File size: 92,857 Bytes
c61ccee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
import collections
import functools
import warnings
from itertools import product
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union

import torch
import torch.testing
from torch._vmap_internals import _vmap, vmap
from torch.overrides import is_tensor_like
from torch.types import _TensorOrTensors

# Note: `get_*_jacobian` functions are added here even though we didn't intend to make them public
# since they have been exposed from before we added `__all__`  and we already maintain BC for them
# We should eventually deprecate them and remove them from `__all__`
__all__ = [
    "gradcheck",
    "gradgradcheck",
    "GradcheckError",
    "get_numerical_jacobian",
    "get_analytical_jacobian",
    "get_numerical_jacobian_wrt_specific_input",
]


class GradcheckError(RuntimeError):
    r"""Error raised by :func:`gradcheck` and :func:`gradgradcheck`."""

    pass


def _is_sparse_compressed_tensor(obj: torch.Tensor):
    return obj.layout in {
        torch.sparse_csr,
        torch.sparse_csc,
        torch.sparse_bsr,
        torch.sparse_bsc,
    }


def _is_sparse_any_tensor(obj: torch.Tensor):
    return _is_sparse_compressed_tensor(obj) or obj.layout is torch.sparse_coo


def _is_float_or_complex_tensor(obj):
    return is_tensor_like(obj) and (obj.is_floating_point() or obj.is_complex())


def _allocate_jacobians_with_inputs(

    input_tensors: Tuple, numel_output

) -> Tuple[torch.Tensor, ...]:
    # Makes zero-filled tensors from inputs. If `numel_output` is not None, for
    # each tensor in `input_tensors`, returns a new zero-filled tensor with height
    # of `t.numel` and width of `numel_output`. Otherwise, for each tensor, returns
    # a 1-d tensor with size `(t.numel,)`. Each new tensor will be strided and have
    # the same dtype and device as those of the corresponding input.
    out: List[torch.Tensor] = []
    for t in input_tensors:
        if _is_float_or_complex_tensor(t) and t.requires_grad:
            out.append(t.new_zeros((t.numel(), numel_output), layout=torch.strided))
    return tuple(out)


def _allocate_jacobians_with_outputs(

    output_tensors: Tuple, numel_input, dtype=None, device=None

) -> Tuple[torch.Tensor, ...]:
    # Makes zero-filled tensors from outputs. If `dim` is not None, for each tensor
    # in `output_tensors`, returns a new zero-filled tensor with height of `dim` and
    # width of `t.numel`. Otherwise, for each tensor, returns a 1-d tensor with size
    # (t.numel,).
    out: List[torch.Tensor] = []
    options = {"dtype": dtype, "device": device, "layout": torch.strided}
    for t in output_tensors:
        if _is_float_or_complex_tensor(t):
            out.append(t.new_zeros((numel_input, t.numel()), **options))
    return tuple(out)


def _iter_tensors(

    x: Union[torch.Tensor, Iterable[torch.Tensor]], only_requiring_grad: bool = False

) -> Iterable[torch.Tensor]:
    if is_tensor_like(x):
        # mypy doesn't narrow type of `x` to torch.Tensor
        if x.requires_grad or not only_requiring_grad:  # type: ignore[union-attr]
            yield x  # type: ignore[misc]
    elif isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
        for elem in x:
            yield from _iter_tensors(elem, only_requiring_grad)


def _densify(x):
    # return a copy of sparse x with all unspecified elements
    # "replaced" with zero-valued elements
    if isinstance(x, (list, tuple)):
        return type(x)(map(_densify, x))
    elif not is_tensor_like(x) or x.layout in {torch.strided, torch._mkldnn}:  # type: ignore[attr-defined] # no attr _mkldnn
        return x
    elif x.layout is torch.sparse_coo:
        device = x.device
        indices_dtype = x._indices().dtype
        tmp = torch.ones(x.shape[: x.sparse_dim()], dtype=torch.int8, device=device)
        indices = tmp.nonzero().t().to(dtype=indices_dtype)
        values = torch.zeros(
            (tmp.numel(), *x.shape[x.sparse_dim() :]), dtype=x.dtype, device=device
        )
        x_coalesced = x.detach().coalesce()
        if x_coalesced.numel() > 0:
            stride = tmp.stride()
            flat_indices = (
                x_coalesced.indices()
                .mul(
                    torch.tensor(stride, dtype=indices_dtype, device=device).unsqueeze(
                        1
                    )
                )
                .sum(0)
            )
            values[flat_indices] = x_coalesced.values()
        return (
            torch.sparse_coo_tensor(indices, values, x.shape)
            ._coalesced_(True)
            .requires_grad_(x.requires_grad)
        )
    elif _is_sparse_compressed_tensor(x):
        blocksize = (
            x.values().shape[1:3]
            if x.layout in {torch.sparse_bsr, torch.sparse_bsc}
            else None
        )
        compressed_indices = (
            x.crow_indices()
            if x.layout in {torch.sparse_csr, torch.sparse_bsr}
            else x.ccol_indices()
        )
        # We'll use intermediate sparse COO for simplicity
        r = _densify(x.detach().to_sparse(layout=torch.sparse_coo)).to_sparse(
            layout=x.layout, blocksize=blocksize
        )
        # Check that all elements are specified also after `to_sparse` op:
        dense_numel = r.values().numel() // max(1, r.values().shape[0])
        batch_numel = compressed_indices.numel() // compressed_indices.shape[-1]
        sparse_numel = r.numel() // max(1, dense_numel * batch_numel)
        if sparse_numel != r._nnz():
            raise AssertionError(
                f"{x.layout} densify failed: expected nnz={sparse_numel} but got {r._nnz()}"
            )
        return r.requires_grad_(x.requires_grad)
    elif _is_sparse_any_tensor(x):
        raise NotImplementedError(x.layout)
    return x


def _iter_tensor(x_tensor):
    # (Only used for slow gradcheck) Returns a generator that yields the following
    # elements at each iteration:
    #  1) a tensor: the same tensor is returned across all iterations. The tensor
    #     is not the same as the original x_tensor as given as input - it is
    #     prepared so that it can be modified in-place. Depending on whether the
    #     input tensor is strided, sparse, or dense, the returned tensor may or may
    #     not share storage with x_tensor.
    #  2) a tuple of indices that can be used with advanced indexing (yielded in
    #     dictionary order)
    #  3) flattened index that will be used to index into the Jacobian tensor
    #
    # For a tensor t with size (2, 2), _iter_tensor yields:
    #     `x, (0, 0), 0`, `x, (0, 1), 1`, `x, (1, 0), 2`, `x, (1, 1), 3`
    #
    # where x is the t.data of the original tensor. Perturbing the entry of x
    # at index (1, 1) yields the 3rd column of the overall Jacobian matrix.
    if _is_sparse_any_tensor(x_tensor):

        def get_stride(size):
            dim = len(size)
            tmp = 1
            stride = [0] * dim
            for i in reversed(range(dim)):
                stride[i] = tmp
                tmp *= size[i]
            return stride

        x_nnz = x_tensor._nnz()
        x_size = list(x_tensor.size())
        if x_tensor.layout is torch.sparse_coo:
            x_indices = x_tensor._indices().t()
            x_values = x_tensor._values()
        elif x_tensor.layout is torch.sparse_csr:
            x_indices = torch._convert_indices_from_csr_to_coo(
                x_tensor.crow_indices(), x_tensor.col_indices()
            ).t()
            x_values = x_tensor.values()
        elif x_tensor.layout is torch.sparse_csc:
            x_indices = torch._convert_indices_from_csr_to_coo(
                x_tensor.ccol_indices(), x_tensor.row_indices(), transpose=True
            ).t()
            x_values = x_tensor.values()
        elif x_tensor.layout is torch.sparse_bsr:
            x_block_values = x_tensor.values()
            x_blocksize = x_block_values.size()[1:3]
            x_indices = (
                torch._convert_indices_from_csr_to_coo(
                    x_tensor.crow_indices(), x_tensor.col_indices()
                )
                .repeat_interleave(x_blocksize[0] * x_blocksize[1], 1)
                .mul_(torch.tensor(x_blocksize, device=x_tensor.device).reshape(2, 1))
                .add_(
                    torch.stack(
                        torch.where(torch.ones(x_blocksize, device=x_tensor.device))
                    ).repeat(1, x_nnz)
                )
                .t()
            )
            x_values = x_block_values.flatten(0, 2)
            x_nnz = x_values.size(0)
        elif x_tensor.layout is torch.sparse_bsc:
            x_block_values = x_tensor.values()
            x_blocksize = x_block_values.size()[1:3]
            x_indices = (
                torch._convert_indices_from_csr_to_coo(
                    x_tensor.ccol_indices(), x_tensor.row_indices(), transpose=True
                )
                .repeat_interleave(x_blocksize[0] * x_blocksize[1], 1)
                .mul_(torch.tensor(x_blocksize, device=x_tensor.device).reshape(2, 1))
                .add_(
                    torch.stack(
                        torch.where(torch.ones(x_blocksize, device=x_tensor.device))
                    ).repeat(1, x_nnz)
                )
                .t()
            )
            x_values = x_block_values.flatten(0, 2)
            x_nnz = x_values.size(0)
        else:
            raise NotImplementedError(f"_iter_tensor for {x_tensor.layout} input")
        x_stride = get_stride(x_size)
        # Use .data here to get around the version check
        x_values = x_values.data
        for i in range(x_nnz):
            x_value = x_values[i]
            for x_idx in product(*[range(m) for m in x_values.size()[1:]]):
                indices = x_indices[i].tolist() + list(x_idx)
                d_idx = sum(indices[k] * x_stride[k] for k in range(len(x_size)))
                yield x_value, x_idx, d_idx
    elif x_tensor.layout == torch._mkldnn:  # type: ignore[attr-defined]
        for d_idx, x_idx in enumerate(product(*[range(m) for m in x_tensor.size()])):
            # this is really inefficient, but without indexing implemented, there's
            # not really a better way than converting back and forth
            x_tensor_dense = x_tensor.to_dense()
            yield x_tensor_dense, x_idx, d_idx
    else:
        # Use .data here to get around the version check
        x_tensor = x_tensor.data
        for d_idx, x_idx in enumerate(product(*[range(m) for m in x_tensor.size()])):
            yield x_tensor, x_idx, d_idx


def _get_numerical_jacobian(

    fn, inputs, outputs=None, target=None, eps=1e-3, is_forward_ad=False

) -> List[Tuple[torch.Tensor, ...]]:
    """Compute the numerical Jacobian of `fn(inputs)` with respect to `target`.



    If not specified, targets are the input. Returns M * N Jacobians where N is the

    number of tensors in target that require grad and M is the number of non-integral

    outputs.



    Args:

        fn: the function to compute the jacobian for

        inputs: inputs to `fn`

        outputs: provide precomputed outputs to avoid one extra invocation of fn

        target: the Tensors wrt whom Jacobians are calculated (default=`inputs`)

        eps: the magnitude of the perturbation during finite differencing

             (default=`1e-3`)

        is_forward_ad: if this numerical jacobian is computed to be checked wrt

                       forward AD gradients (this is used for error checking only)



    Returns:

        A list of M N-tuples of tensors



    Note that `target` may not even be part of `input` to `fn`, so please be

    **very careful** in this to not clone `target`.

    """
    jacobians: List[Tuple[torch.Tensor, ...]] = []
    if outputs is None:
        outputs = _as_tuple(fn(*_as_tuple(inputs)))
    if not is_forward_ad and any(o.is_complex() for o in outputs):
        raise ValueError(
            "Expected output to be non-complex. get_numerical_jacobian no "
            "longer supports functions that return complex outputs."
        )
    if target is None:
        target = inputs
    inp_indices = [
        i for i, a in enumerate(target) if is_tensor_like(a) and a.requires_grad
    ]
    for i, (inp, inp_idx) in enumerate(zip(_iter_tensors(target, True), inp_indices)):
        jacobians += [
            get_numerical_jacobian_wrt_specific_input(
                fn,
                inp_idx,
                inputs,
                outputs,
                eps,
                input=inp,
                is_forward_ad=is_forward_ad,
            )
        ]
    return jacobians


def get_numerical_jacobian(fn, inputs, target=None, eps=1e-3, grad_out=1.0):
    """Compute the numerical Jacobian for a given fn and its inputs.



    This is a Deprecated API.



    Args:

        fn: the function to compute the Jacobian for (must take inputs as a tuple)

        input: input to `fn`

        target: the Tensors wrt whom Jacobians are calculated (default=`input`)

        eps: the magnitude of the perturbation during finite differencing

             (default=`1e-3`)



    Returns:

        A list of Jacobians of `fn` (restricted to its first output) with respect to

        each input or target, if provided.



    Note that `target` may not even be part of `input` to `fn`, so please be

    **very careful** in this to not clone `target`.

    """
    warnings.warn(
        "get_numerical_jacobian was part of PyTorch's private API and not "
        "meant to be exposed. We are deprecating it and it will be removed "
        "in a future version of PyTorch. If you have a specific use for "
        "this or feature request for this to be a stable API, please file "
        "us an issue at https://github.com/pytorch/pytorch/issues/new"
    )
    if (
        grad_out != 1.0
    ):  # grad_out param is only kept for backward compatibility reasons
        raise ValueError(
            "Expected grad_out to be 1.0. get_numerical_jacobian no longer "
            "supports values of grad_out != 1.0."
        )

    def fn_pack_inps(*inps):
        return fn(inps)

    jacobians = _get_numerical_jacobian(fn_pack_inps, inputs, None, target, eps)

    return tuple(jacobian_for_each_output[0] for jacobian_for_each_output in jacobians)


def _compute_numerical_gradient(fn, entry, v, norm_v, nbhd_checks_fn):
    # Computes numerical directional derivative as finite difference
    # of function `fn` at input `entry`, perturbed by vector `v`.
    if _is_sparse_compressed_tensor(entry):
        # sparse compressed tensors don't implement sub/add/copy_
        # yet. However, in non-masked semantics context entry and v
        # have the same sparse indices ...
        assert entry.layout == v.layout, (entry.layout, v.layout)
        assert entry._nnz() == v._nnz(), (entry._nnz(), v._nnz(), entry.shape)
        # ... the finite differencing can be performed on values only:
        entry = entry.values()
        v = v.values()
        # we'll detach to avoid backward computations that sparse
        # tensors have limited support for.
        entry = entry.detach()

    orig = entry.clone()
    entry.copy_(orig - v)
    outa = fn()
    entry.copy_(orig + v)
    outb = fn()
    entry.copy_(orig)

    def compute(a, b):
        nbhd_checks_fn(a, b)
        ret = (b - a) / (2 * norm_v)  # use central difference approx
        return ret.detach().reshape(-1)

    return tuple(compute(a, b) for (a, b) in zip(outa, outb))


def _compute_numerical_jvps_wrt_specific_input(

    jvp_fn, delta, input_is_complex, is_forward_ad=False

) -> List[torch.Tensor]:
    # Computing the jacobian only works for real delta
    # For details on the algorithm used here, refer:
    # Section 3.5.3 https://arxiv.org/pdf/1701.00392.pdf
    # s = fn(z) where z = x for real valued input
    # and z = x + yj for complex valued input
    jvps: List[torch.Tensor] = []
    ds_dx_tup = jvp_fn(delta[0] if isinstance(delta, tuple) else delta)

    if input_is_complex:  # C -> R
        ds_dy_tup = (
            jvp_fn(delta[1] * 1j) if isinstance(delta, tuple) else jvp_fn(delta * 1j)
        )
        for ds_dx, ds_dy in zip(ds_dx_tup, ds_dy_tup):
            assert not ds_dx.is_complex()
            # conjugate wirtinger derivative
            conj_w_d = ds_dx + ds_dy * 1j
            jvps.append(conj_w_d)
    else:
        for ds_dx in ds_dx_tup:  # R -> R or (R -> C for the forward AD case)
            assert is_forward_ad or not ds_dx.is_complex()
            jvps.append(ds_dx)
    return jvps


def _combine_jacobian_cols(

    jacobians_cols: Dict[int, List[torch.Tensor]], outputs, input, numel

) -> Tuple[torch.Tensor, ...]:
    # jacobian_cols maps column_idx -> output_idx -> single column of jacobian Tensor
    # we return a list that maps output_idx -> full jacobian Tensor
    jacobians = _allocate_jacobians_with_outputs(
        outputs, numel, dtype=input.dtype if input.dtype.is_complex else None
    )
    for i, jacobian in enumerate(jacobians):
        for k, v in jacobians_cols.items():
            jacobian[k] = v[i]
    return jacobians


def _prepare_input(

    input: torch.Tensor, maybe_perturbed_input: Optional[torch.Tensor], fast_mode=False

) -> torch.Tensor:
    # Prepares the inputs to be passed into the function while including the new
    # modified input.
    if input.layout == torch._mkldnn:  # type: ignore[attr-defined] # no attr _mkldnn
        # Convert back to mkldnn
        if maybe_perturbed_input is not None:
            return maybe_perturbed_input.to_mkldnn()
        else:
            return input
    elif _is_sparse_any_tensor(input):
        if fast_mode and maybe_perturbed_input is not None:
            # entry is already a "cloned" version of the original tensor
            # thus changes to entry are not reflected in the input
            return maybe_perturbed_input
        else:
            return input
    else:
        # We cannot use entry (input.data) if we want gradgrad to work because
        # fn (in the gradgrad case) needs to compute grad wrt input
        return input


def _check_outputs_same_dtype_and_shape(output1, output2, eps, idx=None) -> None:
    # Check that the returned outputs don't have different dtype or shape when you
    # perturb the input
    on_index = "on index {idx} " if idx is not None else ""
    assert output1.shape == output2.shape, (
        f"Expected `func` to return outputs with the same shape"
        f" when inputs are perturbed {on_index}by {eps}, but got:"
        f" shapes {output1.shape} and {output2.shape}."
    )
    assert output1.dtype == output2.dtype, (
        f"Expected `func` to return outputs with the same dtype"
        f" when inputs are perturbed {on_index}by {eps}, but got:"
        f" dtypes {output1.dtype} and {output2.dtype}."
    )


def get_numerical_jacobian_wrt_specific_input(

    fn, input_idx, inputs, outputs, eps, input=None, is_forward_ad=False

) -> Tuple[torch.Tensor, ...]:
    # Computes the numerical jacobians wrt to a single input. Returns N jacobian
    # tensors, where N is the number of outputs. We use a dictionary for
    # jacobian_cols because indices aren't necessarily consecutive for sparse inputs
    # When we perturb only a single element of the input tensor at a time, the jvp
    # is equivalent to a single col of the Jacobian matrix of fn.
    jacobian_cols: Dict[int, List[torch.Tensor]] = {}
    input = inputs[input_idx] if input is None else input
    assert input.requires_grad
    for x, idx, d_idx in _iter_tensor(input):
        wrapped_fn = _with_prepare_inputs(fn, inputs, input_idx, x)
        input_to_perturb = x[idx]
        nbhd_checks_fn = functools.partial(
            _check_outputs_same_dtype_and_shape, idx=idx, eps=eps
        )
        jvp_fn = _get_numerical_jvp_fn(
            wrapped_fn, input_to_perturb, eps, nbhd_checks_fn
        )
        jacobian_cols[d_idx] = _compute_numerical_jvps_wrt_specific_input(
            jvp_fn, eps, x.is_complex(), is_forward_ad
        )
    return _combine_jacobian_cols(jacobian_cols, outputs, input, input.numel())


def _get_analytical_jacobian_forward_ad(

    fn, inputs, outputs, *, check_grad_dtypes=False, all_u=None

) -> Tuple[Tuple[torch.Tensor, ...], ...]:
    """Compute the analytical Jacobian using forward mode AD of `fn(inputs)` using forward mode AD with respect to `target`.



    Return N * M Jacobians where N is the number of tensors in target that require grad and

    M is the number of non-integral outputs.

    Contrary to other functions here, this function requires "inputs" to actually be used by the function.

    The computed value is expected to be wrong if the function captures the inputs by side effect instead of

    using the passed ones (many torch.nn tests do this).



    Args:

        fn: the function to compute the jacobian for

        inputs: inputs to `fn`

        outputs: provide precomputed outputs to avoid one extra invocation of fn

        check_grad_dtypes: if True, will check that the gradient dtype are valid

        all_u (optional): if provided, the Jacobian will be right multiplied with this vector



    Returns:

        A tuple of M N-tuples of tensors

    """
    # To avoid early import issues
    fwAD = torch.autograd.forward_ad

    tensor_inputs = tuple(i for i in inputs if is_tensor_like(i) and i.requires_grad)

    if any(i.is_complex() for i in tensor_inputs):
        raise ValueError(
            "Expected inputs to be non-complex for _get_analytical_jacobian_forward_ad."
        )

    if all_u:
        jacobians = tuple(
            _allocate_jacobians_with_outputs(outputs, 1) for i in tensor_inputs
        )
    else:
        jacobians = tuple(
            _allocate_jacobians_with_outputs(outputs, i.numel()) for i in tensor_inputs
        )

    with fwAD.dual_level():
        fw_grads = []
        dual_inputs = []
        for i, inp in enumerate(inputs):
            if is_tensor_like(inp) and inp.requires_grad:
                if inp.layout == torch._mkldnn:  # type: ignore[attr-defined]
                    raise ValueError(
                        "MKLDNN inputs are not support for forward AD gradcheck."
                    )

                inp = fwAD.make_dual(inp.detach(), torch.zeros_like(inp))
                # If inp is a differentiable view, the dual might not be the tangent given to
                # make_dual, so read it explicitly from the dual tensor
                fw_grads.append(fwAD.unpack_dual(inp)[1])
            dual_inputs.append(inp)

        if all_u:
            # Do the full reduction in one pass
            # To be consistent with numerical evaluation, we actually compute one reduction per input
            for i, (fw_grad, u) in enumerate(zip(fw_grads, all_u)):
                fw_grad.copy_(u.view_as(fw_grad))
                raw_outputs = _as_tuple(fn(*dual_inputs))
                dual_outputs = filter(_is_float_or_complex_tensor, raw_outputs)
                for index_o, d_o in enumerate(dual_outputs):
                    val, res = fwAD.unpack_dual(d_o)
                    if (
                        check_grad_dtypes
                        and res is not None
                        and val.is_complex() != res.is_complex()
                    ):
                        raise GradcheckError("Forward AD gradient has dtype mismatch.")

                    # Remove extra dimension of size 1 corresponding to the reduced input
                    jacobians[i][index_o].squeeze_(0)
                    if res is None:
                        jacobians[i][index_o].zero_()
                    else:
                        jacobians[i][index_o].copy_(res.reshape(-1))
                fw_grad.zero_()
        else:
            # Reconstruct the full Jacobian column by column
            for i, fw_grad in enumerate(fw_grads):
                for lin_idx, grad_idx in enumerate(
                    product(*[range(m) for m in fw_grad.size()])
                ):
                    fw_grad[grad_idx] = 1.0
                    raw_outputs = _as_tuple(fn(*dual_inputs))
                    dual_outputs = filter(_is_float_or_complex_tensor, raw_outputs)
                    for index_o, d_o in enumerate(dual_outputs):
                        val, res = fwAD.unpack_dual(d_o)
                        if (
                            check_grad_dtypes
                            and res is not None
                            and val.is_complex() != res.is_complex()
                        ):
                            raise GradcheckError(
                                "Forward AD gradient has dtype mismatch."
                            )

                        if res is None:
                            jacobians[i][index_o][lin_idx].zero_()
                        else:
                            jacobians[i][index_o][lin_idx].copy_(res.reshape(-1))
                    fw_grad[grad_idx] = 0.0

    return jacobians


def _get_input_to_perturb(input):
    # Prepare the input so that it can be modified in-place and do certain
    # operations that require the tensor to have strides. If fast_mode=False,
    # _iter_tensor would handle the below cases:
    if input.layout == torch._mkldnn:  # type: ignore[attr-defined] # no attr _mkldnn
        # Convert to dense so we can perform operations that require strided tensors
        input_to_perturb = input.to_dense()
    elif _is_sparse_any_tensor(input):
        # Clone because input may require grad, and copy_ calls resize_,
        # which is not allowed for .data
        input_to_perturb = input.clone()
    else:
        input_to_perturb = input.data
    return input_to_perturb


def _with_prepare_inputs(fn, inputs, input_idx, input_to_perturb, fast_mode=False):
    # Wraps `fn` so that its inputs are already supplied
    def wrapped_fn():
        inp = tuple(
            _prepare_input(a, input_to_perturb if i == input_idx else None, fast_mode)
            if is_tensor_like(a)
            else a
            for i, a in enumerate(_as_tuple(inputs))
        )
        return tuple(a.clone() for a in _as_tuple(fn(*inp)))

    return wrapped_fn


def _get_numerical_jvp_fn(wrapped_fn, input_to_perturb, eps, nbhd_checks_fn):
    # Wraps jvp_fn so that certain arguments are already supplied
    def jvp_fn(delta):
        return _compute_numerical_gradient(
            wrapped_fn, input_to_perturb, delta, eps, nbhd_checks_fn
        )

    return jvp_fn


def _reshape_tensor_or_tuple(u, shape):
    # We don't need to reshape when input corresponding to u is sparse
    if isinstance(u, tuple):
        if not _is_sparse_any_tensor(u[0]):
            return (u[0].reshape(shape), u[1].reshape(shape))
    else:
        if not _is_sparse_any_tensor(u):
            return u.reshape(shape)
    return u


def _mul_tensor_or_tuple(u, k):
    if isinstance(u, tuple):
        return (k * u[0], k * u[1])
    else:
        return k * u


def _get_numerical_jvp_wrt_specific_input(

    fn, input_idx, inputs, u, eps, is_forward_ad=False

) -> List[torch.Tensor]:
    input = inputs[input_idx]
    input_to_perturb = _get_input_to_perturb(input)
    wrapped_fn = _with_prepare_inputs(fn, inputs, input_idx, input_to_perturb, True)
    nbhd_checks_fn = functools.partial(_check_outputs_same_dtype_and_shape, eps=eps)
    jvp_fn = _get_numerical_jvp_fn(wrapped_fn, input_to_perturb, eps, nbhd_checks_fn)
    u = _reshape_tensor_or_tuple(u, input_to_perturb.shape)
    u = _mul_tensor_or_tuple(u, eps)
    return _compute_numerical_jvps_wrt_specific_input(
        jvp_fn, u, input.is_complex(), is_forward_ad
    )


def _get_numerical_vJu(

    fn, inputs, inp_indices, func_out, all_u, all_v, eps, is_forward_ad

):
    # Note that all_v can also be None, in that case, this function only computes Ju.
    reduced_jacobians: List[List[torch.Tensor]] = []
    for i, (inp_idx, u) in enumerate(zip(inp_indices, all_u)):
        all_Ju = _get_numerical_jvp_wrt_specific_input(
            fn, inp_idx, inputs, u, eps, is_forward_ad
        )
        # Filter out the Ju for non floating point outputs
        filtered_Ju = []
        func_out = _as_tuple(func_out)
        assert len(all_Ju) == len(func_out)
        for Ju, output in zip(all_Ju, func_out):
            if _is_float_or_complex_tensor(output):
                filtered_Ju.append(Ju)
            else:
                # TODO: handle the other Ju
                pass
        if all_v is not None:
            jacobian_scalars: List[torch.Tensor] = []
            for v, Ju in zip(all_v, filtered_Ju):
                jacobian_scalars.append(_dot_with_type_promotion(v, Ju))
            reduced_jacobians.append(jacobian_scalars)
        else:
            reduced_jacobians.append(filtered_Ju)
    return reduced_jacobians


def _check_jacobians_equal(j1, j2, atol):
    # Check whether the max difference between two Jacobian tensors are within some
    # tolerance `atol`.
    for j1_x, j2_x in zip(j1, j2):
        if j1_x.numel() != 0 and (j1_x - j2_x).abs().max() > atol:
            return False
    return True


def _stack_and_check_tensors(

    list_of_list_of_tensors, inputs, numel_outputs

) -> Tuple[Tuple[torch.Tensor, ...], bool, bool]:
    # For the ith tensor in the inner list checks whether it has the same size and
    # dtype as the ith differentiable input.
    out_jacobians = _allocate_jacobians_with_inputs(inputs, numel_outputs)
    diff_input_list = list(_iter_tensors(inputs, True))
    correct_grad_sizes = True
    correct_grad_types = True
    for i, tensor_list in enumerate(list_of_list_of_tensors):
        inp = diff_input_list[i]
        out_jacobian = out_jacobians[i]
        for j, tensor in enumerate(tensor_list):
            if tensor is not None and tensor.size() != inp.size():
                correct_grad_sizes = False
            elif tensor is not None and tensor.dtype != inp.dtype:
                correct_grad_types = False
            if tensor is None:
                out_jacobian[:, j].zero_()
            else:
                dense = (
                    tensor.to_dense() if not tensor.layout == torch.strided else tensor
                )
                assert out_jacobian[:, j].numel() == dense.numel()
                out_jacobian[:, j] = dense.reshape(-1)
    return out_jacobians, correct_grad_sizes, correct_grad_types


FAILED_NONDET_MSG = """\n

NOTE: If your op relies on non-deterministic operations i.e., it is listed here:

https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html

this failure might be expected.



If you are adding a new operator, please file an issue and then use one of the

workarounds. The workaround depends on how your test invokes gradcheck/gradgradcheck.

If the test

- manually invokes gradcheck/gradgradcheck, then call gradcheck/gradgradcheck

  with `nondet_tol=<tol>` as a keyword argument.

- is OpInfo-based (e.g., in test_ops_gradients.py), then modify the OpInfo for the test

  to have `gradcheck_nondet_tol=<tol>`.

- is a Module test (e.g., in common_nn.py), then modify the corresponding

  module_test entry to have `gradcheck_nondet_tol=<tol>`

"""


def _check_analytical_jacobian_attributes(

    inputs, output, nondet_tol, check_grad_dtypes, fast_mode=False, v=None

) -> Tuple[torch.Tensor, ...]:
    # This is used by both fast and slow mode:
    #  - For slow mode, vjps[i][j] is the jth row of the Jacobian wrt the ith
    #    input.
    #  - For fast mode, vjps[i][0] is a linear combination of the rows
    #    of the Jacobian wrt the ith input
    diff_input_list = list(_iter_tensors(inputs, True))

    def vjp_fn(grad_output):
        return torch.autograd.grad(
            output, diff_input_list, grad_output, retain_graph=True, allow_unused=True
        )

    # Compute everything twice to check for nondeterminism (which we call reentrancy)
    if fast_mode:
        vjps1 = _get_analytical_vjps_wrt_specific_output(vjp_fn, output.clone(), v)
        vjps2 = _get_analytical_vjps_wrt_specific_output(vjp_fn, output.clone(), v)
    else:
        vjps1 = _compute_analytical_jacobian_rows(vjp_fn, output.clone())
        vjps2 = _compute_analytical_jacobian_rows(vjp_fn, output.clone())

    output_numel = output.numel() if not fast_mode else 1
    jacobians1, types_ok, sizes_ok = _stack_and_check_tensors(
        vjps1, inputs, output_numel
    )
    jacobians2, _, _ = _stack_and_check_tensors(vjps2, inputs, output_numel)
    reentrant = _check_jacobians_equal(jacobians1, jacobians2, nondet_tol)

    if not types_ok and check_grad_dtypes:
        raise GradcheckError("Gradient has dtype mismatch")
    if not sizes_ok:
        raise GradcheckError("Analytical gradient has incorrect size")
    if not reentrant:
        raise GradcheckError(
            "Backward is not reentrant, i.e., running backward with "
            "same input and grad_output multiple times gives different values, "
            "although analytical gradient matches numerical gradient."
            f"The tolerance for nondeterminism was {nondet_tol}." + FAILED_NONDET_MSG
        )
    return jacobians1


def _get_analytical_vJu_backward_mode(

    inputs, outputs, nondet_tol, check_grad_dtypes, all_v, all_u

):
    reduced_jacobians: List[List[torch.Tensor]] = []
    for output, v in zip(outputs, all_v):
        all_vJ = _check_analytical_jacobian_attributes(
            inputs, output, nondet_tol, check_grad_dtypes, fast_mode=True, v=v
        )
        jacobian_scalars: List[torch.Tensor] = []
        for vJ, u in zip(all_vJ, all_u):
            # Why do we need squeeze here? vJ is a 2-d tensor so that we can reuse
            # the error checking logic from slow mode
            vJ = vJ.T.squeeze(0)
            if vJ.is_complex():  # C -> R
                tv = torch.view_as_real(vJ.resolve_conj())
                tr = tv.select(-1, 0)
                ti = tv.select(-1, 1)
                jacobian_scalars.append(tr.dot(u[0]) + 1j * ti.dot(u[1]))
            else:  # R -> R
                jacobian_scalars.append(vJ.dot(u))
        reduced_jacobians.append(jacobian_scalars)
    return reduced_jacobians


def get_analytical_jacobian(inputs, output, nondet_tol=0.0, grad_out=1.0):
    # Replicates the behavior of the old get_analytical_jacobian before the refactor
    # This shares much of its code with _check_analytical_jacobian_attributes
    warnings.warn(
        "get_analytical_jacobian was part of PyTorch's private API and not "
        "meant to be exposed. We are deprecating it and it will be removed "
        "in a future version of PyTorch. If you have a specific use for "
        "this or feature request for this to be a stable API, please file "
        "us an issue at https://github.com/pytorch/pytorch/issues/new"
    )
    if (
        grad_out != 1.0
    ):  # grad_out param is only kept for backward compatibility reasons
        raise ValueError(
            "Expected grad_out to be 1.0. get_analytical_jacobian no longer "
            "supports values of grad_out != 1.0."
        )
    if output.is_complex():
        raise ValueError(
            "Expected output to be non-complex. get_analytical_jacobian no "
            "longer supports functions that return complex outputs."
        )
    diff_input_list = list(_iter_tensors(inputs, True))

    def vjp_fn(grad_output):
        return torch.autograd.grad(
            output, diff_input_list, grad_output, retain_graph=True, allow_unused=True
        )

    # Compute everything twice to check for nondeterminism (which we call reentrancy)
    vjps1 = _compute_analytical_jacobian_rows(vjp_fn, output.clone())
    vjps2 = _compute_analytical_jacobian_rows(vjp_fn, output.clone())

    output_numel = output.numel()
    jacobians1, types_ok, sizes_ok = _stack_and_check_tensors(
        vjps1, inputs, output_numel
    )
    jacobians2, _, _ = _stack_and_check_tensors(vjps2, inputs, output_numel)
    reentrant = _check_jacobians_equal(jacobians1, jacobians2, nondet_tol)

    return jacobians1, reentrant, sizes_ok, types_ok


def _get_analytical_jacobian(inputs, outputs, input_idx, output_idx):
    # Computes the analytical Jacobian in slow mode for a single input-output pair.
    # Forgoes performing checks on dtype, shape, and reentrancy.
    jacobians = _check_analytical_jacobian_attributes(
        inputs, outputs[output_idx], nondet_tol=float("inf"), check_grad_dtypes=False
    )
    return jacobians[input_idx]


def _compute_analytical_jacobian_rows(

    vjp_fn, sample_output

) -> List[List[Optional[torch.Tensor]]]:
    # Computes Jacobian row-by-row by projecting `vjp_fn` = v^T J on standard basis
    # vectors: vjp_fn(e) = e^T J is a corresponding row of the Jacobian.
    # NB: this function does not assume vjp_fn(v) to return tensors with the same
    # number of elements for different v. This is checked when we later combine the
    # rows into a single tensor.
    grad_out_base = torch.zeros_like(
        sample_output, memory_format=torch.legacy_contiguous_format
    )
    flat_grad_out = grad_out_base.view(-1)
    # jacobians_rows[i][j] is the Jacobian jth row for the ith input
    jacobians_rows: List[List[Optional[torch.Tensor]]] = []
    for j in range(flat_grad_out.numel()):
        flat_grad_out.zero_()
        flat_grad_out[j] = 1.0  # projection for jth row of Jacobian
        grad_inputs = vjp_fn(grad_out_base)
        for i, d_x in enumerate(grad_inputs):
            if j == 0:
                jacobians_rows.append([])
            jacobians_rows[i] += [
                d_x.clone() if isinstance(d_x, torch.Tensor) else None
            ]
    return jacobians_rows


def _get_analytical_vjps_wrt_specific_output(

    vjp_fn, sample_output, v

) -> List[List[Optional[torch.Tensor]]]:
    vjps: List[List[Optional[torch.Tensor]]] = []
    grad_inputs = vjp_fn(v.reshape(sample_output.shape))
    for vjp in grad_inputs:
        vjps.append([vjp.clone() if isinstance(vjp, torch.Tensor) else None])
    return vjps


def _check_inputs(tupled_inputs) -> bool:
    # Make sure that gradients are saved for at least one input
    any_input_requiring_grad = False
    for idx, inp in enumerate(tupled_inputs):
        if is_tensor_like(inp) and inp.requires_grad:
            if not (inp.dtype == torch.float64 or inp.dtype == torch.complex128):
                warnings.warn(
                    f"Input #{idx} requires gradient and "
                    "is not a double precision floating point or complex. "
                    "This check will likely fail if all the inputs are "
                    "not of double precision floating point or complex. "
                )
            if inp.is_sparse:
                content = inp._values()
            elif _is_sparse_compressed_tensor(inp):
                content = inp.values()
            else:
                content = inp
            # TODO: To cover more problematic cases, replace stride = 0 check with
            # "any overlap in memory" once we have a proper function to check it.
            if content.layout is not torch._mkldnn:  # type: ignore[attr-defined]
                if not all(
                    st > 0 or sz <= 1
                    for st, sz in zip(content.stride(), content.size())
                ):
                    raise RuntimeError(
                        f"The {idx}th input has a dimension with stride 0. gradcheck only "
                        "supports inputs that are non-overlapping to be able to "
                        "compute the numerical gradients correctly. You should call "
                        ".contiguous on the input before passing it to gradcheck."
                    )
            any_input_requiring_grad = True

    if not any_input_requiring_grad:
        raise ValueError(
            "gradcheck expects at least one input tensor to require gradient, "
            "but none of the them have requires_grad=True."
        )
    return True


def _check_outputs(outputs) -> None:
    if any(_is_sparse_any_tensor(t) for t in outputs if isinstance(t, torch.Tensor)):
        # it is easier to call to_dense() on the sparse output than
        # to modify analytical jacobian
        raise ValueError(
            "Sparse output is not supported at gradcheck yet. "
            "Please call to_dense(masked_grad=...) on the output of fn for gradcheck."
        )
    if any(t.layout == torch._mkldnn for t in outputs if isinstance(t, torch.Tensor)):  # type: ignore[attr-defined]
        raise ValueError(
            "MKLDNN output is not supported at gradcheck yet. "
            "Please call to_dense(masked_grad=...) on the output of fn for gradcheck."
        )


def _check_no_differentiable_outputs(

    func, inputs, func_out, eps, *, is_forward_ad

) -> bool:
    # When there are no differentiable outputs, numerical gradient for a function is
    # expected to be zero.
    jacobians_all_inputs_outputs = _get_numerical_jacobian(
        func, inputs, func_out, eps=eps, is_forward_ad=is_forward_ad
    )
    for jacobians_all_outputs_and_fixed_input in jacobians_all_inputs_outputs:
        for jacobian in jacobians_all_outputs_and_fixed_input:
            if torch.ne(jacobian, 0).sum() > 0:
                raise GradcheckError(
                    "Numerical gradient for function expected to be zero"
                )
    return True


def _check_no_differentiable_outputs_fast(

    func, func_out, all_inputs, inputs_indices, all_u, eps, nondet_tol

):
    for inp_idx, u in zip(inputs_indices, all_u):
        jvps = _get_numerical_jvp_wrt_specific_input(func, inp_idx, all_inputs, u, eps)
        for jvp in jvps:
            if jvp.numel() == 0:
                continue
            if (jvp - torch.zeros_like(jvp)).abs().max() > nondet_tol:
                raise GradcheckError(
                    "Numerical gradient for function expected to be zero"
                )
    return True


FAILED_BATCHED_GRAD_MSG = """

gradcheck or gradgradcheck failed while testing batched gradient computation.

This could have been invoked in a number of ways (via a test that calls

gradcheck/gradgradcheck directly or via an autogenerated test).



If you are adding a new operator, please file an issue and then use one of the

workarounds. The workaround depends on how your test invokes gradcheck/gradgradcheck.

If the test

- manually invokes gradcheck/gradgradcheck, then call gradcheck/gradgradcheck

  with `check_batched_grad=False` as a keyword argument.

- is OpInfo-based (e.g., in test_ops_gradients.py), then modify the OpInfo for the test

  to have `check_batched_grad=False` and/or `check_batched_gradgrad=False`.



If you're modifying an existing operator that supports batched grad computation,

or wish to make a new operator work with batched grad computation, please read

the following.



To compute batched grads (e.g., jacobians, hessians), we vmap over the backward

computation. The most common failure case is if there is a 'vmap-incompatible

operation' in the backward pass. Please see

NOTE: [How to write vmap-compatible backward formulas]

in the codebase for an explanation of how to fix this.

""".strip()

FAILED_BATCHED_GRAD_MSG_FWD_AD = """

gradcheck failed while testing batched gradient computation with forward-mode AD.

This test is enabled automatically when both `check_batched_grad=True`

and `check_forward_ad=True`, but can be disabled in the following ways

dependong on how the test was invoked (via a test that calls gradcheck

directly or via an autogenerated test).



If you are adding a new operator, please file an issue and then use one of the

workarounds. The workaround depends on how your test invokes gradcheck/gradgradcheck.

If the test

- manually invokes gradcheck/gradgradcheck, then call gradcheck/gradgradcheck

  with `check_batched_forward_grad=False` as a keyword argument.

- is OpInfo-based (e.g., in test_ops_gradients.py), then modify the OpInfo for the test

  to have `check_batched_forward_grad=False`

"""


def _get_failed_batched_grad_test_msg(

    output_idx, input_idx, res, exp, is_forward_ad=False

):
    return f"""

For output {output_idx} and input {input_idx}:



{FAILED_BATCHED_GRAD_MSG_FWD_AD if is_forward_ad else FAILED_BATCHED_GRAD_MSG}



Got:

{res}



Expected:

{exp}

""".strip()


def _test_batched_grad_forward_ad(func, inputs) -> bool:
    fwAD = torch.autograd.forward_ad  # To avoid early import issues (do we need this?)
    assert isinstance(inputs, tuple)

    for input_idx, current_input in enumerate(inputs):
        if not (is_tensor_like(current_input) and current_input.requires_grad):
            continue

        def jvp(tangent: torch.Tensor):
            with fwAD.dual_level():
                dual = fwAD.make_dual(current_input.detach(), tangent)
                inputs_with_dual = tuple(
                    dual
                    if idx == input_idx
                    else (inp.detach() if is_tensor_like(inp) else inp)
                    for idx, inp in enumerate(inputs)
                )
                dual_outputs = _as_tuple(func(*inputs_with_dual))
                ret = []
                for dual_output in dual_outputs:
                    if dual_output is None:
                        continue
                    primal_out, tangent_out = fwAD.unpack_dual(dual_output)
                    if tangent_out is not None:
                        ret.append(tangent_out)
                    else:
                        ret.append(
                            torch.zeros(
                                [], dtype=primal_out.dtype, device=primal_out.device
                            ).expand(primal_out.shape)
                        )
                return tuple(ret)

        if not _is_float_or_complex_tensor(current_input):
            continue

        tangents = [torch.randn_like(current_input) for _ in range(2)]
        expected = [jvp(t) for t in tangents]
        expected = [torch.stack(shards) for shards in zip(*expected)]

        try:
            result = _vmap(jvp)(torch.stack(tangents))
        except RuntimeError as ex:
            # Rethrow to provide a better error message
            raise GradcheckError(
                f"While computing batched gradients, got: {ex}\n\n{FAILED_BATCHED_GRAD_MSG_FWD_AD}"
            ) from ex

        for input_idx, (res, exp) in enumerate(zip(result, expected)):
            if torch.allclose(res, exp):
                continue
            raise GradcheckError(
                _get_failed_batched_grad_test_msg(
                    input_idx, input_idx, res, exp, is_forward_ad=True
                )
            )
    return True


def _test_batched_grad(input, output, output_idx) -> bool:
    # NB: _test_batched_grad compares two autograd.grad invocations with a single
    # vmap(autograd.grad) invocation. It's not exactly a "gradcheck" in the
    # sense that we're not comparing an analytical jacobian with a numeric one,
    # but it is morally similar (we could have computed a full analytic jac
    # via vmap, but that is potentially slow)
    diff_input_list = list(_iter_tensors(input, True))
    grad = functools.partial(
        torch.autograd.grad,
        output,
        diff_input_list,
        retain_graph=True,
        allow_unused=True,
    )

    def vjp(v):
        results = grad(v)
        results = tuple(
            grad
            if grad is not None
            else torch.zeros([], dtype=inp.dtype, device=inp.device).expand(inp.shape)
            for grad, inp in zip(results, diff_input_list)
        )
        return results

    grad_outputs = [torch.randn_like(output) for _ in range(2)]

    expected = [vjp(gO) for gO in grad_outputs]
    expected = [torch.stack(shards) for shards in zip(*expected)]

    # Squash warnings since these are expected to happen in most cases
    # NB: this doesn't work for CUDA tests: https://github.com/pytorch/pytorch/issues/50209
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", message="There is a performance drop")
        warnings.filterwarnings("ignore", message="Please use torch.vmap")
        try:
            result = vmap(vjp)(torch.stack(grad_outputs))
        except RuntimeError as ex:
            # It's OK that we're not raising the error at the correct callsite.
            # That's because the callsite is always going to inside the Python
            # autograd.grad instead of the C++ traceback of what line in the
            # backward formula
            raise GradcheckError(
                f"While computing batched gradients, got: {ex}\n\n{FAILED_BATCHED_GRAD_MSG}"
            ) from ex

    for input_idx, (res, exp) in enumerate(zip(result, expected)):
        if torch.allclose(res, exp):
            continue
        raise GradcheckError(
            _get_failed_batched_grad_test_msg(output_idx, input_idx, res, exp)
        )
    return True


def _test_backward_mul_by_grad_output(outputs, inputs, masked) -> bool:
    # Tests that backward is multiplied by grad_output
    diff_input_list: List[torch.Tensor] = list(_iter_tensors(inputs, True))
    if not diff_input_list:
        raise GradcheckError("no Tensors requiring grad found in input")
    grads_input = torch.autograd.grad(
        outputs,
        diff_input_list,
        [
            torch.zeros_like(o, memory_format=torch.legacy_contiguous_format)
            for o in outputs
        ],
        allow_unused=True,
    )
    for gi, di in zip(grads_input, diff_input_list):
        if gi is None:
            continue
        if isinstance(gi, torch.Tensor) and gi.layout != torch.strided:
            if gi.layout != di.layout:
                raise GradcheckError(
                    "grad is incorrect layout ("
                    + str(gi.layout)
                    + " is not "
                    + str(di.layout)
                    + ")"
                )
            if _is_sparse_any_tensor(gi):
                sparse_kind = str(gi.layout).replace("torch.", "").replace("_coo", "")
                if gi.sparse_dim() != di.sparse_dim():
                    raise GradcheckError(
                        f"grad is {sparse_kind} tensor, but has incorrect sparse_dim"
                        f" {gi.sparse_dim()}, expected {di.sparse_dim()}"
                    )
                if gi.dense_dim() != di.dense_dim():
                    raise GradcheckError(
                        f"grad is {sparse_kind} tensor, but has incorrect dense_dim"
                        f" {gi.dense_dim()}, expected {di.dense_dim()}"
                    )
            gi = gi.to_dense()
            di = di.to_dense()
        if masked:
            if not torch.allclose(gi, torch.zeros_like(gi)):
                raise GradcheckError("backward not multiplied by grad_output")
        elif not gi.eq(0).all():
            raise GradcheckError("backward not multiplied by grad_output")
        if gi.dtype != di.dtype:
            raise GradcheckError("grad is incorrect type")
        if gi.device != di.device:
            raise GradcheckError("grad is incorrect device")
        if gi.size() != di.size():
            raise GradcheckError("grad is incorrect size")
    return True


def _test_undefined_forward_mode(func, outputs, inputs):
    fwAD = torch.autograd.forward_ad

    inp_tensors_idx, inp_tensors = _get_inp_tensors(inputs)
    all_v, all_u, all_u_dense = _make_vectors(inp_tensors, outputs, use_forward_ad=True)

    tensor_inputs = tuple(i for i in inputs if is_tensor_like(i) and i.requires_grad)

    with fwAD.dual_level():
        fw_grads = []
        dual_inputs = []
        tensor_indices = set()
        for i, inp in enumerate(inputs):
            if is_tensor_like(inp) and inp.requires_grad:
                if inp.layout == torch._mkldnn:  # type: ignore[attr-defined]
                    raise ValueError(
                        "MKLDNN inputs are not support for forward AD gradcheck."
                    )

                inp = fwAD.make_dual(inp.detach(), torch.zeros_like(inp))
                # If inp is a differentiable view, the dual might not be the tangent given to
                # make_dual, so read it explicitly from the dual tensor
                fw_grads.append(fwAD.unpack_dual(inp)[1])
                tensor_indices.add(i)
            dual_inputs.append(inp)

        for i, (fw_grad, u) in enumerate(zip(fw_grads, all_u)):
            fw_grad.copy_(u.view_as(fw_grad))

        for idx, inp in enumerate(inputs):
            if idx not in tensor_indices:
                continue
            dual_inp_obj = dual_inputs[idx]

            # case 1 (Materialized Zero Tensor Tangent)
            dual_inputs[idx] = fwAD.make_dual(inp.detach(), torch.zeros_like(inp))
            raw_outputs = _as_tuple(func(*dual_inputs))
            dual_outputs1 = filter(_is_float_or_complex_tensor, raw_outputs)

            # case 2 (Efficient Zero Tensor Tangent since we don't make a dual object and pass a regular tensor)
            dual_inputs[idx] = inp.detach()
            raw_outputs = _as_tuple(func(*dual_inputs))
            dual_outputs2 = filter(_is_float_or_complex_tensor, raw_outputs)

            # reset
            dual_inputs[idx] = dual_inp_obj

            for index_o, (d_o1, d_o2) in enumerate(zip(dual_outputs1, dual_outputs2)):
                val1, res1 = fwAD.unpack_dual(d_o1)
                val2, res2 = fwAD.unpack_dual(d_o2)

                if not (res1 is None or res2 is None):
                    if not torch.allclose(res1, res2):
                        raise GradcheckError(
                            "Mismatch in tangent values for output with index: ",
                            index_o,
                            " when input: ",
                            inp,
                            " has an undefined tangent value. ",
                            " Got: ",
                            res1,
                            " but expected: ",
                            res2,
                        )
    return True


def _test_undefined_backward_mode(func, outputs, inputs) -> bool:
    diff_input_list: List[torch.Tensor] = list(_iter_tensors(inputs, True))
    if not diff_input_list:
        raise GradcheckError("no Tensors requiring grad found in input")

    def warn_bc_breaking():
        warnings.warn(
            "Backwards compatibility: New undefined gradient support checking "
            "feature is enabled by default, but it may break existing callers "
            "of this function. If this is true for you, you can call this "
            'function with "check_undefined_grad=False" to disable the feature'
        )

    def check_undefined_grad_support(output_to_check):
        grads_output = [
            torch.zeros_like(o, memory_format=torch.legacy_contiguous_format)
            for o in output_to_check
        ]
        try:
            grads_input = torch.autograd.grad(
                output_to_check, diff_input_list, grads_output, allow_unused=True
            )
        except RuntimeError as e:
            warn_bc_breaking()
            raise GradcheckError(
                "Expected backward function to handle undefined output grads. "
                'Please look at "Notes about undefined output gradients" in '
                '"tools/autograd/derivatives.yaml"'
            ) from e

        for gi, i in zip(grads_input, diff_input_list):
            if (gi is not None) and (not gi.eq(0).all()):
                warn_bc_breaking()
                raise GradcheckError(
                    "Expected all input grads to be undefined or zero when all output grads are undefined "
                    'or zero. Please look at "Notes about undefined output gradients" in '
                    '"tools/autograd/derivatives.yaml"'
                )
        return True

    # All backward functions must work properly if all output grads are undefined
    outputs_to_check = [
        [
            torch._C._functions.UndefinedGrad()(o)
            for o in _differentiable_outputs(func(*inputs))
            # This check filters out Tensor-likes that aren't instances of Tensor.
            if isinstance(o, torch.Tensor)
        ]
    ]

    # If there are multiple output grads, we should be able to undef one at a time without error
    if len(outputs_to_check[0]) > 1:
        for undef_grad_idx in range(len(outputs)):
            output_to_check = _differentiable_outputs(func(*inputs))
            outputs_to_check.append(
                [
                    torch._C._functions.UndefinedGrad()(o)
                    if idx == undef_grad_idx
                    else o
                    for idx, o in enumerate(output_to_check)
                ]
            )

    return all(check_undefined_grad_support(output) for output in outputs_to_check)


def _as_tuple(x):
    if isinstance(x, tuple):
        return x
    elif isinstance(x, list):
        return tuple(x)
    else:
        return (x,)


def _differentiable_outputs(x):
    return tuple(o for o in _as_tuple(x) if o.requires_grad)


def _get_notallclose_msg(

    analytical,

    numerical,

    output_idx,

    input_idx,

    complex_indices,

    test_imag=False,

    is_forward_ad=False,

) -> str:
    out_is_complex = (
        (not is_forward_ad) and complex_indices and output_idx in complex_indices
    )
    inp_is_complex = is_forward_ad and complex_indices and input_idx in complex_indices
    part = "imaginary" if test_imag else "real"
    element = "inputs" if is_forward_ad else "outputs"
    prefix = (
        ""
        if not (out_is_complex or inp_is_complex)
        else f"While considering the {part} part of complex {element} only, "
    )
    mode = "computed with forward mode " if is_forward_ad else ""
    return (
        prefix + "Jacobian %smismatch for output %d with respect to input %d,\n"
        "numerical:%s\nanalytical:%s\n"
        % (mode, output_idx, input_idx, numerical, analytical)
    )


def _transpose(matrix_of_tensors):
    # returns list of tuples
    return list(zip(*matrix_of_tensors))


def _real_and_imag_output(fn):
    # returns new functions real(fn), and imag(fn) where real(fn) and imag(fn) behave the same as
    # the original fn, except torch.real or torch.imag are applied to the complex outputs
    def apply_to_c_outs(fn, fn_to_apply):
        def wrapped_fn(*inputs):
            outs = _as_tuple(fn(*inputs))
            return tuple(fn_to_apply(o) if o.is_complex() else o for o in outs)

        return wrapped_fn

    return apply_to_c_outs(fn, torch.real), apply_to_c_outs(fn, torch.imag)


def _real_and_imag_input(fn, complex_inp_indices, tupled_inputs):
    # returns new functions that take real inputs instead of complex inputs as
    # (x, y) -> fn(x + y * 1j). And it computes: inp -> fn(inp + y * 1j) and inp -> fn(x + inp * 1j).
    # In each case, the other part is considered constant.
    # We do not use 0 for the constant here to make sure we always call the user function with a valid input.
    def apply_to_c_inps(fn, fn_to_apply):
        def wrapped_fn(*inputs):
            new_inputs = list(inputs)
            for should_be_complex in complex_inp_indices:
                new_inputs[should_be_complex] = fn_to_apply(
                    new_inputs[should_be_complex], tupled_inputs[should_be_complex]
                )
            return _as_tuple(fn(*new_inputs))

        return wrapped_fn

    real_fn = apply_to_c_inps(fn, lambda inp, orig: inp + orig.imag * 1j)
    imag_fn = apply_to_c_inps(fn, lambda inp, orig: orig.real + inp * 1j)
    return real_fn, imag_fn


def _gradcheck_real_imag(

    gradcheck_fn,

    func,

    func_out,

    tupled_inputs,

    outputs,

    eps,

    rtol,

    atol,

    check_grad_dtypes,

    check_forward_ad,

    check_backward_ad,

    nondet_tol,

    check_undefined_grad,

):
    complex_out_indices = [i for i, o in enumerate(outputs) if o.is_complex()]
    has_any_complex_output = any(o.is_complex() for o in _as_tuple(func_out))
    if check_backward_ad:
        if has_any_complex_output:
            real_fn, imag_fn = _real_and_imag_output(func)

            imag_func_out = imag_fn(*tupled_inputs)
            imag_outputs = _differentiable_outputs(imag_func_out)
            gradcheck_fn(
                imag_fn,
                imag_func_out,
                tupled_inputs,
                imag_outputs,
                eps,
                rtol,
                atol,
                check_grad_dtypes,
                nondet_tol,
                complex_indices=complex_out_indices,
                test_imag=True,
            )

            real_func_out = real_fn(*tupled_inputs)
            real_outputs = _differentiable_outputs(real_func_out)
            gradcheck_fn(
                real_fn,
                real_func_out,
                tupled_inputs,
                real_outputs,
                eps,
                rtol,
                atol,
                check_grad_dtypes,
                nondet_tol,
                complex_indices=complex_out_indices,
            )
        else:
            gradcheck_fn(
                func,
                func_out,
                tupled_inputs,
                outputs,
                eps,
                rtol,
                atol,
                check_grad_dtypes,
                nondet_tol,
            )

    if check_forward_ad:
        complex_inp_indices = [
            i
            for i, inp in enumerate(tupled_inputs)
            if is_tensor_like(inp) and inp.is_complex()
        ]
        if complex_inp_indices:
            real_fn, imag_fn = _real_and_imag_input(
                func, complex_inp_indices, tupled_inputs
            )

            imag_inputs = [
                inp.imag if is_tensor_like(inp) and inp.is_complex() else inp
                for inp in tupled_inputs
            ]
            imag_func_out = imag_fn(*imag_inputs)
            diff_imag_func_out = _differentiable_outputs(imag_func_out)
            gradcheck_fn(
                imag_fn,
                imag_func_out,
                imag_inputs,
                diff_imag_func_out,
                eps,
                rtol,
                atol,
                check_grad_dtypes,
                nondet_tol,
                complex_indices=complex_inp_indices,
                test_imag=True,
                use_forward_ad=True,
            )

            real_inputs = [
                inp.real if is_tensor_like(inp) and inp.is_complex() else inp
                for inp in tupled_inputs
            ]
            real_func_out = real_fn(*real_inputs)
            diff_real_func_out = _differentiable_outputs(real_func_out)
            gradcheck_fn(
                real_fn,
                real_func_out,
                real_inputs,
                diff_real_func_out,
                eps,
                rtol,
                atol,
                check_grad_dtypes,
                nondet_tol,
                complex_indices=complex_inp_indices,
                use_forward_ad=True,
            )
            if check_undefined_grad:
                _test_undefined_forward_mode(imag_fn, imag_func_out, imag_inputs)
                _test_undefined_forward_mode(real_fn, real_func_out, real_inputs)
        else:
            gradcheck_fn(
                func,
                func_out,
                tupled_inputs,
                outputs,
                eps,
                rtol,
                atol,
                check_grad_dtypes,
                nondet_tol,
                use_forward_ad=True,
            )
            if check_undefined_grad:
                _test_undefined_forward_mode(func, outputs, tupled_inputs)


def _slow_gradcheck(

    func,

    func_out,

    tupled_inputs,

    outputs,

    eps,

    rtol,

    atol,

    check_grad_dtypes,

    nondet_tol,

    *,

    use_forward_ad=False,

    complex_indices=None,

    test_imag=False,

    masked=False,

):
    func_out = _as_tuple(func_out)
    if not outputs:
        return _check_no_differentiable_outputs(
            func, tupled_inputs, func_out, eps=eps, is_forward_ad=use_forward_ad
        )
    tupled_inputs_numerical = tupled_inputs if masked else _densify(tupled_inputs)

    numerical = _transpose(
        _get_numerical_jacobian(
            func,
            tupled_inputs_numerical,
            func_out,
            eps=eps,
            is_forward_ad=use_forward_ad,
        )
    )
    # Note: [numerical vs analytical output length]
    # The numerical path returns jacobian quantity for all outputs, even if requires_grad of that
    # output is False. This behavior is necessary for _check_no_differentiable_outputs to work.
    numerical = [nj for o, nj in zip(func_out, numerical) if o.requires_grad]
    if use_forward_ad:
        analytical_forward = _get_analytical_jacobian_forward_ad(
            func, tupled_inputs, func_out, check_grad_dtypes=check_grad_dtypes
        )

        for i, n_per_out in enumerate(numerical):
            for j, n in enumerate(n_per_out):
                a = analytical_forward[j][i]
                if not _allclose_with_type_promotion(a, n.to(a.device), rtol, atol):
                    raise GradcheckError(
                        _get_notallclose_msg(
                            a, n, i, j, complex_indices, test_imag, is_forward_ad=True
                        )
                    )
    else:
        for i, o in enumerate(outputs):
            analytical = _check_analytical_jacobian_attributes(
                tupled_inputs, o, nondet_tol, check_grad_dtypes
            )

            for j, (a, n) in enumerate(zip(analytical, numerical[i])):
                if not _allclose_with_type_promotion(a, n.to(a.device), rtol, atol):
                    raise GradcheckError(
                        _get_notallclose_msg(a, n, i, j, complex_indices, test_imag)
                    )

    return True


def _dot_with_type_promotion(u, v):
    assert u.dim() == 1 and v.dim() == 1
    return (u * v).sum()


def _allclose_with_type_promotion(a, b, rtol, atol):
    promoted_type = torch.promote_types(a.dtype, b.dtype)
    a = a.to(dtype=promoted_type)
    b = b.to(dtype=promoted_type)
    return torch.allclose(a, b, rtol, atol)


def _to_real_dtype(dtype):
    if dtype == torch.complex128:
        return torch.float64
    elif dtype == torch.complex64:
        return torch.float32
    else:
        return dtype


def _vec_from_tensor(x, generator, downcast_complex=False):
    # Create a random vector with the same number of elements as x and the same
    # dtype/device. If x is complex and downcast_complex is False, we create a
    # complex tensor with only real component.
    if x.layout == torch.sparse_coo:
        # For sparse, create a random sparse vec with random values in the same
        # indices. Make sure size is set so that it isn't inferred to be smaller.
        x_values = x._values()
        dtype = _to_real_dtype(x.dtype) if downcast_complex else x.dtype
        values = (
            torch.rand(x_values.numel(), generator=generator)
            .to(dtype=dtype, device=x.device)
            .view(x_values.shape)
        )
        values /= values.norm()
        vec = torch.sparse_coo_tensor(x._indices(), values, x.size(), device=x.device)
    elif _is_sparse_compressed_tensor(x):
        if x.layout in {torch.sparse_csr, torch.sparse_bsr}:
            compressed_indices, plain_indices = x.crow_indices(), x.col_indices()
        else:
            compressed_indices, plain_indices = x.ccol_indices(), x.row_indices()
        x_values = x.values()
        dtype = _to_real_dtype(x.dtype) if downcast_complex else x.dtype
        values = (
            torch.rand(x_values.numel(), generator=generator)
            .to(dtype=dtype, device=x.device)
            .view(x_values.shape)
        )
        values /= values.norm()
        vec = torch.sparse_compressed_tensor(
            compressed_indices,
            plain_indices,
            values,
            x.size(),
            layout=x.layout,
            device=x.device,
        )
    else:
        dtype = _to_real_dtype(x.dtype) if downcast_complex else x.dtype
        vec = torch.rand(x.numel(), generator=generator).to(
            dtype=dtype, device=x.device
        )
        vec /= vec.norm()
    return vec


def _get_inp_tensors(tupled_inputs):
    inp_idx_tup = [
        (i, t)
        for i, t in enumerate(tupled_inputs)
        if is_tensor_like(t) and t.requires_grad
    ]
    return [tup[0] for tup in inp_idx_tup], [tup[1] for tup in inp_idx_tup]


def _adjusted_atol(atol, u, v):
    # In slow gradcheck, we compare A and B element-wise, i.e., for some a, b we
    # allow: |a - b| < atol + rtol * b. But since we now compare q1 = v^T A u and
    # q2 = v^T B u, we must allow |q1 - q2| < v^T E u + rtol * v^T B u, where E is
    # the correctly sized matrix in which each entry is atol.
    #
    # We see that atol needs to be scaled by v^T M u (where M is an all-ones M x N
    # matrix): v^T M u = \sum_{i} \sum_{j} u_i * v_j = (\sum_{i} u_i)(\sum_{i} v_i)
    # TODO: properly handle case when u is tuple instead of only taking first element
    u = u[0] if isinstance(u, tuple) else u
    sum_u = u.sum()
    sum_v = 1.0 if v is None else v.sum()
    return atol * float(sum_u) * float(sum_v)


FAST_FAIL_SLOW_OK_MSG = """

Fast gradcheck failed but element-wise differences are small. This means that the

test might've passed in slow_mode!



If you are adding a new operator, please file an issue and then use one of the

workarounds. The workaround depends on how your test invokes gradcheck/gradgradcheck:



If the test

- manually invokes gradcheck/gradgradcheck, then call gradcheck/gradgradcheck

  with `fast_mode=False` as a keyword argument.

- is OpInfo-based (e.g., in test_ops_gradients.py), then modify the OpInfo for the test

  to have `gradcheck_fast_mode=False`

- is a Module test (e.g., in common_nn.py), then modify the corresponding

  module_test entry to have `gradcheck_fast_mode=False`

""".strip()


def _run_slow_mode_and_get_error(

    func, tupled_inputs, outputs, input_idx, output_idx, rtol, atol, eps, is_forward_ad

):
    # Compute jacobians in slow mode for better error message
    slow_numerical = _get_numerical_jacobian(
        func, tupled_inputs, outputs, eps=eps, is_forward_ad=is_forward_ad
    )[input_idx][output_idx]
    if is_forward_ad:

        def new_fn(inp):
            new_inputs = list(tupled_inputs)
            new_inputs[input_idx] = inp
            return _as_tuple(func(*new_inputs))[output_idx]

        slow_analytical = _get_analytical_jacobian_forward_ad(
            new_fn, (tupled_inputs[input_idx],), (outputs[output_idx],)
        )[0][0]
    else:
        slow_analytical = _get_analytical_jacobian(
            tupled_inputs, outputs, input_idx, output_idx
        )

    # Assume jacobians are non-empty and have the same shape
    slow_max_diff = (slow_numerical - slow_analytical).abs().max()

    slow_allclose = torch.allclose(slow_analytical, slow_numerical, rtol, atol)
    msg = (
        "\nThe above quantities relating the numerical and analytical jacobians are computed \n"
        "in fast mode. See: https://github.com/pytorch/pytorch/issues/53876 for more background \n"
        "about fast mode. Below, we recompute numerical and analytical jacobians in slow mode:\n\n"
        f"Numerical:\n {slow_numerical}\n"
        f"Analytical:\n{slow_analytical}\n\n"
        f"The max per-element difference (slow mode) is: {slow_max_diff}.\n"
    )
    if slow_allclose:
        # Slow gradcheck would've passed!
        msg += FAST_FAIL_SLOW_OK_MSG
    return msg


def _to_flat_dense_if_sparse(tensor):
    if _is_sparse_any_tensor(tensor):
        return tensor.to_dense().reshape(-1)
    else:
        return tensor


def _make_vectors(inp_tensors, outputs, *, use_forward_ad):
    # Use our own generator to avoid messing with the user's RNG state
    g_cpu = torch.Generator()

    def _vec_from_tensor_cpu(*args):
        # Default allocate all tensors on CPU, so they are on the same device as the generator
        # even if the user specified a default device
        with torch.device("cpu"):
            return _vec_from_tensor(*args)

    all_u = []
    all_u_dense = []
    for inp in inp_tensors:
        ur = _vec_from_tensor_cpu(inp, g_cpu, True)
        ur_dense = _to_flat_dense_if_sparse(ur)
        if inp.is_complex():
            ui = _vec_from_tensor_cpu(inp, g_cpu, True)
            all_u.append((ur, ui))
            ui_dense = _to_flat_dense_if_sparse(ui)
            all_u_dense.append((ur_dense, ui_dense))
        else:
            all_u.append(ur)
            all_u_dense.append(ur_dense)
    all_v = (
        None
        if use_forward_ad
        else [_vec_from_tensor_cpu(out, g_cpu) for out in outputs]
    )
    return all_v, all_u, all_u_dense


def _check_analytical_numerical_equal(

    all_analytical,

    all_numerical,

    complex_indices,

    tupled_inputs,

    outputs,

    func,

    all_v,

    all_u,

    rtol,

    atol,

    eps,

    test_imag,

    *,

    is_forward_ad=False,

):
    for i, all_numerical_for_input_i in enumerate(all_numerical):
        for j, n in enumerate(all_numerical_for_input_i):
            # Forward AD generates the transpose of what this function expects
            if is_forward_ad:
                a = all_analytical[i][j]
            else:
                a = all_analytical[j][i]
            n = n.to(device=a.device)
            updated_atol = _adjusted_atol(atol, all_u[i], all_v[j] if all_v else None)
            if not _allclose_with_type_promotion(a, n.to(a.device), rtol, updated_atol):
                jacobians_str = _run_slow_mode_and_get_error(
                    func, tupled_inputs, outputs, i, j, rtol, atol, eps, is_forward_ad
                )
                raise GradcheckError(
                    _get_notallclose_msg(
                        a, n, j, i, complex_indices, test_imag, is_forward_ad
                    )
                    + jacobians_str
                )


def _fast_gradcheck(

    func,

    func_out,

    inputs,

    outputs,

    eps,

    rtol,

    atol,

    check_grad_dtypes,

    nondet_tol,

    *,

    use_forward_ad=False,

    complex_indices=None,

    test_imag=False,

    masked=False,

):
    # See https://github.com/pytorch/pytorch/issues/53876 for details
    inp_tensors_idx, inp_tensors = _get_inp_tensors(inputs)
    # Backward mode computes v^T * J (VJP)
    # Since we computed J * u (JVP) through finite difference method, we perform an equality check
    # between VJP * u, v * JVP
    # ----
    # Forward mode computes J * u (JVP)
    # Since we already compute JVP through finite difference method,
    # we don't need v for correctness check here as asserted below
    all_v, all_u, all_u_dense = _make_vectors(
        inp_tensors, outputs, use_forward_ad=use_forward_ad
    )

    inputs_numerical, all_u_numerical, all_v_numerical = (
        (inputs, all_u, all_v) if masked else _densify((inputs, all_u, all_v))
    )

    numerical_vJu = _get_numerical_vJu(
        func,
        inputs_numerical,
        inp_tensors_idx,
        func_out,
        all_u_numerical,
        all_v_numerical,
        eps,
        is_forward_ad=use_forward_ad,
    )
    # TODO: replicate https://github.com/pytorch/pytorch/pull/77743 for fast gradcheck as well
    if use_forward_ad:
        assert all_v is None
        analytical_vJu = _get_analytical_jacobian_forward_ad(
            func,
            inputs,
            _as_tuple(func_out),
            all_u=all_u,
            check_grad_dtypes=check_grad_dtypes,
        )
    else:
        if not outputs:
            _check_no_differentiable_outputs_fast(
                func, func_out, inputs, inp_tensors_idx, all_u, eps, nondet_tol
            )

        analytical_vJu = _get_analytical_vJu_backward_mode(
            inputs, outputs, nondet_tol, check_grad_dtypes, all_v, all_u_dense
        )

    _check_analytical_numerical_equal(
        analytical_vJu,
        numerical_vJu,
        complex_indices,
        inputs,
        outputs,
        func,
        all_v,
        all_u,
        rtol,
        atol,
        eps,
        test_imag,
        is_forward_ad=use_forward_ad,
    )

    return True


# Note [VarArg of Tensors]
# ~~~~~~~~~~~~~~~~~~~~~~~~
# 'func' accepts a vararg of tensors, which isn't expressable in the type system at the moment.
# If https://mypy.readthedocs.io/en/latest/additional_features.html?highlight=callable#extended-callable-types is accepted,
# the '...' first argument of Callable can be replaced with VarArg(Tensor).
# For now, we permit any input.
def gradcheck(

    func: Callable[..., Union[_TensorOrTensors]],  # See Note [VarArg of Tensors]

    inputs: _TensorOrTensors,

    *,

    eps: float = 1e-6,

    atol: float = 1e-5,

    rtol: float = 1e-3,

    raise_exception: bool = True,

    nondet_tol: float = 0.0,

    check_undefined_grad: bool = True,

    check_grad_dtypes: bool = False,

    check_batched_grad: bool = False,

    check_batched_forward_grad: bool = False,

    check_forward_ad: bool = False,

    check_backward_ad: bool = True,

    fast_mode: bool = False,

    masked: Optional[bool] = None,

) -> bool:  # noqa: D400,D205
    r"""Check gradients computed via small finite differences against analytical

    gradients wrt tensors in :attr:`inputs` that are of floating point or complex type

    and with ``requires_grad=True``.



    The check between numerical and analytical gradients uses :func:`~torch.allclose`.



    For most of the complex functions we consider for optimization purposes, no notion of

    Jacobian exists. Instead, gradcheck verifies if the numerical and analytical values of

    the Wirtinger and Conjugate Wirtinger derivatives are consistent. Because the gradient

    computation is done under the assumption that the overall function has a real-valued

    output, we treat functions with complex output in a special way. For these functions,

    gradcheck is applied to two real-valued functions corresponding to taking the real

    components of the complex outputs for the first, and taking the imaginary components

    of the complex outputs for the second. For more details, check out

    :ref:`complex_autograd-doc`.



    .. note::

        The default values are designed for :attr:`input` of double precision.

        This check will likely fail if :attr:`input` is of less precision, e.g.,

        ``FloatTensor``.



    .. note::

        Gradcheck may fail when evaluated on non-differentiable points

        because the numerically computed gradients via finite differencing may differ

        those computed analytically (not necessarily because either is incorrect).

        For more context, see :ref:`non-differentiable-func-grad`.



    .. warning::

       If any checked tensor in :attr:`input` has overlapping memory, i.e.,

       different indices pointing to the same memory address (e.g., from

       :func:`torch.expand`), this check will likely fail because the numerical

       gradients computed by point perturbation at such indices will change

       values at all other indices that share the same memory address.



    Args:

        func (function): a Python function that takes Tensor inputs and returns

            a Tensor or a tuple of Tensors

        inputs (tuple of Tensor or Tensor): inputs to the function

        eps (float, optional): perturbation for finite differences

        atol (float, optional): absolute tolerance

        rtol (float, optional): relative tolerance

        raise_exception (bool, optional): indicating whether to raise an exception if

            the check fails. The exception gives more information about the

            exact nature of the failure. This is helpful when debugging gradchecks.

        nondet_tol (float, optional): tolerance for non-determinism. When running

            identical inputs through the differentiation, the results must either match

            exactly (default, 0.0) or be within this tolerance.

        check_undefined_grad (bool, optional): if ``True``, check if undefined output grads

            are supported and treated as zeros, for ``Tensor`` outputs.

        check_batched_grad (bool, optional): if ``True``, check if we can compute

            batched gradients using prototype vmap support. Defaults to False.

        check_batched_forward_grad (bool, optional): if ``True``, checks if we can compute

            batched forward gradients using forward ad and prototype vmap support. Defaults to ``False``.

        check_forward_ad (bool, optional): if ``True``, check that the gradients computed with forward

            mode AD match the numerical ones. Defaults to ``False``.

        check_backward_ad (bool, optional): if ``False``, do not perform any checks that rely on

            backward mode AD to be implemented. Defaults to ``True``.

        fast_mode (bool, optional): Fast mode for gradcheck and gradgradcheck is currently only

            implemented for R to R functions. If none of the inputs and outputs are complex

            a faster implementation of gradcheck that no longer computes the entire jacobian

            is run; otherwise, we fall back to the slow implementation.

        masked (bool, optional): if ``True``, the gradients of unspecified elements of

            sparse tensors are ignored. Defaults to ``False``.

    Returns:

        ``True`` if all differences satisfy allclose condition



    """
    assert (
        check_forward_ad or check_backward_ad
    ), "Expected at least one of check_forward_ad or check_backward_ad to be True"
    assert not (
        check_batched_grad and not check_backward_ad
    ), "Setting check_batched_grad=True requires check_backward_ad to be True"
    assert not (
        check_batched_forward_grad and not check_forward_ad
    ), "Setting check_batched_forward_grad=True requires check_forward_ad to be True"
    args = locals().copy()
    args.pop("raise_exception")
    if not raise_exception:
        try:
            return _gradcheck_helper(**args)
        except GradcheckError as e:
            return False
    else:
        return _gradcheck_helper(**args)


def _gradcheck_helper(

    func,

    inputs,

    eps,

    atol,

    rtol,

    nondet_tol,

    check_undefined_grad,

    check_grad_dtypes,

    check_batched_grad,

    check_batched_forward_grad,

    check_forward_ad,

    check_backward_ad,

    fast_mode,

    masked,

):
    tupled_inputs = _as_tuple(inputs)
    _check_inputs(tupled_inputs)

    func_out = func(*tupled_inputs)
    outputs = _differentiable_outputs(func_out)
    _check_outputs(outputs)

    gradcheck_fn = functools.partial(
        _fast_gradcheck if fast_mode else _slow_gradcheck, masked=masked
    )
    _gradcheck_real_imag(
        gradcheck_fn,
        func,
        func_out,
        tupled_inputs,
        outputs,
        eps,
        rtol,
        atol,
        check_grad_dtypes,
        check_forward_ad=check_forward_ad,
        check_backward_ad=check_backward_ad,
        nondet_tol=nondet_tol,
        check_undefined_grad=check_undefined_grad,
    )

    if check_batched_forward_grad:
        _test_batched_grad_forward_ad(func, tupled_inputs)

    # Short circuit because remaining tests rely on backward AD to be implemented
    if not check_backward_ad:
        return True

    for i, o in enumerate(outputs):
        if check_batched_grad:
            _test_batched_grad(tupled_inputs, o, i)

    _test_backward_mul_by_grad_output(outputs, tupled_inputs, masked)

    if check_undefined_grad and check_backward_ad:
        _test_undefined_backward_mode(func, outputs, tupled_inputs)
    return True


def gradgradcheck(

    func: Callable[..., _TensorOrTensors],  # See Note [VarArg of Tensors]

    inputs: _TensorOrTensors,

    grad_outputs: Optional[_TensorOrTensors] = None,

    *,

    eps: float = 1e-6,

    atol: float = 1e-5,

    rtol: float = 1e-3,

    gen_non_contig_grad_outputs: bool = False,

    raise_exception: bool = True,

    nondet_tol: float = 0.0,

    check_undefined_grad: bool = True,

    check_grad_dtypes: bool = False,

    check_batched_grad: bool = False,

    check_fwd_over_rev: bool = False,

    check_rev_over_rev: bool = True,

    fast_mode: bool = False,

    masked: bool = False,

) -> bool:  # noqa: D400,D205
    r"""Check gradients of gradients computed via small finite differences

    against analytical gradients wrt tensors in :attr:`inputs` and

    :attr:`grad_outputs` that are of floating point or complex type and with

    ``requires_grad=True``.



    This function checks that backpropagating through the gradients computed

    to the given :attr:`grad_outputs` are correct.



    The check between numerical and analytical gradients uses :func:`~torch.allclose`.



    .. note::

        The default values are designed for :attr:`input` and

        :attr:`grad_outputs` of double precision. This check will likely fail if

        they are of less precision, e.g., ``FloatTensor``.



    .. warning::

       If any checked tensor in :attr:`input` and :attr:`grad_outputs` has

       overlapping memory, i.e., different indices pointing to the same memory

       address (e.g., from :func:`torch.expand`), this check will likely fail

       because the numerical gradients computed by point perturbation at such

       indices will change values at all other indices that share the same

       memory address.



    Args:

        func (function): a Python function that takes Tensor inputs and returns

            a Tensor or a tuple of Tensors

        inputs (tuple of Tensor or Tensor): inputs to the function

        grad_outputs (tuple of Tensor or Tensor, optional): The gradients with

            respect to the function's outputs.

        eps (float, optional): perturbation for finite differences

        atol (float, optional): absolute tolerance

        rtol (float, optional): relative tolerance

        gen_non_contig_grad_outputs (bool, optional): if :attr:`grad_outputs` is

            ``None`` and :attr:`gen_non_contig_grad_outputs` is ``True``, the

            randomly generated gradient outputs are made to be noncontiguous

        raise_exception (bool, optional): indicating whether to raise an exception if

            the check fails. The exception gives more information about the

            exact nature of the failure. This is helpful when debugging gradchecks.

        nondet_tol (float, optional): tolerance for non-determinism. When running

            identical inputs through the differentiation, the results must either match

            exactly (default, 0.0) or be within this tolerance. Note that a small amount

            of nondeterminism in the gradient will lead to larger inaccuracies in

            the second derivative.

        check_undefined_grad (bool, optional): if True, check if undefined output grads

            are supported and treated as zeros

        check_batched_grad (bool, optional): if True, check if we can compute

            batched gradients using prototype vmap support. Defaults to False.

        fast_mode (bool, optional): if True, run a faster implementation of gradgradcheck that

            no longer computes the entire jacobian.

        masked (bool, optional): if True, the gradients of unspecified elements of

            sparse tensors are ignored (default, False).

    Returns:

        True if all differences satisfy allclose condition

    """
    assert (
        check_fwd_over_rev or check_rev_over_rev
    ), "Expected at least one of check_fwd_over_rev or check_rev_over_rev to be True"
    assert not (
        check_undefined_grad and not check_rev_over_rev
    ), "Setting check_undefined_grad=True requires check_rev_over_rev to be True"
    assert not (
        check_batched_grad and not check_rev_over_rev
    ), "Setting check_batched_grad=True requires check_rev_over_rev to be True"
    # TODO: do we want to test this too?
    # assert not (check_batched_forward_grad and not check_fwd_over_rev), (
    #     "Setting check_batched_forward_grad=True requires check_fwd_over_rev to be True")
    tupled_inputs = _as_tuple(inputs)

    if grad_outputs is None:
        # If grad_outputs is not specified, create random Tensors of the same shape, type, and device as the outputs

        outputs = _differentiable_outputs(func(*tupled_inputs))
        tupled_grad_outputs = tuple(
            torch.testing.make_tensor(
                x.shape,
                dtype=x.dtype
                if x.is_floating_point() or x.is_complex()
                else torch.double,
                device=x.device,
                low=-1,
                high=1,
                requires_grad=True,
                noncontiguous=gen_non_contig_grad_outputs,
            )
            for x in outputs
        )
    else:
        tupled_grad_outputs = _as_tuple(grad_outputs)

    num_outputs = len(tupled_grad_outputs)

    # NB: We need to save the requires_grad information about the inputs here because gradcheck detaches inputs
    #     before running forward mode AD
    diff_input_args_indices = {
        i for i, x in enumerate(tupled_inputs) if is_tensor_like(x) and x.requires_grad
    }
    diff_grad_output_indices = {
        i for i, x in enumerate(tupled_grad_outputs) if x.requires_grad
    }

    def new_func(*args):
        # Restore the requires_grad information
        input_args = tuple(
            x.requires_grad_() if i in diff_input_args_indices else x
            for i, x in enumerate(args[:-num_outputs])
        )
        outputs = _differentiable_outputs(func(*input_args))
        grad_outputs = tuple(
            x.requires_grad_() if i in diff_grad_output_indices else x
            for i, x in enumerate(args[-num_outputs:])
        )
        diff_input_args = tuple(
            x for i, x in enumerate(input_args) if i in diff_input_args_indices
        )
        grad_inputs = torch.autograd.grad(
            outputs, diff_input_args, grad_outputs, create_graph=True, allow_unused=True
        )
        grad_inputs = tuple(g for g in grad_inputs if g is not None)
        return grad_inputs

    return gradcheck(
        new_func,
        tupled_inputs + tupled_grad_outputs,
        eps=eps,
        atol=atol,
        rtol=rtol,
        raise_exception=raise_exception,
        nondet_tol=nondet_tol,
        check_undefined_grad=check_undefined_grad,
        check_grad_dtypes=check_grad_dtypes,
        check_batched_grad=check_batched_grad,
        fast_mode=fast_mode,
        check_forward_ad=check_fwd_over_rev,
        check_backward_ad=check_rev_over_rev,
        masked=masked,
    )