled after some torch operations?",
                data_ptr,
            )
            self.delete_tensor(data_ptr)

    def create_tensor(

        self, data_ptr: DataPtr, stack_trace: Optional[traceback.StackSummary]

    ) -> None:
        self.accesses[data_ptr] = TensorInfo(stack_trace)

    def delete_tensor(self, data_ptr: DataPtr) -> None:
        del self.accesses[data_ptr]

    def were_there_reads_since_last_write(self, data_ptr: DataPtr) -> bool:
        return True if self.accesses[data_ptr].reads else False

    def get_allocation_stack_trace(

        self, data_ptr: DataPtr

    ) -> Optional[traceback.StackSummary]:
        return self.accesses[data_ptr].allocation_stack_trace

    def get_write(self, data_ptr: DataPtr) -> Optional[Access]:
        return self.accesses[data_ptr].write

    def get_reads(self, data_ptr: DataPtr) -> List[Access]:
        return self.accesses[data_ptr].reads

    def add_read(self, data_ptr: DataPtr, access: Access) -> None:
        self.accesses[data_ptr].reads.append(access)

    def set_write(self, data_ptr: DataPtr, access: Access) -> None:
        self.accesses[data_ptr].write = access
        self.accesses[data_ptr].reads = []


class StreamSynchronizations:
    def __init__(self):
        self.current_sync_states: Dict[StreamId, Dict[StreamId, SeqNum]] = {}
        self.recorded_sync_states: Dict[EventId, Dict[StreamId, SeqNum]] = {}
        self.host_sync_state: Dict[StreamId, SeqNum] = {}
        self.create_stream(DEFAULT_STREAM_ID)

    def _ensure_stream_exists(self, stream: StreamId) -> None:
        if stream not in self.current_sync_states:
            logger.info(
                "Found Stream with id: %s, but no matching stream "
                "creation in the trace. Backfilling the trace now. "
                "Perhaps the sanitizer was enabled after some torch operations?",
                stream,
            )
            self.create_stream(stream)

    def _ensure_event_exists(self, event: EventId) -> None:
        if event not in self.recorded_sync_states:
            logger.info(
                "Found Event with id: %s, but no matching event "
                "creation in the trace. Backfilling the trace now. "
                "Perhaps the sanitizer was enabled after some torch operations?",
                event,
            )
            self.create_event(event)

    def _ensure_event_does_not_exist(self, event: EventId) -> None:
        if event in self.recorded_sync_states:
            logger.info(
                "Found duplicate event creation in the trace for event with "
                "id: %s. Assuming the trace for event deletion wasn't caught "
                "and backfilling it now. "
                "Perhaps the sanitizer was enabled after some torch operations?",
                event,
            )
            self.delete_event(event)

    def create_stream(self, stream: StreamId) -> None:
        if stream in self.current_sync_states:
            logger.info(
                "Found duplicate Stream creation in the trace for Stream with "
                "id: %s. PyTorch Streams are only created once, so this "
                "trace entry is ignored.",
                stream,
            )
        else:
            self.host_sync_state[stream] = 0
            self.current_sync_states[stream] = self.host_sync_state.copy()

    def create_event(self, event: EventId) -> None:
        self._ensure_event_does_not_exist(event)
        self.recorded_sync_states[event] = {}

    def delete_event(self, event: EventId) -> None:
        self._ensure_event_exists(event)
        del self.recorded_sync_states[event]

    def update_seq_num(self, stream: StreamId, seq_num: SeqNum) -> None:
        self._ensure_stream_exists(stream)
        self.current_sync_states[stream][stream] = seq_num

    def record_state(self, event: EventId, stream: StreamId) -> None:
        self._ensure_event_exists(event)
        self._ensure_stream_exists(stream)
        self.recorded_sync_states[event] = self.current_sync_states[stream].copy()

    def _state_wait_for_other(

        self, state: Dict[StreamId, SeqNum], other: Dict[StreamId, SeqNum]

    ) -> None:
        for stream, seq_num in other.items():
            state[stream] = max(state.get(stream, -1), seq_num)

    def stream_wait_for_event(self, stream: StreamId, event: EventId) -> None:
        self._ensure_stream_exists(stream)
        self._ensure_event_exists(event)
        self._state_wait_for_other(
            self.current_sync_states[stream], self.recorded_sync_states[event]
        )

    def all_streams_wait_for_event(self, event: EventId) -> None:
        self._ensure_event_exists(event)
        for stream in self.current_sync_states.keys():
            self.stream_wait_for_event(stream, event)

        self._state_wait_for_other(
            self.host_sync_state, self.recorded_sync_states[event]
        )

    def all_streams_wait_for_stream(self, stream: StreamId) -> None:
        self._ensure_stream_exists(stream)
        for state in self.current_sync_states.values():
            self._state_wait_for_other(state, self.current_sync_states[stream])

        self._state_wait_for_other(
            self.host_sync_state, self.current_sync_states[stream]
        )

    def sync_all_streams(self) -> None:
        for stream, state in self.current_sync_states.items():
            self.host_sync_state[stream] = state[stream]

        for state in self.current_sync_states.values():
            self._state_wait_for_other(state, self.host_sync_state)

    def is_ordered_after(

        self, current_stream: StreamId, seq_num: SeqNum, other_stream: StreamId

    ) -> bool:
        self._ensure_stream_exists(current_stream)
        self._ensure_stream_exists(other_stream)
        return seq_num <= self.current_sync_states[current_stream].get(other_stream, -1)


class EventHandler:
    """Analyzes CSAN trace for synchronization errors.



    Stores information on each stream's synchronizations with other streams as well

    as tensor accesses to determine whether a given kernel launch might cause a

    data race.

    """

    def __init__(self):
        self.tensors_accessed = _TensorsAccessed()
        self.syncs = StreamSynchronizations()
        self.seq_num: SeqNum = 0

    def _handle_kernel_launch(

        self,

        stream: StreamId,

        read_only: Set[DataPtr],

        read_write: Set[DataPtr],

        outputs: Set[DataPtr],

        operator: str,

        tensor_aliases: Dict[int, List[str]],

    ) -> List[SynchronizationError]:
        def check_conflict(

            data_ptr: DataPtr, current_access: Access, previous_access: Optional[Access]

        ) -> None:
            if previous_access is None:
                return
            if not self.syncs.is_ordered_after(
                current_access.stream, previous_access.seq_num, previous_access.stream
            ):
                error_list.append(
                    UnsynchronizedAccessError(
                        data_ptr,
                        self.tensors_accessed.get_allocation_stack_trace(data_ptr),
                        current_access,
                        previous_access,
                    )
                )

        error_list: List[SynchronizationError] = []
        self.seq_num += 1
        self.syncs.update_seq_num(stream, self.seq_num)
        stack_trace = traceback.StackSummary.extract(
            traceback.walk_stack(inspect.currentframe()), lookup_lines=False
        )
        # The stack trace generated in this way is in the inverse order, so it must be
        # reversed.
        stack_trace.reverse()

        for data_ptr in read_only:
            self.tensors_accessed.ensure_tensor_exists(data_ptr)
            current_access = Access(
                AccessType.READ,
                self.seq_num,
                stream,
                operator,
                tensor_aliases[data_ptr],
                data_ptr in outputs,
                stack_trace,
            )
            check_conflict(
                data_ptr, current_access, self.tensors_accessed.get_write(data_ptr)
            )
            self.tensors_accessed.add_read(data_ptr, current_access)

        for data_ptr in read_write:
            self.tensors_accessed.ensure_tensor_exists(data_ptr)
            current_access = Access(
                AccessType.WRITE,
                self.seq_num,
                stream,
                operator,
                tensor_aliases[data_ptr],
                data_ptr in outputs,
                stack_trace,
            )
            if self.tensors_accessed.were_there_reads_since_last_write(data_ptr):
                for previous_access in self.tensors_accessed.get_reads(data_ptr):
                    check_conflict(data_ptr, current_access, previous_access)
            else:
                check_conflict(
                    data_ptr, current_access, self.tensors_accessed.get_write(data_ptr)
                )
            self.tensors_accessed.set_write(data_ptr, current_access)

        return error_list

    def _handle_event_creation(self, event: EventId) -> None:
        self.syncs.create_event(event)

    def _handle_event_deletion(self, event: EventId) -> None:
        self.syncs.delete_event(event)

    def _handle_event_record(self, event: EventId, stream: StreamId) -> None:
        self.syncs.record_state(event, stream)

    def _handle_event_wait(self, event: EventId, stream: StreamId) -> None:
        self.syncs.stream_wait_for_event(stream, event)

    def _handle_memory_allocation(self, data_ptr: DataPtr) -> None:
        self.tensors_accessed.ensure_tensor_does_not_exist(data_ptr)
        stack_trace = traceback.StackSummary.extract(
            traceback.walk_stack(inspect.currentframe()), lookup_lines=False
        )
        # The stack trace generated in this way is in the inverse order, so it must be
        # reversed.
        stack_trace.reverse()
        self.tensors_accessed.create_tensor(
            data_ptr,
            stack_trace,
        )

    def _handle_memory_deallocation(self, data_ptr: DataPtr) -> None:
        self.tensors_accessed.ensure_tensor_exists(data_ptr)
        self.tensors_accessed.delete_tensor(data_ptr)

    def _handle_stream_creation(self, stream: StreamId) -> None:
        self.syncs.create_stream(stream)

    def _handle_device_synchronization(self) -> None:
        self.syncs.sync_all_streams()

    def _handle_stream_synchronization(self, stream: StreamId) -> None:
        self.syncs.all_streams_wait_for_stream(stream)

    def _handle_event_synchronization(self, event: EventId) -> None:
        self.syncs.all_streams_wait_for_event(event)


def zip_by_key(a: Dict[TK, TVa], b: Dict[TK, TVb]) -> Iterator[Tuple[TK, TVa, TVb]]:
    for arg, value in a.items():
        if arg in b:
            yield arg, value, b[arg]


def zip_arguments(

    schema: torch.FunctionSchema, args: Tuple[Any, ...], kwargs: Dict[str, Any]

) -> Iterator[Tuple[torch.Argument, Any]]:
    schema_args = schema.arguments[: len(args)]
    schema_kwargs = {arg.name: arg for arg in schema.arguments[len(args) :]}

    yield from zip(schema_args, args)

    for _, argument, value in zip_by_key(schema_kwargs, kwargs):
        yield (argument, value)


class ArgumentHandler:
    def __init__(self):
        self.dataptrs_read: Set[DataPtr] = set()
        self.dataptrs_written: Set[DataPtr] = set()
        self.tensor_aliases: Dict[DataPtr, List[str]] = dict()
        self.outputs: Set[DataPtr] = set()

    def _handle_argument(

        self,

        value: Any,

        is_write: bool,

        name: Optional[str] = None,

        is_output: bool = False,

    ) -> None:
        if isinstance(value, torch.Tensor) and value.is_cuda:
            data_ptr = value.data_ptr()
            if is_write:
                self.dataptrs_written.add(data_ptr)
            else:
                self.dataptrs_read.add(data_ptr)

            self.tensor_aliases.setdefault(data_ptr, [])
            if name is not None:
                self.tensor_aliases[data_ptr].append(name)
            if is_output:
                self.outputs.add(data_ptr)

    def parse_inputs(

        self,

        schema: torch.FunctionSchema,

        args: Tuple[Any, ...],

        kwargs: Dict[str, Any],

    ) -> None:
        for argument, value in zip_arguments(schema, args, kwargs):
            is_write = argument.alias_info is not None and argument.alias_info.is_write
            pytree.tree_map_(
                functools.partial(
                    self._handle_argument, is_write=is_write, name=argument.name
                ),
                value,
            )

    def parse_outputs(self, outputs: Any) -> None:
        pytree.tree_map_(
            functools.partial(self._handle_argument, is_write=True, is_output=True),
            outputs,
        )


class CUDASanitizerDispatchMode(TorchDispatchMode):
    def __init__(self):
        self.event_handler = EventHandler()
        torch._C._activate_cuda_trace()
        cuda_trace.register_callback_for_cuda_event_creation(
            self.event_handler._handle_event_creation
        )
        cuda_trace.register_callback_for_cuda_event_deletion(
            self.event_handler._handle_event_deletion
        )
        cuda_trace.register_callback_for_cuda_event_record(
            self.event_handler._handle_event_record
        )
        cuda_trace.register_callback_for_cuda_event_wait(
            self.event_handler._handle_event_wait
        )
        cuda_trace.register_callback_for_cuda_memory_allocation(
            self.event_handler._handle_memory_allocation
        )
        cuda_trace.register_callback_for_cuda_memory_deallocation(
            self.event_handler._handle_memory_deallocation
        )
        cuda_trace.register_callback_for_cuda_stream_creation(
            self.event_handler._handle_stream_creation
        )
        cuda_trace.register_callback_for_cuda_device_synchronization(
            self.event_handler._handle_device_synchronization
        )
        cuda_trace.register_callback_for_cuda_stream_synchronization(
            self.event_handler._handle_stream_synchronization
        )
        cuda_trace.register_callback_for_cuda_event_synchronization(
            self.event_handler._handle_event_synchronization
        )

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        if kwargs is None:
            kwargs = {}

        argument_handler = ArgumentHandler()
        argument_handler.parse_inputs(func._schema, args, kwargs)

        outputs = func(*args, **kwargs)

        argument_handler.parse_outputs(outputs)
        errors = self.event_handler._handle_kernel_launch(
            torch.cuda.current_stream().cuda_stream,
            argument_handler.dataptrs_read - argument_handler.dataptrs_written,
            argument_handler.dataptrs_written,
            argument_handler.outputs,
            func._schema,
            argument_handler.tensor_aliases,
        )
        if errors:
            for error in errors:
                print(error, file=sys.stderr)
            raise CUDASanitizerErrors(errors)

        return outputs


class CUDASanitizer:
    """Manages the lifetime of a CUDASanitizer dispatch mode object.



    The CUDASanitizer class wraps the entering/exiting functions of the dispatch mode

    context manager in the enable function/destructor, respectively. This is to

    explicitly set the lifetime of the dispatch mode object to that of the application.

    This approach was deemed more elegant than using the atexit module.

    """

    def __init__(self):
        self.dispatch = CUDASanitizerDispatchMode()
        self.enabled = False

    def enable(self):
        self.dispatch.__enter__()
        self.enabled = True

    def __del__(self):
        if self.enabled:
            self.dispatch.__exit__(None, None, None)


def enable_cuda_sanitizer():
    """Enable CUDA Sanitizer.



    The sanitizer will begin to analyze low-level CUDA calls invoked by torch functions

    for synchronization errors. All data races found will be printed to the standard

    error output along with stack traces of suspected causes. For best results, the

    sanitizer should be enabled at the very beginning of the program.

    """
    cuda_sanitizer.enable()


cuda_sanitizer = CUDASanitizer()