Spaces:
Sleeping
Sleeping
File size: 53,460 Bytes
c61ccee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 |
from typing import List, Tuple
import torch
from torch._vmap_internals import _vmap
from . import forward_ad as fwAD
__all__ = ["vjp", "jvp", "jacobian", "hessian", "hvp", "vhp"]
# Utility functions
def _as_tuple_nocheck(x):
if isinstance(x, tuple):
return x
elif isinstance(x, list):
return tuple(x)
else:
return (x,)
def _as_tuple(inp, arg_name=None, fn_name=None):
# Ensures that inp is a tuple of Tensors
# Returns whether or not the original inp was a tuple and the tupled version of the input
if arg_name is None and fn_name is None:
return _as_tuple_nocheck(inp)
is_inp_tuple = True
if not isinstance(inp, tuple):
inp = (inp,)
is_inp_tuple = False
for i, el in enumerate(inp):
if not isinstance(el, torch.Tensor):
if is_inp_tuple:
raise TypeError(
f"The {arg_name} given to {fn_name} must be either a Tensor or a tuple of Tensors but the"
f" value at index {i} has type {type(el)}."
)
else:
raise TypeError(
f"The {arg_name} given to {fn_name} must be either a Tensor or a tuple of Tensors but the"
f" given {arg_name} has type {type(el)}."
)
return is_inp_tuple, inp
def _tuple_postprocess(res, to_unpack):
# Unpacks a potentially nested tuple of Tensors
# to_unpack should be a single boolean or a tuple of two booleans.
# It is used to:
# - invert _as_tuple when res should match the inp given to _as_tuple
# - optionally remove nesting of two tuples created by multiple calls to _as_tuple
if isinstance(to_unpack, tuple):
assert len(to_unpack) == 2
if not to_unpack[1]:
res = tuple(el[0] for el in res)
if not to_unpack[0]:
res = res[0]
else:
if not to_unpack:
res = res[0]
return res
def _grad_preprocess(inputs, create_graph, need_graph):
# Preprocess the inputs to make sure they require gradient
# inputs is a tuple of Tensors to preprocess
# create_graph specifies if the user wants gradients to flow back to the Tensors in inputs
# need_graph specifies if we internally want gradients to flow back to the Tensors in res
# Note that we *always* create a new Tensor object to be able to see the difference between
# inputs given as arguments and the same Tensors automatically captured by the user function.
# Check this issue for more details on how that can happen: https://github.com/pytorch/pytorch/issues/32576
res = []
for inp in inputs:
if create_graph and inp.requires_grad:
# Create at least a new Tensor object in a differentiable way
if not inp.is_sparse:
# Use .view_as() to get a shallow copy
res.append(inp.view_as(inp))
else:
# We cannot use view for sparse Tensors so we clone
res.append(inp.clone())
else:
res.append(inp.detach().requires_grad_(need_graph))
return tuple(res)
def _grad_postprocess(inputs, create_graph):
# Postprocess the generated Tensors to avoid returning Tensors with history when the user did not
# request it.
if isinstance(inputs[0], torch.Tensor):
if not create_graph:
return tuple(inp.detach() for inp in inputs)
else:
return inputs
else:
return tuple(_grad_postprocess(inp, create_graph) for inp in inputs)
def _validate_v(v, other, is_other_tuple):
# This assumes that other is the correct shape, and v should match
# Both are assumed to be tuples of Tensors
if len(other) != len(v):
if is_other_tuple:
raise RuntimeError(
f"v is a tuple of invalid length: should be {len(other)} but got {len(v)}."
)
else:
raise RuntimeError("The given v should contain a single Tensor.")
for idx, (el_v, el_other) in enumerate(zip(v, other)):
if el_v.size() != el_other.size():
prepend = ""
if is_other_tuple:
prepend = f"Entry {idx} in "
raise RuntimeError(
f"{prepend}v has invalid size: should be {el_other.size()} but got {el_v.size()}."
)
def _check_requires_grad(inputs, input_type, strict):
# Used to make all the necessary checks to raise nice errors in strict mode.
if not strict:
return
if input_type not in ["outputs", "grad_inputs", "jacobian", "hessian"]:
raise RuntimeError("Invalid input_type to _check_requires_grad")
for i, inp in enumerate(inputs):
if inp is None:
# This can only be reached for grad_inputs.
raise RuntimeError(
f"The output of the user-provided function is independent of input {i}."
" This is not allowed in strict mode."
)
if not inp.requires_grad:
if input_type == "hessian":
raise RuntimeError(
f"The hessian of the user-provided function with respect to input {i}"
" is independent of the input. This is not allowed in strict mode."
" You should ensure that your function is thrice differentiable and that"
" the hessian depends on the inputs."
)
elif input_type == "jacobian":
raise RuntimeError(
"While computing the hessian, found that the jacobian of the user-provided"
f" function with respect to input {i} is independent of the input. This is not"
" allowed in strict mode. You should ensure that your function is twice"
" differentiable and that the jacobian depends on the inputs (this would be"
" violated by a linear function for example)."
)
elif input_type == "grad_inputs":
raise RuntimeError(
f"The gradient with respect to input {i} is independent of the inputs of the"
" user-provided function. This is not allowed in strict mode."
)
else:
raise RuntimeError(
f"Output {i} of the user-provided function does not require gradients."
" The outputs must be computed in a differentiable manner from the input"
" when running in strict mode."
)
def _autograd_grad(
outputs,
inputs,
grad_outputs=None,
create_graph=False,
retain_graph=None,
is_grads_batched=False,
):
# Version of autograd.grad that accepts `None` in outputs and do not compute gradients for them.
# This has the extra constraint that inputs has to be a tuple
assert isinstance(outputs, tuple)
if grad_outputs is None:
grad_outputs = (None,) * len(outputs)
assert isinstance(grad_outputs, tuple)
assert len(outputs) == len(grad_outputs)
new_outputs: Tuple[torch.Tensor, ...] = tuple()
new_grad_outputs: Tuple[torch.Tensor, ...] = tuple()
for out, grad_out in zip(outputs, grad_outputs):
if out is not None and out.requires_grad:
new_outputs += (out,)
new_grad_outputs += (grad_out,)
if len(new_outputs) == 0:
# No differentiable output, we don't need to call the autograd engine
return (None,) * len(inputs)
else:
return torch.autograd.grad(
new_outputs,
inputs,
new_grad_outputs,
allow_unused=True,
create_graph=create_graph,
retain_graph=retain_graph,
is_grads_batched=is_grads_batched,
)
def _fill_in_zeros(grads, refs, strict, create_graph, stage):
# Used to detect None in the grads and depending on the flags, either replace them
# with Tensors full of 0s of the appropriate size based on the refs or raise an error.
# strict and create graph allow us to detect when it is appropriate to raise an error
# stage gives us information of which backward call we consider to give good error message
if stage not in ["back", "back_trick", "double_back", "double_back_trick"]:
raise RuntimeError(f"Invalid stage argument '{stage}' to _fill_in_zeros")
res: Tuple[torch.Tensor, ...] = tuple()
for i, grads_i in enumerate(grads):
if grads_i is None:
if strict:
if stage == "back":
raise RuntimeError(
"The output of the user-provided function is independent of "
f"input {i}. This is not allowed in strict mode."
)
elif stage == "back_trick":
raise RuntimeError(
f"The gradient with respect to the input is independent of entry {i}"
" in the grad_outputs when using the double backward trick to compute"
" forward mode gradients. This is not allowed in strict mode."
)
elif stage == "double_back":
raise RuntimeError(
"The jacobian of the user-provided function is independent of "
f"input {i}. This is not allowed in strict mode."
)
else:
raise RuntimeError(
"The hessian of the user-provided function is independent of "
f"entry {i} in the grad_jacobian. This is not allowed in strict "
"mode as it prevents from using the double backward trick to "
"replace forward mode AD."
)
grads_i = torch.zeros_like(refs[i])
else:
if strict and create_graph and not grads_i.requires_grad:
if "double" not in stage:
raise RuntimeError(
"The jacobian of the user-provided function is independent of "
f"input {i}. This is not allowed in strict mode when create_graph=True."
)
else:
raise RuntimeError(
"The hessian of the user-provided function is independent of "
f"input {i}. This is not allowed in strict mode when create_graph=True."
)
res += (grads_i,)
return res
# Public API
def vjp(func, inputs, v=None, create_graph=False, strict=False):
r"""Compute the dot product between a vector ``v`` and the Jacobian of the given function at the point given by the inputs.
Args:
func (function): a Python function that takes Tensor inputs and returns
a tuple of Tensors or a Tensor.
inputs (tuple of Tensors or Tensor): inputs to the function ``func``.
v (tuple of Tensors or Tensor): The vector for which the vector
Jacobian product is computed. Must be the same size as the output
of ``func``. This argument is optional when the output of ``func``
contains a single element and (if it is not provided) will be set
as a Tensor containing a single ``1``.
create_graph (bool, optional): If ``True``, both the output and result
will be computed in a differentiable way. Note that when ``strict``
is ``False``, the result can not require gradients or be
disconnected from the inputs. Defaults to ``False``.
strict (bool, optional): If ``True``, an error will be raised when we
detect that there exists an input such that all the outputs are
independent of it. If ``False``, we return a Tensor of zeros as the
vjp for said inputs, which is the expected mathematical value.
Defaults to ``False``.
Returns:
output (tuple): tuple with:
func_output (tuple of Tensors or Tensor): output of ``func(inputs)``
vjp (tuple of Tensors or Tensor): result of the dot product with
the same shape as the inputs.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)
>>> def exp_reducer(x):
... return x.exp().sum(dim=1)
>>> inputs = torch.rand(4, 4)
>>> v = torch.ones(4)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> vjp(exp_reducer, inputs, v)
(tensor([5.7817, 7.2458, 5.7830, 6.7782]),
tensor([[1.4458, 1.3962, 1.3042, 1.6354],
[2.1288, 1.0652, 1.5483, 2.5035],
[2.2046, 1.1292, 1.1432, 1.3059],
[1.3225, 1.6652, 1.7753, 2.0152]]))
>>> vjp(exp_reducer, inputs, v, create_graph=True)
(tensor([5.7817, 7.2458, 5.7830, 6.7782], grad_fn=<SumBackward1>),
tensor([[1.4458, 1.3962, 1.3042, 1.6354],
[2.1288, 1.0652, 1.5483, 2.5035],
[2.2046, 1.1292, 1.1432, 1.3059],
[1.3225, 1.6652, 1.7753, 2.0152]], grad_fn=<MulBackward0>))
>>> def adder(x, y):
... return 2 * x + 3 * y
>>> inputs = (torch.rand(2), torch.rand(2))
>>> v = torch.ones(2)
>>> vjp(adder, inputs, v)
(tensor([2.4225, 2.3340]),
(tensor([2., 2.]), tensor([3., 3.])))
"""
with torch.enable_grad():
is_inputs_tuple, inputs = _as_tuple(inputs, "inputs", "vjp")
inputs = _grad_preprocess(inputs, create_graph=create_graph, need_graph=True)
outputs = func(*inputs)
is_outputs_tuple, outputs = _as_tuple(
outputs, "outputs of the user-provided function", "vjp"
)
_check_requires_grad(outputs, "outputs", strict=strict)
if v is not None:
_, v = _as_tuple(v, "v", "vjp")
v = _grad_preprocess(v, create_graph=create_graph, need_graph=False)
_validate_v(v, outputs, is_outputs_tuple)
else:
if len(outputs) != 1 or outputs[0].nelement() != 1:
raise RuntimeError(
"The vector v can only be None if the "
"user-provided function returns "
"a single Tensor with a single element."
)
enable_grad = True if create_graph else torch.is_grad_enabled()
with torch.set_grad_enabled(enable_grad):
grad_res = _autograd_grad(outputs, inputs, v, create_graph=create_graph)
vjp = _fill_in_zeros(grad_res, inputs, strict, create_graph, "back")
# Cleanup objects and return them to the user
outputs = _grad_postprocess(outputs, create_graph)
vjp = _grad_postprocess(vjp, create_graph)
return _tuple_postprocess(outputs, is_outputs_tuple), _tuple_postprocess(
vjp, is_inputs_tuple
)
def jvp(func, inputs, v=None, create_graph=False, strict=False):
r"""Compute the dot product between the Jacobian of the given function at the point given by the inputs and a vector ``v``.
Args:
func (function): a Python function that takes Tensor inputs and returns
a tuple of Tensors or a Tensor.
inputs (tuple of Tensors or Tensor): inputs to the function ``func``.
v (tuple of Tensors or Tensor): The vector for which the Jacobian
vector product is computed. Must be the same size as the input of
``func``. This argument is optional when the input to ``func``
contains a single element and (if it is not provided) will be set
as a Tensor containing a single ``1``.
create_graph (bool, optional): If ``True``, both the output and result
will be computed in a differentiable way. Note that when ``strict``
is ``False``, the result can not require gradients or be
disconnected from the inputs. Defaults to ``False``.
strict (bool, optional): If ``True``, an error will be raised when we
detect that there exists an input such that all the outputs are
independent of it. If ``False``, we return a Tensor of zeros as the
jvp for said inputs, which is the expected mathematical value.
Defaults to ``False``.
Returns:
output (tuple): tuple with:
func_output (tuple of Tensors or Tensor): output of ``func(inputs)``
jvp (tuple of Tensors or Tensor): result of the dot product with
the same shape as the output.
Note:
``autograd.functional.jvp`` computes the jvp by using the backward of
the backward (sometimes called the double backwards trick). This is not
the most performant way of computing the jvp. Please consider using
:func:`torch.func.jvp` or the
:ref:`low-level forward-mode AD API <forward-mode-ad>` instead.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)
>>> def exp_reducer(x):
... return x.exp().sum(dim=1)
>>> inputs = torch.rand(4, 4)
>>> v = torch.ones(4, 4)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> jvp(exp_reducer, inputs, v)
(tensor([6.3090, 4.6742, 7.9114, 8.2106]),
tensor([6.3090, 4.6742, 7.9114, 8.2106]))
>>> jvp(exp_reducer, inputs, v, create_graph=True)
(tensor([6.3090, 4.6742, 7.9114, 8.2106], grad_fn=<SumBackward1>),
tensor([6.3090, 4.6742, 7.9114, 8.2106], grad_fn=<SqueezeBackward1>))
>>> def adder(x, y):
... return 2 * x + 3 * y
>>> inputs = (torch.rand(2), torch.rand(2))
>>> v = (torch.ones(2), torch.ones(2))
>>> jvp(adder, inputs, v)
(tensor([2.2399, 2.5005]),
tensor([5., 5.]))
"""
with torch.enable_grad():
is_inputs_tuple, inputs = _as_tuple(inputs, "inputs", "jvp")
inputs = _grad_preprocess(inputs, create_graph=create_graph, need_graph=True)
if v is not None:
_, v = _as_tuple(v, "v", "jvp")
v = _grad_preprocess(v, create_graph=create_graph, need_graph=False)
_validate_v(v, inputs, is_inputs_tuple)
else:
if len(inputs) != 1 or inputs[0].nelement() != 1:
raise RuntimeError(
"The vector v can only be None if the input to "
"the user-provided function is a single Tensor "
"with a single element."
)
outputs = func(*inputs)
is_outputs_tuple, outputs = _as_tuple(
outputs, "outputs of the user-provided function", "jvp"
)
_check_requires_grad(outputs, "outputs", strict=strict)
# The backward is linear so the value of grad_outputs is not important as
# it won't appear in the double backward graph. We only need to ensure that
# it does not contain inf or nan.
grad_outputs = tuple(
torch.zeros_like(out, requires_grad=True) for out in outputs
)
grad_inputs = _autograd_grad(outputs, inputs, grad_outputs, create_graph=True)
_check_requires_grad(grad_inputs, "grad_inputs", strict=strict)
if create_graph:
with torch.enable_grad():
grad_res = _autograd_grad(
grad_inputs, grad_outputs, v, create_graph=create_graph
)
jvp = _fill_in_zeros(grad_res, outputs, strict, create_graph, "back_trick")
else:
grad_res = _autograd_grad(
grad_inputs, grad_outputs, v, create_graph=create_graph
)
jvp = _fill_in_zeros(grad_res, outputs, strict, create_graph, "back_trick")
# Cleanup objects and return them to the user
outputs = _grad_postprocess(outputs, create_graph)
jvp = _grad_postprocess(jvp, create_graph)
return _tuple_postprocess(outputs, is_outputs_tuple), _tuple_postprocess(
jvp, is_outputs_tuple
)
def _construct_standard_basis_for(
tensors: Tuple[torch.Tensor, ...], tensor_numels: Tuple[int, ...]
) -> Tuple[torch.Tensor, ...]:
# This function:
# - constructs a N=sum(tensor_numels) standard basis. i.e. an NxN identity matrix.
# - Splits the identity matrix into chunks with each chunk size determined by `tensor_numels`.
# - Each chunk corresponds to one tensor. The chunk has the same dtype and
# device as the tensor
#
# For example, with tensor_numels = [1, 2, 1], this function returns:
# ( tensor([[1], tensor([[0, 0], tensor([[0],
# [0], [1, 0], [0],
# [0], [0, 1], [0],
# [0]]) , [0, 0]]) , [1]]) )
#
# Precondition: tensor_numels == tuple(tensor.numel() for tensor in tensors)
# Precondition: tensors always has at least one element.
#
# See NOTE: [Computing jacobian with vmap and grad for multiple tensors]
# for context behind this function. All the pre-conditions are guarded for
# in torch.autograd.functional.jacobian.
assert len(tensors) == len(tensor_numels)
assert len(tensors) > 0
total_numel = sum(tensor_numels)
chunks = tuple(
tensor.new_zeros(total_numel, tensor_numel)
for tensor, tensor_numel in zip(tensors, tensor_numels)
)
diag_start_idx = 0
for chunk, numel in zip(chunks, tensor_numels):
chunk.diagonal(diag_start_idx).fill_(1)
diag_start_idx -= numel
return chunks
def _jacfwd(func, inputs, strict=False, vectorize=False):
if strict:
raise RuntimeError(
"torch.autograd.functional.jacobian: `strict=True` "
'and `strategy="forward-mode"` are not supported together (yet). '
"Please either set `strict=False` or "
'`strategy="reverse-mode"`.'
)
is_inputs_tuple, inputs = _as_tuple(inputs, "inputs", "jacobian")
output_info = []
if vectorize:
# See NOTE: [Computing jacobian with vmap and grad for multiple outputs]
input_numels = tuple(input.numel() for input in inputs)
# Step 1: Prepare tangents
tangents = _construct_standard_basis_for(inputs, input_numels)
# Step 2: Compute vmap over computation with dual tensors
def jvp(tangents):
with fwAD.dual_level():
dual_inputs = tuple(
fwAD.make_dual(input, tangent.view_as(input))
for input, tangent in zip(inputs, tangents)
)
_is_outputs_tuple, dual_outputs = _as_tuple(
func(*dual_inputs), "outputs"
)
output_info.append(_is_outputs_tuple)
jv = []
primal_outs = []
for dual_out in dual_outputs:
primal, tangent = fwAD.unpack_dual(dual_out)
primal_outs.append(primal)
if tangent is not None:
jv.append(tangent)
else:
jv.append(torch.zeros_like(primal))
output_info.append(primal_outs)
return tuple(jv)
outputs_before_split = _vmap(jvp)(tangents)
is_outputs_tuple, outputs = output_info
# Step 3: for each of the output tangents, split along dim 0
jacobian_input_output = []
for jac_output_i, output_i in zip(outputs_before_split, outputs):
jacobian_output_i_output = []
for jac, input_j in zip(jac_output_i.split(input_numels, dim=0), inputs):
# We need to transpose the Jacobian because in forward AD, the
# batch dimension represents that of the inputs
jacobian_input_i_output_j = jac.permute(*range(1, jac.ndim), 0).reshape(
(*output_i.shape, *input_j.shape)
) # noqa: C409
jacobian_output_i_output.append(jacobian_input_i_output_j)
jacobian_input_output.append(jacobian_output_i_output)
# Omit [Step 4] because everything is already transposed w/ forward AD
return _tuple_postprocess(
jacobian_input_output, (is_outputs_tuple, is_inputs_tuple)
)
else:
raise NotImplementedError(
"Computing Jacobian using forward-AD or forward-over-reverse Hessian is"
"only implemented for `vectorize=True`."
)
def jacobian(
func,
inputs,
create_graph=False,
strict=False,
vectorize=False,
strategy="reverse-mode",
):
r"""Compute the Jacobian of a given function.
Args:
func (function): a Python function that takes Tensor inputs and returns
a tuple of Tensors or a Tensor.
inputs (tuple of Tensors or Tensor): inputs to the function ``func``.
create_graph (bool, optional): If ``True``, the Jacobian will be
computed in a differentiable manner. Note that when ``strict`` is
``False``, the result can not require gradients or be disconnected
from the inputs. Defaults to ``False``.
strict (bool, optional): If ``True``, an error will be raised when we
detect that there exists an input such that all the outputs are
independent of it. If ``False``, we return a Tensor of zeros as the
jacobian for said inputs, which is the expected mathematical value.
Defaults to ``False``.
vectorize (bool, optional): This feature is experimental.
Please consider using :func:`torch.func.jacrev` or
:func:`torch.func.jacfwd` instead if you are looking for something
less experimental and more performant.
When computing the jacobian, usually we invoke
``autograd.grad`` once per row of the jacobian. If this flag is
``True``, we perform only a single ``autograd.grad`` call with
``batched_grad=True`` which uses the vmap prototype feature.
Though this should lead to performance improvements in many cases,
because this feature is still experimental, there may be performance
cliffs. See :func:`torch.autograd.grad`'s ``batched_grad`` parameter for
more information.
strategy (str, optional): Set to ``"forward-mode"`` or ``"reverse-mode"`` to
determine whether the Jacobian will be computed with forward or reverse
mode AD. Currently, ``"forward-mode"`` requires ``vectorized=True``.
Defaults to ``"reverse-mode"``. If ``func`` has more outputs than
inputs, ``"forward-mode"`` tends to be more performant. Otherwise,
prefer to use ``"reverse-mode"``.
Returns:
Jacobian (Tensor or nested tuple of Tensors): if there is a single
input and output, this will be a single Tensor containing the
Jacobian for the linearized inputs and output. If one of the two is
a tuple, then the Jacobian will be a tuple of Tensors. If both of
them are tuples, then the Jacobian will be a tuple of tuple of
Tensors where ``Jacobian[i][j]`` will contain the Jacobian of the
``i``\th output and ``j``\th input and will have as size the
concatenation of the sizes of the corresponding output and the
corresponding input and will have same dtype and device as the
corresponding input. If strategy is ``forward-mode``, the dtype will be
that of the output; otherwise, the input.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)
>>> def exp_reducer(x):
... return x.exp().sum(dim=1)
>>> inputs = torch.rand(2, 2)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> jacobian(exp_reducer, inputs)
tensor([[[1.4917, 2.4352],
[0.0000, 0.0000]],
[[0.0000, 0.0000],
[2.4369, 2.3799]]])
>>> jacobian(exp_reducer, inputs, create_graph=True)
tensor([[[1.4917, 2.4352],
[0.0000, 0.0000]],
[[0.0000, 0.0000],
[2.4369, 2.3799]]], grad_fn=<ViewBackward>)
>>> def exp_adder(x, y):
... return 2 * x.exp() + 3 * y
>>> inputs = (torch.rand(2), torch.rand(2))
>>> jacobian(exp_adder, inputs)
(tensor([[2.8052, 0.0000],
[0.0000, 3.3963]]),
tensor([[3., 0.],
[0., 3.]]))
"""
assert strategy in ("forward-mode", "reverse-mode"), (
'Expected strategy to be either "forward-mode" or "reverse-mode". Hint: If your '
'function has more outputs than inputs, "forward-mode" tends to be more performant. '
'Otherwise, prefer to use "reverse-mode".'
)
if strategy == "forward-mode":
if create_graph:
raise NotImplementedError(
"torch.autograd.functional.jacobian: `create_graph=True` "
'and `strategy="forward-mode"` are not supported together (yet). '
"Please either set `create_graph=False` or "
'`strategy="reverse-mode"`.'
)
return _jacfwd(func, inputs, strict, vectorize)
with torch.enable_grad():
is_inputs_tuple, inputs = _as_tuple(inputs, "inputs", "jacobian")
inputs = _grad_preprocess(inputs, create_graph=create_graph, need_graph=True)
outputs = func(*inputs)
is_outputs_tuple, outputs = _as_tuple(
outputs, "outputs of the user-provided function", "jacobian"
)
_check_requires_grad(outputs, "outputs", strict=strict)
if vectorize:
if strict:
raise RuntimeError(
"torch.autograd.functional.jacobian: `strict=True` "
"and `vectorized=True` are not supported together. "
"Please either set `strict=False` or "
"`vectorize=False`."
)
# NOTE: [Computing jacobian with vmap and grad for multiple outputs]
#
# Let's consider f(x) = (x**2, x.sum()) and let x = torch.randn(3).
# It turns out we can compute the jacobian of this function with a single
# call to autograd.grad by using vmap over the correct grad_outputs.
#
# Firstly, one way to compute the jacobian is to stack x**2 and x.sum()
# into a 4D vector. E.g., use g(x) = torch.stack([x**2, x.sum()])
#
# To get the first row of the jacobian, we call
# >>> autograd.grad(g(x), x, grad_outputs=torch.tensor([1, 0, 0, 0]))
# To get the 2nd row of the jacobian, we call
# >>> autograd.grad(g(x), x, grad_outputs=torch.tensor([0, 1, 0, 0]))
# and so on.
#
# Using vmap, we can vectorize all 4 of these computations into one by
# passing the standard basis for R^4 as the grad_output.
# vmap(partial(autograd.grad, g(x), x))(torch.eye(4)).
#
# Now, how do we compute the jacobian *without stacking the output*?
# We can just split the standard basis across the outputs. So to
# compute the jacobian of f(x), we'd use
# >>> autograd.grad(f(x), x, grad_outputs=_construct_standard_basis_for(...))
# The grad_outputs looks like the following:
# ( torch.tensor([[1, 0, 0],
# [0, 1, 0],
# [0, 0, 1],
# [0, 0, 0]]),
# torch.tensor([[0],
# [0],
# [0],
# [1]]) )
#
# But we're not done yet!
# >>> vmap(partial(autograd.grad(f(x), x, grad_outputs=...)))
# returns a Tensor of shape [4, 3]. We have to remember to split the
# jacobian of shape [4, 3] into two:
# - one of shape [3, 3] for the first output
# - one of shape [ 3] for the second output
# Step 1: Construct grad_outputs by splitting the standard basis
output_numels = tuple(output.numel() for output in outputs)
grad_outputs = _construct_standard_basis_for(outputs, output_numels)
flat_outputs = tuple(output.reshape(-1) for output in outputs)
# Step 2: Call vmap + autograd.grad
def vjp(grad_output):
vj = list(
_autograd_grad(
flat_outputs,
inputs,
grad_output,
create_graph=create_graph,
is_grads_batched=True,
)
)
for el_idx, vj_el in enumerate(vj):
if vj_el is not None:
continue
vj[el_idx] = torch.zeros_like(inputs[el_idx]).expand(
(sum(output_numels),) + inputs[el_idx].shape
)
return tuple(vj)
jacobians_of_flat_output = vjp(grad_outputs)
# Step 3: The returned jacobian is one big tensor per input. In this step,
# we split each Tensor by output.
jacobian_input_output = []
for jac_input_i, input_i in zip(jacobians_of_flat_output, inputs):
jacobian_input_i_output = []
for jac, output_j in zip(
jac_input_i.split(output_numels, dim=0), outputs
):
jacobian_input_i_output_j = jac.view(output_j.shape + input_i.shape)
jacobian_input_i_output.append(jacobian_input_i_output_j)
jacobian_input_output.append(jacobian_input_i_output)
# Step 4: Right now, `jacobian` is a List[List[Tensor]].
# The outer List corresponds to the number of inputs,
# the inner List corresponds to the number of outputs.
# We need to exchange the order of these and convert to tuples
# before returning.
jacobian_output_input = tuple(zip(*jacobian_input_output))
jacobian_output_input = _grad_postprocess(
jacobian_output_input, create_graph
)
return _tuple_postprocess(
jacobian_output_input, (is_outputs_tuple, is_inputs_tuple)
)
jacobian: Tuple[torch.Tensor, ...] = tuple()
for i, out in enumerate(outputs):
# mypy complains that expression and variable have different types due to the empty list
jac_i: Tuple[List[torch.Tensor]] = tuple([] for _ in range(len(inputs))) # type: ignore[assignment]
for j in range(out.nelement()):
vj = _autograd_grad(
(out.reshape(-1)[j],),
inputs,
retain_graph=True,
create_graph=create_graph,
)
for el_idx, (jac_i_el, vj_el, inp_el) in enumerate(
zip(jac_i, vj, inputs)
):
if vj_el is not None:
if strict and create_graph and not vj_el.requires_grad:
msg = (
"The jacobian of the user-provided function is "
f"independent of input {i}. This is not allowed in "
"strict mode when create_graph=True."
)
raise RuntimeError(msg)
jac_i_el.append(vj_el)
else:
if strict:
msg = (
f"Output {i} of the user-provided function is "
f"independent of input {el_idx}. This is not allowed in "
"strict mode."
)
raise RuntimeError(msg)
jac_i_el.append(torch.zeros_like(inp_el))
jacobian += (
tuple(
torch.stack(jac_i_el, dim=0).view(
out.size() + inputs[el_idx].size() # type: ignore[operator]
)
for (el_idx, jac_i_el) in enumerate(jac_i)
),
)
jacobian = _grad_postprocess(jacobian, create_graph)
return _tuple_postprocess(jacobian, (is_outputs_tuple, is_inputs_tuple))
def hessian(
func,
inputs,
create_graph=False,
strict=False,
vectorize=False,
outer_jacobian_strategy="reverse-mode",
):
r"""Compute the Hessian of a given scalar function.
Args:
func (function): a Python function that takes Tensor inputs and returns
a Tensor with a single element.
inputs (tuple of Tensors or Tensor): inputs to the function ``func``.
create_graph (bool, optional): If ``True``, the Hessian will be computed in
a differentiable manner. Note that when ``strict`` is ``False``, the result can not
require gradients or be disconnected from the inputs.
Defaults to ``False``.
strict (bool, optional): If ``True``, an error will be raised when we detect that there exists an input
such that all the outputs are independent of it. If ``False``, we return a Tensor of zeros as the
hessian for said inputs, which is the expected mathematical value.
Defaults to ``False``.
vectorize (bool, optional): This feature is experimental.
Please consider using :func:`torch.func.hessian`
instead if you are looking for something less experimental and more performant.
When computing the hessian, usually we invoke
``autograd.grad`` once per row of the hessian. If this flag is
``True``, we use the vmap prototype feature as the backend to
vectorize calls to ``autograd.grad`` so we only invoke it once
instead of once per row. This should lead to performance
improvements in many use cases, however, due to this feature
being incomplete, there may be performance cliffs. Please
use `torch._C._debug_only_display_vmap_fallback_warnings(True)`
to show any performance warnings and file us issues if
warnings exist for your use case. Defaults to ``False``.
outer_jacobian_strategy (str, optional): The Hessian is computed by
computing the Jacobian of a Jacobian. The inner Jacobian is always
computed in reverse-mode AD. Setting strategy to ``"forward-mode"``
or ``"reverse-mode"`` determines whether the outer Jacobian will be
computed with forward or reverse mode AD. Currently, computing the outer
Jacobian in ``"forward-mode"`` requires ``vectorized=True``. Defaults
to ``"reverse-mode"``.
Returns:
Hessian (Tensor or a tuple of tuple of Tensors): if there is a single input,
this will be a single Tensor containing the Hessian for the input.
If it is a tuple, then the Hessian will be a tuple of tuples where
``Hessian[i][j]`` will contain the Hessian of the ``i``\th input
and ``j``\th input with size the sum of the size of the ``i``\th input plus
the size of the ``j``\th input. ``Hessian[i][j]`` will have the same
dtype and device as the corresponding ``i``\th input.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)
>>> def pow_reducer(x):
... return x.pow(3).sum()
>>> inputs = torch.rand(2, 2)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> hessian(pow_reducer, inputs)
tensor([[[[5.2265, 0.0000],
[0.0000, 0.0000]],
[[0.0000, 4.8221],
[0.0000, 0.0000]]],
[[[0.0000, 0.0000],
[1.9456, 0.0000]],
[[0.0000, 0.0000],
[0.0000, 3.2550]]]])
>>> hessian(pow_reducer, inputs, create_graph=True)
tensor([[[[5.2265, 0.0000],
[0.0000, 0.0000]],
[[0.0000, 4.8221],
[0.0000, 0.0000]]],
[[[0.0000, 0.0000],
[1.9456, 0.0000]],
[[0.0000, 0.0000],
[0.0000, 3.2550]]]], grad_fn=<ViewBackward>)
>>> def pow_adder_reducer(x, y):
... return (2 * x.pow(2) + 3 * y.pow(2)).sum()
>>> inputs = (torch.rand(2), torch.rand(2))
>>> hessian(pow_adder_reducer, inputs)
((tensor([[4., 0.],
[0., 4.]]),
tensor([[0., 0.],
[0., 0.]])),
(tensor([[0., 0.],
[0., 0.]]),
tensor([[6., 0.],
[0., 6.]])))
"""
is_inputs_tuple, inputs = _as_tuple(inputs, "inputs", "hessian")
assert outer_jacobian_strategy in (
"forward-mode",
"reverse-mode",
), 'Expected strategy to be either "forward-mode" or "reverse-mode".'
def ensure_single_output_function(*inp):
out = func(*inp)
is_out_tuple, t_out = _as_tuple(
out, "outputs of the user-provided function", "hessian"
)
_check_requires_grad(t_out, "outputs", strict=strict)
if is_out_tuple or not isinstance(out, torch.Tensor):
raise RuntimeError(
"The function given to hessian should return a single Tensor"
)
if out.nelement() != 1:
raise RuntimeError(
"The Tensor returned by the function given to hessian should contain a single element"
)
return out.squeeze()
def jac_func(*inp):
if outer_jacobian_strategy == "forward-mode":
# _grad_preprocess requires create_graph=True and input to require_grad
# or else the input will be detached
inp = tuple(t.requires_grad_(True) for t in inp)
jac = jacobian(ensure_single_output_function, inp, create_graph=True)
_check_requires_grad(jac, "jacobian", strict=strict)
return jac
res = jacobian(
jac_func,
inputs,
create_graph=create_graph,
strict=strict,
vectorize=vectorize,
strategy=outer_jacobian_strategy,
)
return _tuple_postprocess(res, (is_inputs_tuple, is_inputs_tuple))
def vhp(func, inputs, v=None, create_graph=False, strict=False):
r"""Compute the dot product between vector ``v`` and Hessian of a given scalar function at a specified point.
Args:
func (function): a Python function that takes Tensor inputs and returns
a Tensor with a single element.
inputs (tuple of Tensors or Tensor): inputs to the function ``func``.
v (tuple of Tensors or Tensor): The vector for which the vector Hessian
product is computed. Must be the same size as the input of
``func``. This argument is optional when ``func``'s input contains
a single element and (if it is not provided) will be set as a
Tensor containing a single ``1``.
create_graph (bool, optional): If ``True``, both the output and result
will be computed in a differentiable way. Note that when ``strict``
is ``False``, the result can not require gradients or be
disconnected from the inputs.
Defaults to ``False``.
strict (bool, optional): If ``True``, an error will be raised when we
detect that there exists an input such that all the outputs are
independent of it. If ``False``, we return a Tensor of zeros as the
vhp for said inputs, which is the expected mathematical value.
Defaults to ``False``.
Returns:
output (tuple): tuple with:
func_output (tuple of Tensors or Tensor): output of ``func(inputs)``
vhp (tuple of Tensors or Tensor): result of the dot product with the
same shape as the inputs.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)
>>> def pow_reducer(x):
... return x.pow(3).sum()
>>> inputs = torch.rand(2, 2)
>>> v = torch.ones(2, 2)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> vhp(pow_reducer, inputs, v)
(tensor(0.5591),
tensor([[1.0689, 1.2431],
[3.0989, 4.4456]]))
>>> vhp(pow_reducer, inputs, v, create_graph=True)
(tensor(0.5591, grad_fn=<SumBackward0>),
tensor([[1.0689, 1.2431],
[3.0989, 4.4456]], grad_fn=<MulBackward0>))
>>> def pow_adder_reducer(x, y):
... return (2 * x.pow(2) + 3 * y.pow(2)).sum()
>>> inputs = (torch.rand(2), torch.rand(2))
>>> v = (torch.zeros(2), torch.ones(2))
>>> vhp(pow_adder_reducer, inputs, v)
(tensor(4.8053),
(tensor([0., 0.]),
tensor([6., 6.])))
"""
with torch.enable_grad():
is_inputs_tuple, inputs = _as_tuple(inputs, "inputs", "vhp")
inputs = _grad_preprocess(inputs, create_graph=create_graph, need_graph=True)
if v is not None:
_, v = _as_tuple(v, "v", "vhp")
v = _grad_preprocess(v, create_graph=create_graph, need_graph=False)
_validate_v(v, inputs, is_inputs_tuple)
else:
if len(inputs) != 1 or inputs[0].nelement() != 1:
raise RuntimeError(
"The vector v can only be None if the input to the user-provided function "
"is a single Tensor with a single element."
)
outputs = func(*inputs)
is_outputs_tuple, outputs = _as_tuple(
outputs, "outputs of the user-provided function", "vhp"
)
_check_requires_grad(outputs, "outputs", strict=strict)
if is_outputs_tuple or not isinstance(outputs[0], torch.Tensor):
raise RuntimeError(
"The function given to vhp should return a single Tensor"
)
if outputs[0].nelement() != 1:
raise RuntimeError(
"The Tensor returned by the function given to vhp should contain a single element"
)
jac = _autograd_grad(outputs, inputs, create_graph=True)
_check_requires_grad(jac, "jacobian", strict=strict)
enable_grad = True if create_graph else torch.is_grad_enabled()
with torch.set_grad_enabled(enable_grad):
grad_res = _autograd_grad(jac, inputs, v, create_graph=create_graph)
vhp = _fill_in_zeros(grad_res, inputs, strict, create_graph, "double_back")
outputs = _grad_postprocess(outputs, create_graph)
vhp = _grad_postprocess(vhp, create_graph)
return _tuple_postprocess(outputs, is_outputs_tuple), _tuple_postprocess(
vhp, is_inputs_tuple
)
def hvp(func, inputs, v=None, create_graph=False, strict=False):
r"""Compute the dot product between the scalar function's Hessian and a vector ``v`` at a specified point.
Args:
func (function): a Python function that takes Tensor inputs and returns
a Tensor with a single element.
inputs (tuple of Tensors or Tensor): inputs to the function ``func``.
v (tuple of Tensors or Tensor): The vector for which the Hessian vector
product is computed. Must be the same size as the input of
``func``. This argument is optional when ``func``'s input contains
a single element and (if it is not provided) will be set as a
Tensor containing a single ``1``.
create_graph (bool, optional): If ``True``, both the output and result will be
computed in a differentiable way. Note that when ``strict`` is
``False``, the result can not require gradients or be disconnected
from the inputs. Defaults to ``False``.
strict (bool, optional): If ``True``, an error will be raised when we
detect that there exists an input such that all the outputs are
independent of it. If ``False``, we return a Tensor of zeros as the
hvp for said inputs, which is the expected mathematical value.
Defaults to ``False``.
Returns:
output (tuple): tuple with:
func_output (tuple of Tensors or Tensor): output of ``func(inputs)``
hvp (tuple of Tensors or Tensor): result of the dot product with
the same shape as the inputs.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_AUTOGRAD)
>>> def pow_reducer(x):
... return x.pow(3).sum()
>>> inputs = torch.rand(2, 2)
>>> v = torch.ones(2, 2)
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> hvp(pow_reducer, inputs, v)
(tensor(0.1448),
tensor([[2.0239, 1.6456],
[2.4988, 1.4310]]))
>>> hvp(pow_reducer, inputs, v, create_graph=True)
(tensor(0.1448, grad_fn=<SumBackward0>),
tensor([[2.0239, 1.6456],
[2.4988, 1.4310]], grad_fn=<MulBackward0>))
>>> def pow_adder_reducer(x, y):
... return (2 * x.pow(2) + 3 * y.pow(2)).sum()
>>> inputs = (torch.rand(2), torch.rand(2))
>>> v = (torch.zeros(2), torch.ones(2))
>>> hvp(pow_adder_reducer, inputs, v)
(tensor(2.3030),
(tensor([0., 0.]),
tensor([6., 6.])))
Note:
This function is significantly slower than `vhp` due to backward mode AD constraints.
If your functions is twice continuously differentiable, then hvp = vhp.t(). So if you
know that your function satisfies this condition, you should use vhp instead that is
much faster with the current implementation.
"""
with torch.enable_grad():
is_inputs_tuple, inputs = _as_tuple(inputs, "inputs", "hvp")
inputs = _grad_preprocess(inputs, create_graph=create_graph, need_graph=True)
if v is not None:
_, v = _as_tuple(v, "v", "hvp")
v = _grad_preprocess(v, create_graph=create_graph, need_graph=False)
_validate_v(v, inputs, is_inputs_tuple)
else:
if len(inputs) != 1 or inputs[0].nelement() != 1:
raise RuntimeError(
"The vector v can only be None if the input to the user-provided function "
"is a single Tensor with a single element."
)
outputs = func(*inputs)
is_outputs_tuple, outputs = _as_tuple(
outputs, "outputs of the user-provided function", "hvp"
)
_check_requires_grad(outputs, "outputs", strict=strict)
if is_outputs_tuple or not isinstance(outputs[0], torch.Tensor):
raise RuntimeError(
"The function given to hvp should return a single Tensor"
)
if outputs[0].nelement() != 1:
raise RuntimeError(
"The Tensor returned by the function given to hvp should contain a single element"
)
jac = _autograd_grad(outputs, inputs, create_graph=True)
_check_requires_grad(jac, "jacobian", strict=strict)
grad_jac = tuple(torch.zeros_like(inp, requires_grad=True) for inp in inputs)
double_back = _autograd_grad(jac, inputs, grad_jac, create_graph=True)
_check_requires_grad(jac, "hessian", strict=strict)
enable_grad = True if create_graph else torch.is_grad_enabled()
with torch.set_grad_enabled(enable_grad):
grad_res = _autograd_grad(double_back, grad_jac, v, create_graph=create_graph)
hvp = _fill_in_zeros(
grad_res, inputs, strict, create_graph, "double_back_trick"
)
outputs = _grad_postprocess(outputs, create_graph)
hvp = _grad_postprocess(hvp, create_graph)
return _tuple_postprocess(outputs, is_outputs_tuple), _tuple_postprocess(
hvp, is_inputs_tuple
)
|