File size: 27,472 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
import abc
import collections
import contextlib
import functools
import logging
import threading
import weakref
from collections import defaultdict, namedtuple
from typing import (
    Any,
    Callable,
    cast,
    Deque,
    Dict,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
    Union,
)

import torch
from torch.autograd.variable import Variable
from torch.utils._python_dispatch import TorchDispatchMode
from torch.utils.hooks import RemovableHandle

log = logging.getLogger(__name__)


__all__ = [
    "saved_tensors_hooks",
    "save_on_cpu",
    "disable_saved_tensors_hooks",
    "register_multi_grad_hook",
    "allow_mutation_on_saved_tensors",
    "Node",
    "GradientEdge",
    "get_gradient_edge",
    "increment_version",
]


class Node(abc.ABC):
    @abc.abstractmethod
    def name(self) -> str:
        r"""Return the name.



        Example::



            >>> import torch

            >>> a = torch.tensor([0., 0., 0.], requires_grad=True)

            >>> b = a.clone()

            >>> assert isinstance(b.grad_fn, torch.autograd.graph.Node)

            >>> print(b.grad_fn.name())

            CloneBackward0

        """
        ...

    @property
    @abc.abstractmethod
    def next_functions(self) -> Tuple[Tuple[Optional["Node"], int], ...]:
        ...

    @abc.abstractmethod
    def metadata(self) -> dict:
        r"""Return the metadata."""
        ...

    @abc.abstractmethod
    def _register_hook_dict(self, tensor: torch.Tensor) -> None:
        ...

    @abc.abstractmethod
    def register_hook(self, fn: Callable[..., Any]) -> RemovableHandle:
        r"""Register a backward hook.



        The hook will be called every time a gradient with respect to the

        Node is computed. The hook should have the following signature::



            hook(grad_inputs: Tuple[Tensor], grad_outputs: Tuple[Tensor]) -> Tuple[Tensor] or None





        The hook should not modify its argument, but it can optionally return

        a new gradient which will be used in place of :attr:`grad_inputs`.



        This function returns a handle with a method ``handle.remove()``

        that removes the hook from the module.



        .. note::

            See :ref:`backward-hooks-execution` for more information on how when this hook

            is executed, and how its execution is ordered relative to other hooks.



        Example::



            >>> import torch

            >>> a = torch.tensor([0., 0., 0.], requires_grad=True)

            >>> b = a.clone()

            >>> assert isinstance(b.grad_fn, torch.autograd.graph.Node)

            >>> handle = b.grad_fn.register_hook(lambda gI, gO: (gO[0] * 2,))

            >>> b.sum().backward(retain_graph=True)

            >>> print(a.grad)

            tensor([2., 2., 2.])

            >>> handle.remove() # Removes the hook

            >>> a.grad = None

            >>> b.sum().backward(retain_graph=True)

            >>> print(a.grad)

            tensor([1., 1., 1.])

        """
        ...

    @abc.abstractmethod
    def register_prehook(self, fn: Callable[..., Any]) -> RemovableHandle:
        r"""Register a backward pre-hook.



        The hook will be called every time a gradient with respect to the

        Node is computed. The hook should have the following signature::



            hook(grad_outputs: Tuple[Tensor]) -> Tuple[Tensor] or None



        The hook should not modify its argument, but it can optionally return

        a new gradient which will be used in place of :attr:`grad_outputs`.



        This function returns a handle with a method ``handle.remove()``

        that removes the hook from the module.



        .. note::

            See :ref:`backward-hooks-execution` for more information on how when this hook

            is executed, and how its execution is ordered relative to other hooks.



        Example::



            >>> a = torch.tensor([0., 0., 0.], requires_grad=True)

            >>> b = a.clone()

            >>> assert isinstance(b.grad_fn, torch.autograd.graph.Node)

            >>> handle = b.grad_fn.register_prehook(lambda gI: (gI[0] * 2,))

            >>> b.sum().backward(retain_graph=True)

            >>> print(a.grad)

            tensor([2., 2., 2.])

            >>> handle.remove()

            >>> a.grad = None

            >>> b.sum().backward(retain_graph=True)

            >>> print(a.grad)

            tensor([1., 1., 1.])

        """
        ...

    @classmethod
    def __subclasshook__(cls, C):
        if cls is Node:
            if (
                C is not None and C is getattr(torch._C._functions, C.__name__, None)
            ) or issubclass(C, torch.autograd.function.BackwardCFunction):
                return True
        return NotImplemented


def _get_grad_fn_or_grad_acc(t):
    if t.requires_grad and t.grad_fn is None:
        return t.view_as(t).grad_fn.next_functions[0][0]
    else:
        return t.grad_fn


GradientEdge = namedtuple("GradientEdge", ("node output_nr"))
GradientEdge.__doc__ = """\

Object representing a given gradient edge within the autograd graph.

To get the gradient edge where a given Tensor gradient will be computed,

you can do ``edge = autograd.graph.get_gradient_edge(tensor)``.

"""


def get_gradient_edge(tensor):
    """Get the gradient edge for computing the gradient of the given Tensor.



    In particular, it is equivalent to call

    ``g = autograd.grad(loss, input)`` and ``g = autograd.grad(loss, get_gradient_edge(input))``.

    """
    if not tensor.requires_grad:
        raise RuntimeError(
            "It is not possible to get the gradient edge for a Tensor that does not require gradients"
        )
    grad_fn = _get_grad_fn_or_grad_acc(tensor)

    # Note that output_nr default to 0 which is the right value
    # for the AccumulateGrad node.
    return GradientEdge(grad_fn, tensor.output_nr)


def increment_version(tensor):
    """Update autograd metadata tracking whether the given Tensor was modified in place.



    This is to enable more accurate error checking within the autograd engine.

    It is already done automatically by PyTorch functions and within custom Function

    when mark_dirty() is called appropriately so you only need to call this explicitly

    if you are doing inplace operation on the Tensor data in a way that Pytorch doesn't

    know about. For example a custom kernel that reads the Tensor data_ptr and modifies

    the memory inplace based on this pointer.



    Note that incrementing the version counter multiple times for a single inplace operation

    is not problematic.

    """
    torch._C._increment_version(tensor)


class saved_tensors_hooks:
    """Context-manager that sets a pair of pack / unpack hooks for saved tensors.



    Use this context-manager to define how intermediary results of an operation

    should be packed before saving, and unpacked on retrieval.



    In that context, the ``pack_hook`` function will be called everytime an

    operation saves a tensor for backward (this includes intermediary results

    saved using

    :func:`~torch.autograd.function._ContextMethodMixin.save_for_backward` but

    also those recorded by a PyTorch-defined operation). The output of

    ``pack_hook`` is then stored in the computation graph instead of the

    original tensor.



    The ``unpack_hook`` is called when the saved tensor needs to be accessed,

    namely when executing :func:`torch.Tensor.backward()` or

    :func:`torch.autograd.grad()`. It takes as argument the *packed* object

    returned by ``pack_hook`` and should return a tensor which has the same

    content as the original tensor (passed as input to the corresponding

    ``pack_hook``).



    The hooks should have the following signatures:



        pack_hook(tensor: Tensor) -> Any



        unpack_hook(Any) -> Tensor



    where the return value of ``pack_hook`` is a valid input to ``unpack_hook``.



    In general, you want ``unpack_hook(pack_hook(t))`` to be equal to ``t`` in terms

    of value, size, dtype and device.



    Example::



        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)

        >>> def pack_hook(x):

        ...     print("Packing", x)

        ...     return x

        >>>

        >>> def unpack_hook(x):

        ...     print("Unpacking", x)

        ...     return x

        >>>

        >>> a = torch.ones(5, requires_grad=True)

        >>> b = torch.ones(5, requires_grad=True) * 2

        >>> with torch.autograd.graph.saved_tensors_hooks(pack_hook, unpack_hook):

        ...     y = a * b

        Packing tensor([1., 1., 1., 1., 1.], requires_grad=True)

        Packing tensor([2., 2., 2., 2., 2.], grad_fn=<MulBackward0>)

        >>> y.sum().backward()

        Unpacking tensor([1., 1., 1., 1., 1.], requires_grad=True)

        Unpacking tensor([2., 2., 2., 2., 2.], grad_fn=<MulBackward0>)



    .. warning ::

        Performing an inplace operation on the input to either hooks may lead

        to undefined behavior.



    .. warning ::

        Only one pair of hooks is allowed at a time. When recursively nesting this

        context-manager, only the inner-most pair of hooks will be applied.

    """

    def __init__(

        self,

        pack_hook: Callable[[torch.Tensor], Any],

        unpack_hook: Callable[[Any], torch.Tensor],

    ):
        self.pack_hook = pack_hook
        self.unpack_hook = unpack_hook

    def __enter__(self):
        torch._C._autograd._push_saved_tensors_default_hooks(
            self.pack_hook, self.unpack_hook
        )

    def __exit__(self, *args: object):
        torch._C._autograd._pop_saved_tensors_default_hooks()


class save_on_cpu(saved_tensors_hooks):
    """Context manager under which tensors saved by the forward pass will be stored on cpu, then retrieved for backward.



    When performing operations within this context manager, intermediary

    results saved in the graph during the forward pass will be moved to CPU,

    then copied back to the original device when needed for the backward pass.

    If the graph was already on CPU, no tensor copy is performed.



    Use this context-manager to trade compute for GPU memory usage (e.g.

    when your model doesn't fit in GPU memory during training).



    Args:

        pin_memory (bool): If ``True`` tensors will be saved to CPU pinned memory

                           during packing and copied to GPU asynchronously during unpacking.

                           Defaults to ``False``.

                           Also see :ref:`cuda-memory-pinning`.





    Example::



        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)

        >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)

        >>> a = torch.randn(5, requires_grad=True, device="cuda")

        >>> b = torch.randn(5, requires_grad=True, device="cuda")

        >>> c = torch.randn(5, requires_grad=True, device="cuda")

        >>>

        >>> def f(a, b, c):

        ...     prod_1 = a * b           # a and b are saved on GPU

        ...     with torch.autograd.graph.save_on_cpu():

        ...         prod_2 = prod_1 * c  # prod_1 and c are saved on CPU

        ...     y = prod_2 * a           # prod_2 and a are saved on GPU

        ...     return y

        >>>

        >>> y = f(a, b, c)

        >>> del a, b, c  # for illustration only

        >>> # the content of a, b, and prod_2 are still alive on GPU

        >>> # the content of prod_1 and c only live on CPU

        >>> y.sum().backward()  # all CPU tensors are moved back to GPU, for backward

        >>> # all intermediary tensors are released (deleted) after the call to backward



    """

    def __init__(self, pin_memory=False, device_type="cuda"):
        device_module = getattr(torch, device_type, torch.cuda)

        def pack_to_cpu(tensor):
            if not pin_memory:
                return (tensor.device, tensor.cpu())
            packed = torch.empty(
                tensor.size(),
                dtype=tensor.dtype,
                layout=tensor.layout,
                pin_memory=(device_module.is_available() and not tensor.is_sparse),
            )
            packed.copy_(tensor)
            return (tensor.device, packed)

        def unpack_from_cpu(packed):
            device, tensor = packed
            return tensor.to(device, non_blocking=pin_memory)

        super().__init__(pack_to_cpu, unpack_from_cpu)


@contextlib.contextmanager
def disable_saved_tensors_hooks(error_message):
    """Context-manager that disables the saved tensors default hooks feature.



    Useful for if you are creating a feature that does not work with saved

    tensors default hooks.



    Args:

        error_message (str): When saved tensors default hooks are used when they

                             have been are disabled, a RuntimeError with this

                             error message gets raised.



    Example::



        >>> # xdoctest: +SKIP(failing)

        >>> message = "saved tensors default hooks are disabled"

        >>> with torch.autograd.graph.disable_saved_tensors_hooks(message):

        ...     # Raises RuntimeError: saved tensors default hooks are disabled

        ...     with torch.autograd.graph.save_on_cpu():

        ...         pass



    """
    try:
        maybe_prev_message = (
            torch._C._autograd._saved_tensors_hooks_get_disabled_error_message()
        )
        torch._C._autograd._saved_tensors_hooks_disable(error_message)
        yield
    finally:
        # See NOTE: [disabled_error_message invariant]
        if maybe_prev_message is None:
            torch._C._autograd._saved_tensors_hooks_enable()
        else:
            torch._C._autograd._saved_tensors_hooks_disable(maybe_prev_message)


def register_multi_grad_hook(

    tensors: Sequence[torch.Tensor],

    fn: Union[

        Callable[[Sequence[Optional[torch.Tensor]]], None],

        Callable[[torch.Tensor], None],

    ],

    *,

    mode: str = "all",

):
    r"""Register a multi-grad backward hook.



    There are two supported modes: ``"all"`` and ``"any"``.



    Under the ``"all"`` mode, the hook will be called after gradients with respect to every tensor in

    :attr:`tensors` have been computed. If a tensor is in :attr:`tensors` but

    is not part of the graph, or if a tensor is not needed to compute the gradients

    for any ``inputs`` specified for the current ``.backward()`` or ``.grad()`` call,

    this tensor will be ignored and the hook will not wait for its gradient to be

    computed.



    After every non-ignored tensor's gradient has been computed, :attr:`fn` will be

    called with those gradients. ``None`` will be passed for tensors that did not

    have their gradients computed.



    Under the ``"any"`` mode, the hook will be called after the first gradient

    with respect to a tensor in :attr:`tensors` has been computed. The hook

    will be called with that gradient as its argument.



    The hook should not modify its arguments.



    This function returns a handle with a method ``handle.remove()`` that removes the hook.



    .. note::

        See :ref:`backward-hooks-execution` for more information on how when this hook

        is executed, and how its execution is ordered relative to other hooks.



    Example::



        >>> import torch

        >>>

        >>> a = torch.rand(2, 3, requires_grad=True)

        >>> b = torch.rand(2, 3, requires_grad=True)

        >>> c = a * b

        >>> d = a * b

        >>>

        >>> def fn(grads):

        ...     print([g is not None for g in grads])

        ...

        >>> torch.autograd.graph.register_multi_grad_hook((a, b, c, d), fn)

        >>>

        >>> c.sum().backward(retain_graph=True)

        [True, True, True, False]

        >>> c.sum().backward(inputs=(a,), retain_graph=True)

        [True, False, True, False]

        >>>

    """
    supported_modes = ("all", "any")
    if mode not in supported_modes:
        raise ValueError(f"Expects mode to be one of {supported_modes} but got {mode}")

    class Handle(RemovableHandle):
        handles: Tuple[RemovableHandle, ...]

        def __init__(self, handles: Tuple[RemovableHandle, ...]):
            self.handles = handles

        def remove(self):
            for handle in self.handles:
                handle.remove()

        def __getstate__(self):
            return self.handles

        def __setstate__(self, state):
            self.handles = state

    if mode == "all":
        count: Dict[int, int] = dict()
        nb_calls = None
        buffer: Dict[int, List[Optional[torch.Tensor]]] = dict()

        grad_fns = list(map(_get_grad_fn_or_grad_acc, tensors))
        len_tensors = len(tensors)

        def get_inner_hook(idx):
            def inner_hook(grad: torch.Tensor):
                nonlocal count, nb_calls, buffer, fn
                id = torch._C._current_graph_task_id()
                assert (
                    id != -1
                ), "expected this hook to be called inside a backward call"
                count[id] = count.get(id, 0)
                buffer[id] = buffer.get(id, [None] * len_tensors)

                if count[id] == 0:
                    # On the first call, compute the actual nb_calls and buffer
                    nb_calls = sum(torch._C._will_engine_execute_node(g) for g in grad_fns)  # type: ignore[attr-defined]

                buffer[id][idx] = grad
                count[id] += 1

                if count[id] == nb_calls:
                    fn = cast(Callable[[Sequence[Optional[torch.Tensor]]], None], fn)
                    fn(buffer[id])
                    del count[id]
                    del buffer[id]

            return inner_hook

        handles: Tuple[RemovableHandle] = tuple(
            t.register_hook(get_inner_hook(i)) for i, t in enumerate(tensors)
        )
    elif mode == "any":
        fn = cast(Callable[[torch.Tensor], None], fn)
        lock = threading.Lock()
        ran_hook: Dict[int, bool] = defaultdict(bool)

        @functools.wraps(fn)
        def wrapped_fn(grad: torch.Tensor):
            nonlocal ran_hook
            id = torch._C._current_graph_task_id()
            assert id != -1, "expected this hook to be called inside a backward call"
            with lock:
                prev, ran_hook[id] = ran_hook[id], True
            if prev:
                return
            fn(grad)

        handles = tuple(
            tensor.register_hook(wrapped_fn)
            for tensor in tensors
            if tensor.requires_grad
        )

    return Handle(handles)  # type: ignore[possibly-undefined]


# NOTE [Allow mutation on tensors saved for backward]
#
# 1. Tensor gets saved for backward
#    - remember the python object id and the version of the tensor
#    - remember aliasing information (data_ptr of base + version)
#    - save the original so we control its lifetime
# 2. Any time a tensor gets in-placed
#    - for each tensor aliased to it:
#      - check using its object id and version to see if it has been saved
#      - if it has been saved, clone it
#      - delete the reference to the original
# 3. during backward
#    - if the clone exists, the tensor must've been modified in-place
_allow_mutation_on_saved_tensors_enabled = False


def _get_tid(t) -> Tuple[int, int, int]:
    return (id(t), t.data_ptr(), t._version)


def _get_sid(t) -> Tuple[int, int]:
    return (t.data_ptr(), t._version)


class _Handle:
    pass


class _swap_with_cloned(saved_tensors_hooks):
    def __init__(self, ctx):
        def pack_hook(t):
            tid = _get_tid(t)
            sid = _get_sid(t)
            # Tensors saved for backward have an entry in _tid_to_weakhandle
            handle: Optional[_Handle] = None

            # Save aliasing information
            ctx.sid_to_tid[sid].add(tid)

            # NB: The same tensor (of the same version) can be saved multiple times
            if tid not in ctx.tid_to_weakhandle:
                handle = _Handle()
                ctx.tid_to_weakhandle[tid] = handle
                ctx.original[handle] = t
            else:
                # Store an additional strong reference to the handle
                handle = ctx.tid_to_weakhandle[tid]
            return handle

        def unpack_hook(tup):
            handle = tup
            error_msg = (
                "Trying to backward outside of the 'allow_mutation_on_saved_tensors' context"
                "in which the graph was originally recorded."
            )
            assert _allow_mutation_on_saved_tensors_enabled, error_msg
            if handle in ctx.cloned:
                res = ctx.cloned[handle]
            else:
                assert handle in ctx.original, error_msg
                res = ctx.original[handle]
            return res

        super().__init__(pack_hook, unpack_hook)


class _CloneArgBeforeMutateMode(TorchDispatchMode):
    def __init__(self, ctx):
        self.ctx = ctx

    def __torch_dispatch__(self, func, types, args=(), kwargs=None):
        kwargs = kwargs or {}

        for idx, arg in enumerate(func._schema.arguments):
            if arg.alias_info is not None and arg.alias_info.is_write:
                t = kwargs["out"] if arg.is_out else args[idx]
                tid = _get_tid(t)
                sid = _get_sid(t)
                ctx = self.ctx
                if sid in ctx.sid_to_tid:
                    for tid in ctx.sid_to_tid[sid]:
                        if tid not in ctx.tid_to_weakhandle:
                            # We know that if tid is in sid_to_tid, then it must also be in
                            # tid_to_weakhandle. However, it is possible for the tensor to be
                            # saved at one point, but cleared by backward before it is modified
                            # in-place. Consider the following example:
                            #
                            # >>> a = torch.randn(2, 3, requires_grad=True).clone()
                            # >>> out = (a**2).sum()
                            # >>> out.backward()
                            # >>> a.sin_()
                            continue
                        handle = ctx.tid_to_weakhandle[tid]
                        if handle in ctx.cloned:
                            # The same exact tensor has been cloned already
                            continue
                        ctx.cloned[handle] = ctx.original[handle].clone()
                        del ctx.original[handle]

        rs = func(*args, **kwargs)
        return rs


class _AllowMutationOnSavedContext:
    def __init__(self):
        self.cloned: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
        self.original: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
        self.tid_to_weakhandle: weakref.WeakValueDictionary = (
            weakref.WeakValueDictionary()
        )
        self.sid_to_tid: Dict[Tuple[int, int], Set[Tuple[int, int, int]]] = defaultdict(
            set
        )

    def clear(self):
        self.cloned.clear()
        self.original.clear()
        self.tid_to_weakhandle.clear()
        self.sid_to_tid.clear()


@contextlib.contextmanager
def allow_mutation_on_saved_tensors():
    """Context manager under which mutating tensors saved for backward is allowed.



    Under this context manager, tensors saved for backward are cloned on mutation,

    so the original version can still be used during backward. Normally, mutating a tensor

    saved for backward will result in an error raised when it's used during backward.



    To ensure the correct behavior, both the forward and backward should be run under

    the same context manager.



    returns:

        An _AllowMutationOnSavedContext object storing the state managed by this

        context manager. This object can be useful for debugging purposes. The state

        managed by the context manager is automatically cleared upon exiting.



    Example::



        >>> import torch

        >>> with torch.autograd.graph.allow_mutation_on_saved_tensors():

        ...     # forward

        ...     a = torch.ones(2, 3, requires_grad=True)

        ...     b = a.clone()

        ...     out = (b**2).sum()

        ...     b.sin_()

        ...     # backward

        ...     out.sum().backward()

        ...

        tensor([[0.8415, 0.8415, 0.8415],

                [0.8415, 0.8415, 0.8415]], grad_fn=<SinBackward0>)

    """
    global _allow_mutation_on_saved_tensors_enabled

    ctx = _AllowMutationOnSavedContext()

    with _swap_with_cloned(ctx), _CloneArgBeforeMutateMode(ctx):
        try:
            if _allow_mutation_on_saved_tensors_enabled:
                raise RuntimeError(
                    "allow_mutation_on_saved_tensors contexts cannot be nested"
                )
            _allow_mutation_on_saved_tensors_enabled = True
            yield ctx
        finally:
            ctx.clear()
            _allow_mutation_on_saved_tensors_enabled = False


def _register_logging_hooks_on_whole_graph(t_outputs: List[torch.Tensor]):
    grad_fns = list(map(_get_grad_fn_or_grad_acc, t_outputs))

    def iter_graph(roots):
        if not roots:
            return
        seen = set()
        q: Deque = collections.deque()
        for node in roots:
            if node is not None:
                seen.add(node)
                q.append(node)

        while q:
            node = q.popleft()
            for fn, _idx in node.next_functions:
                if fn in seen or fn is None:
                    continue
                seen.add(fn)
                q.append(fn)

            yield node

    def fmt(t):
        # Avoid circular import
        from torch.testing._internal.common_utils import dtype_abbrs

        if t is None:
            return "None"
        return f"{dtype_abbrs[t.dtype]}[{', '.join(map(str, t.shape))}]"

    def prehook(grad_outputs):
        node = torch._C._current_autograd_node()
        grad_outputs_str = f"[{','.join(fmt(t) for t in grad_outputs)}]"
        log_str = f"Executing: {node} with grad_outputs: {grad_outputs_str}"
        log.debug(log_str)

    handles = []
    for node in iter_graph(grad_fns):
        handles.append(node.register_prehook(prehook))

    def unregister_hooks():
        for handle in handles:
            handle.remove()

    return unregister_hooks


def _engine_run_backward(t_outputs, *args, **kwargs):
    attach_logging_hooks = log.getEffectiveLevel() <= logging.DEBUG
    if attach_logging_hooks:
        unregister_hooks = _register_logging_hooks_on_whole_graph(t_outputs)
    try:
        return Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
            t_outputs, *args, **kwargs
        )  # Calls into the C++ engine to run the backward pass
    finally:
        if attach_logging_hooks:
            unregister_hooks()  # type: ignore[possibly-undefined]