Spaces:
Sleeping
Sleeping
File size: 70,379 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 |
"""Base class for undirected graphs.
The Graph class allows any hashable object as a node
and can associate key/value attribute pairs with each undirected edge.
Self-loops are allowed but multiple edges are not (see MultiGraph).
For directed graphs see DiGraph and MultiDiGraph.
"""
from copy import deepcopy
from functools import cached_property
import networkx as nx
from networkx import convert
from networkx.classes.coreviews import AdjacencyView
from networkx.classes.reportviews import DegreeView, EdgeView, NodeView
from networkx.exception import NetworkXError
__all__ = ["Graph"]
class _CachedPropertyResetterAdj:
"""Data Descriptor class for _adj that resets ``adj`` cached_property when needed
This assumes that the ``cached_property`` ``G.adj`` should be reset whenever
``G._adj`` is set to a new value.
This object sits on a class and ensures that any instance of that
class clears its cached property "adj" whenever the underlying
instance attribute "_adj" is set to a new object. It only affects
the set process of the obj._adj attribute. All get/del operations
act as they normally would.
For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
"""
def __set__(self, obj, value):
od = obj.__dict__
od["_adj"] = value
if "adj" in od:
del od["adj"]
class _CachedPropertyResetterNode:
"""Data Descriptor class for _node that resets ``nodes`` cached_property when needed
This assumes that the ``cached_property`` ``G.node`` should be reset whenever
``G._node`` is set to a new value.
This object sits on a class and ensures that any instance of that
class clears its cached property "nodes" whenever the underlying
instance attribute "_node" is set to a new object. It only affects
the set process of the obj._adj attribute. All get/del operations
act as they normally would.
For info on Data Descriptors see: https://docs.python.org/3/howto/descriptor.html
"""
def __set__(self, obj, value):
od = obj.__dict__
od["_node"] = value
if "nodes" in od:
del od["nodes"]
class Graph:
"""
Base class for undirected graphs.
A Graph stores nodes and edges with optional data, or attributes.
Graphs hold undirected edges. Self loops are allowed but multiple
(parallel) edges are not.
Nodes can be arbitrary (hashable) Python objects with optional
key/value attributes, except that `None` is not allowed as a node.
Edges are represented as links between nodes with optional
key/value attributes.
Parameters
----------
incoming_graph_data : input graph (optional, default: None)
Data to initialize graph. If None (default) an empty
graph is created. The data can be any format that is supported
by the to_networkx_graph() function, currently including edge list,
dict of dicts, dict of lists, NetworkX graph, 2D NumPy array, SciPy
sparse matrix, or PyGraphviz graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also
--------
DiGraph
MultiGraph
MultiDiGraph
Examples
--------
Create an empty graph structure (a "null graph") with no nodes and
no edges.
>>> G = nx.Graph()
G can be grown in several ways.
**Nodes:**
Add one node at a time:
>>> G.add_node(1)
Add the nodes from any container (a list, dict, set or
even the lines from a file or the nodes from another graph).
>>> G.add_nodes_from([2, 3])
>>> G.add_nodes_from(range(100, 110))
>>> H = nx.path_graph(10)
>>> G.add_nodes_from(H)
In addition to strings and integers any hashable Python object
(except None) can represent a node, e.g. a customized node object,
or even another Graph.
>>> G.add_node(H)
**Edges:**
G can also be grown by adding edges.
Add one edge,
>>> G.add_edge(1, 2)
a list of edges,
>>> G.add_edges_from([(1, 2), (1, 3)])
or a collection of edges,
>>> G.add_edges_from(H.edges)
If some edges connect nodes not yet in the graph, the nodes
are added automatically. There are no errors when adding
nodes or edges that already exist.
**Attributes:**
Each graph, node, and edge can hold key/value attribute pairs
in an associated attribute dictionary (the keys must be hashable).
By default these are empty, but can be added or changed using
add_edge, add_node or direct manipulation of the attribute
dictionaries named graph, node and edge respectively.
>>> G = nx.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}
Add node attributes using add_node(), add_nodes_from() or G.nodes
>>> G.add_node(1, time="5pm")
>>> G.add_nodes_from([3], time="2pm")
>>> G.nodes[1]
{'time': '5pm'}
>>> G.nodes[1]["room"] = 714 # node must exist already to use G.nodes
>>> del G.nodes[1]["room"] # remove attribute
>>> list(G.nodes(data=True))
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
Add edge attributes using add_edge(), add_edges_from(), subscript
notation, or G.edges.
>>> G.add_edge(1, 2, weight=4.7)
>>> G.add_edges_from([(3, 4), (4, 5)], color="red")
>>> G.add_edges_from([(1, 2, {"color": "blue"}), (2, 3, {"weight": 8})])
>>> G[1][2]["weight"] = 4.7
>>> G.edges[1, 2]["weight"] = 4
Warning: we protect the graph data structure by making `G.edges` a
read-only dict-like structure. However, you can assign to attributes
in e.g. `G.edges[1, 2]`. Thus, use 2 sets of brackets to add/change
data attributes: `G.edges[1, 2]['weight'] = 4`
(For multigraphs: `MG.edges[u, v, key][name] = value`).
**Shortcuts:**
Many common graph features allow python syntax to speed reporting.
>>> 1 in G # check if node in graph
True
>>> [n for n in G if n < 3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
Often the best way to traverse all edges of a graph is via the neighbors.
The neighbors are reported as an adjacency-dict `G.adj` or `G.adjacency()`
>>> for n, nbrsdict in G.adjacency():
... for nbr, eattr in nbrsdict.items():
... if "weight" in eattr:
... # Do something useful with the edges
... pass
But the edges() method is often more convenient:
>>> for u, v, weight in G.edges.data("weight"):
... if weight is not None:
... # Do something useful with the edges
... pass
**Reporting:**
Simple graph information is obtained using object-attributes and methods.
Reporting typically provides views instead of containers to reduce memory
usage. The views update as the graph is updated similarly to dict-views.
The objects `nodes`, `edges` and `adj` provide access to data attributes
via lookup (e.g. `nodes[n]`, `edges[u, v]`, `adj[u][v]`) and iteration
(e.g. `nodes.items()`, `nodes.data('color')`,
`nodes.data('color', default='blue')` and similarly for `edges`)
Views exist for `nodes`, `edges`, `neighbors()`/`adj` and `degree`.
For details on these and other miscellaneous methods, see below.
**Subclasses (Advanced):**
The Graph class uses a dict-of-dict-of-dict data structure.
The outer dict (node_dict) holds adjacency information keyed by node.
The next dict (adjlist_dict) represents the adjacency information and holds
edge data keyed by neighbor. The inner dict (edge_attr_dict) represents
the edge data and holds edge attribute values keyed by attribute names.
Each of these three dicts can be replaced in a subclass by a user defined
dict-like object. In general, the dict-like features should be
maintained but extra features can be added. To replace one of the
dicts create a new graph class by changing the class(!) variable
holding the factory for that dict-like structure.
node_dict_factory : function, (default: dict)
Factory function to be used to create the dict containing node
attributes, keyed by node id.
It should require no arguments and return a dict-like object
node_attr_dict_factory: function, (default: dict)
Factory function to be used to create the node attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object
adjlist_outer_dict_factory : function, (default: dict)
Factory function to be used to create the outer-most dict
in the data structure that holds adjacency info keyed by node.
It should require no arguments and return a dict-like object.
adjlist_inner_dict_factory : function, (default: dict)
Factory function to be used to create the adjacency list
dict which holds edge data keyed by neighbor.
It should require no arguments and return a dict-like object
edge_attr_dict_factory : function, (default: dict)
Factory function to be used to create the edge attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object.
graph_attr_dict_factory : function, (default: dict)
Factory function to be used to create the graph attribute
dict which holds attribute values keyed by attribute name.
It should require no arguments and return a dict-like object.
Typically, if your extension doesn't impact the data structure all
methods will inherit without issue except: `to_directed/to_undirected`.
By default these methods create a DiGraph/Graph class and you probably
want them to create your extension of a DiGraph/Graph. To facilitate
this we define two class variables that you can set in your subclass.
to_directed_class : callable, (default: DiGraph or MultiDiGraph)
Class to create a new graph structure in the `to_directed` method.
If `None`, a NetworkX class (DiGraph or MultiDiGraph) is used.
to_undirected_class : callable, (default: Graph or MultiGraph)
Class to create a new graph structure in the `to_undirected` method.
If `None`, a NetworkX class (Graph or MultiGraph) is used.
**Subclassing Example**
Create a low memory graph class that effectively disallows edge
attributes by using a single attribute dict for all edges.
This reduces the memory used, but you lose edge attributes.
>>> class ThinGraph(nx.Graph):
... all_edge_dict = {"weight": 1}
...
... def single_edge_dict(self):
... return self.all_edge_dict
...
... edge_attr_dict_factory = single_edge_dict
>>> G = ThinGraph()
>>> G.add_edge(2, 1)
>>> G[2][1]
{'weight': 1}
>>> G.add_edge(2, 2)
>>> G[2][1] is G[2][2]
True
"""
_adj = _CachedPropertyResetterAdj()
_node = _CachedPropertyResetterNode()
node_dict_factory = dict
node_attr_dict_factory = dict
adjlist_outer_dict_factory = dict
adjlist_inner_dict_factory = dict
edge_attr_dict_factory = dict
graph_attr_dict_factory = dict
def to_directed_class(self):
"""Returns the class to use for empty directed copies.
If you subclass the base classes, use this to designate
what directed class to use for `to_directed()` copies.
"""
return nx.DiGraph
def to_undirected_class(self):
"""Returns the class to use for empty undirected copies.
If you subclass the base classes, use this to designate
what directed class to use for `to_directed()` copies.
"""
return Graph
def __init__(self, incoming_graph_data=None, **attr):
"""Initialize a graph with edges, name, or graph attributes.
Parameters
----------
incoming_graph_data : input graph (optional, default: None)
Data to initialize graph. If None (default) an empty
graph is created. The data can be an edge list, or any
NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a 2D NumPy array, a
SciPy sparse array, or a PyGraphviz graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also
--------
convert
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name="my graph")
>>> e = [(1, 2), (2, 3), (3, 4)] # list of edges
>>> G = nx.Graph(e)
Arbitrary graph attribute pairs (key=value) may be assigned
>>> G = nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
"""
self.graph = self.graph_attr_dict_factory() # dictionary for graph attributes
self._node = self.node_dict_factory() # empty node attribute dict
self._adj = self.adjlist_outer_dict_factory() # empty adjacency dict
# attempt to load graph with data
if incoming_graph_data is not None:
convert.to_networkx_graph(incoming_graph_data, create_using=self)
# load graph attributes (must be after convert)
self.graph.update(attr)
@cached_property
def adj(self):
"""Graph adjacency object holding the neighbors of each node.
This object is a read-only dict-like structure with node keys
and neighbor-dict values. The neighbor-dict is keyed by neighbor
to the edge-data-dict. So `G.adj[3][2]['color'] = 'blue'` sets
the color of the edge `(3, 2)` to `"blue"`.
Iterating over G.adj behaves like a dict. Useful idioms include
`for nbr, datadict in G.adj[n].items():`.
The neighbor information is also provided by subscripting the graph.
So `for nbr, foovalue in G[node].data('foo', default=1):` works.
For directed graphs, `G.adj` holds outgoing (successor) info.
"""
return AdjacencyView(self._adj)
@property
def name(self):
"""String identifier of the graph.
This graph attribute appears in the attribute dict G.graph
keyed by the string `"name"`. as well as an attribute (technically
a property) `G.name`. This is entirely user controlled.
"""
return self.graph.get("name", "")
@name.setter
def name(self, s):
self.graph["name"] = s
def __str__(self):
"""Returns a short summary of the graph.
Returns
-------
info : string
Graph information including the graph name (if any), graph type, and the
number of nodes and edges.
Examples
--------
>>> G = nx.Graph(name="foo")
>>> str(G)
"Graph named 'foo' with 0 nodes and 0 edges"
>>> G = nx.path_graph(3)
>>> str(G)
'Graph with 3 nodes and 2 edges'
"""
return "".join(
[
type(self).__name__,
f" named {self.name!r}" if self.name else "",
f" with {self.number_of_nodes()} nodes and {self.number_of_edges()} edges",
]
)
def __iter__(self):
"""Iterate over the nodes. Use: 'for n in G'.
Returns
-------
niter : iterator
An iterator over all nodes in the graph.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G]
[0, 1, 2, 3]
>>> list(G)
[0, 1, 2, 3]
"""
return iter(self._node)
def __contains__(self, n):
"""Returns True if n is a node, False otherwise. Use: 'n in G'.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> 1 in G
True
"""
try:
return n in self._node
except TypeError:
return False
def __len__(self):
"""Returns the number of nodes in the graph. Use: 'len(G)'.
Returns
-------
nnodes : int
The number of nodes in the graph.
See Also
--------
number_of_nodes: identical method
order: identical method
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> len(G)
4
"""
return len(self._node)
def __getitem__(self, n):
"""Returns a dict of neighbors of node n. Use: 'G[n]'.
Parameters
----------
n : node
A node in the graph.
Returns
-------
adj_dict : dictionary
The adjacency dictionary for nodes connected to n.
Notes
-----
G[n] is the same as G.adj[n] and similar to G.neighbors(n)
(which is an iterator over G.adj[n])
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0]
AtlasView({1: {}})
"""
return self.adj[n]
def add_node(self, node_for_adding, **attr):
"""Add a single node `node_for_adding` and update node attributes.
Parameters
----------
node_for_adding : node
A node can be any hashable Python object except None.
attr : keyword arguments, optional
Set or change node attributes using key=value.
See Also
--------
add_nodes_from
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node("Hello")
>>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
Use keywords set/change node attributes:
>>> G.add_node(1, size=10)
>>> G.add_node(3, weight=0.4, UTM=("13S", 382871, 3972649))
Notes
-----
A hashable object is one that can be used as a key in a Python
dictionary. This includes strings, numbers, tuples of strings
and numbers, etc.
On many platforms hashable items also include mutables such as
NetworkX Graphs, though one should be careful that the hash
doesn't change on mutables.
"""
if node_for_adding not in self._node:
if node_for_adding is None:
raise ValueError("None cannot be a node")
self._adj[node_for_adding] = self.adjlist_inner_dict_factory()
attr_dict = self._node[node_for_adding] = self.node_attr_dict_factory()
attr_dict.update(attr)
else: # update attr even if node already exists
self._node[node_for_adding].update(attr)
def add_nodes_from(self, nodes_for_adding, **attr):
"""Add multiple nodes.
Parameters
----------
nodes_for_adding : iterable container
A container of nodes (list, dict, set, etc.).
OR
A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.
attr : keyword arguments, optional (default= no attributes)
Update attributes for all nodes in nodes.
Node attributes specified in nodes as a tuple take
precedence over attributes specified via keyword arguments.
See Also
--------
add_node
Notes
-----
When adding nodes from an iterator over the graph you are changing,
a `RuntimeError` can be raised with message:
`RuntimeError: dictionary changed size during iteration`. This
happens when the graph's underlying dictionary is modified during
iteration. To avoid this error, evaluate the iterator into a separate
object, e.g. by using `list(iterator_of_nodes)`, and pass this
object to `G.add_nodes_from`.
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from("Hello")
>>> K3 = nx.Graph([(0, 1), (1, 2), (2, 0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(), key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
Use keywords to update specific node attributes for every node.
>>> G.add_nodes_from([1, 2], size=10)
>>> G.add_nodes_from([3, 4], weight=0.4)
Use (node, attrdict) tuples to update attributes for specific nodes.
>>> G.add_nodes_from([(1, dict(size=11)), (2, {"color": "blue"})])
>>> G.nodes[1]["size"]
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.nodes[1]["size"]
11
Evaluate an iterator over a graph if using it to modify the same graph
>>> G = nx.Graph([(0, 1), (1, 2), (3, 4)])
>>> # wrong way - will raise RuntimeError
>>> # G.add_nodes_from(n + 1 for n in G.nodes)
>>> # correct way
>>> G.add_nodes_from(list(n + 1 for n in G.nodes))
"""
for n in nodes_for_adding:
try:
newnode = n not in self._node
newdict = attr
except TypeError:
n, ndict = n
newnode = n not in self._node
newdict = attr.copy()
newdict.update(ndict)
if newnode:
if n is None:
raise ValueError("None cannot be a node")
self._adj[n] = self.adjlist_inner_dict_factory()
self._node[n] = self.node_attr_dict_factory()
self._node[n].update(newdict)
def remove_node(self, n):
"""Remove node n.
Removes the node n and all adjacent edges.
Attempting to remove a nonexistent node will raise an exception.
Parameters
----------
n : node
A node in the graph
Raises
------
NetworkXError
If n is not in the graph.
See Also
--------
remove_nodes_from
Examples
--------
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> list(G.edges)
[(0, 1), (1, 2)]
>>> G.remove_node(1)
>>> list(G.edges)
[]
"""
adj = self._adj
try:
nbrs = list(adj[n]) # list handles self-loops (allows mutation)
del self._node[n]
except KeyError as err: # NetworkXError if n not in self
raise NetworkXError(f"The node {n} is not in the graph.") from err
for u in nbrs:
del adj[u][n] # remove all edges n-u in graph
del adj[n] # now remove node
def remove_nodes_from(self, nodes):
"""Remove multiple nodes.
Parameters
----------
nodes : iterable container
A container of nodes (list, dict, set, etc.). If a node
in the container is not in the graph it is silently
ignored.
See Also
--------
remove_node
Notes
-----
When removing nodes from an iterator over the graph you are changing,
a `RuntimeError` will be raised with message:
`RuntimeError: dictionary changed size during iteration`. This
happens when the graph's underlying dictionary is modified during
iteration. To avoid this error, evaluate the iterator into a separate
object, e.g. by using `list(iterator_of_nodes)`, and pass this
object to `G.remove_nodes_from`.
Examples
--------
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = list(G.nodes)
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> list(G.nodes)
[]
Evaluate an iterator over a graph if using it to modify the same graph
>>> G = nx.Graph([(0, 1), (1, 2), (3, 4)])
>>> # this command will fail, as the graph's dict is modified during iteration
>>> # G.remove_nodes_from(n for n in G.nodes if n < 2)
>>> # this command will work, since the dictionary underlying graph is not modified
>>> G.remove_nodes_from(list(n for n in G.nodes if n < 2))
"""
adj = self._adj
for n in nodes:
try:
del self._node[n]
for u in list(adj[n]): # list handles self-loops
del adj[u][n] # (allows mutation of dict in loop)
del adj[n]
except KeyError:
pass
@cached_property
def nodes(self):
"""A NodeView of the Graph as G.nodes or G.nodes().
Can be used as `G.nodes` for data lookup and for set-like operations.
Can also be used as `G.nodes(data='color', default=None)` to return a
NodeDataView which reports specific node data but no set operations.
It presents a dict-like interface as well with `G.nodes.items()`
iterating over `(node, nodedata)` 2-tuples and `G.nodes[3]['foo']`
providing the value of the `foo` attribute for node `3`. In addition,
a view `G.nodes.data('foo')` provides a dict-like interface to the
`foo` attribute of each node. `G.nodes.data('foo', default=1)`
provides a default for nodes that do not have attribute `foo`.
Parameters
----------
data : string or bool, optional (default=False)
The node attribute returned in 2-tuple (n, ddict[data]).
If True, return entire node attribute dict as (n, ddict).
If False, return just the nodes n.
default : value, optional (default=None)
Value used for nodes that don't have the requested attribute.
Only relevant if data is not True or False.
Returns
-------
NodeView
Allows set-like operations over the nodes as well as node
attribute dict lookup and calling to get a NodeDataView.
A NodeDataView iterates over `(n, data)` and has no set operations.
A NodeView iterates over `n` and includes set operations.
When called, if data is False, an iterator over nodes.
Otherwise an iterator of 2-tuples (node, attribute value)
where the attribute is specified in `data`.
If data is True then the attribute becomes the
entire data dictionary.
Notes
-----
If your node data is not needed, it is simpler and equivalent
to use the expression ``for n in G``, or ``list(G)``.
Examples
--------
There are two simple ways of getting a list of all nodes in the graph:
>>> G = nx.path_graph(3)
>>> list(G.nodes)
[0, 1, 2]
>>> list(G)
[0, 1, 2]
To get the node data along with the nodes:
>>> G.add_node(1, time="5pm")
>>> G.nodes[0]["foo"] = "bar"
>>> list(G.nodes(data=True))
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes.data())
[(0, {'foo': 'bar'}), (1, {'time': '5pm'}), (2, {})]
>>> list(G.nodes(data="foo"))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes.data("foo"))
[(0, 'bar'), (1, None), (2, None)]
>>> list(G.nodes(data="time"))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes.data("time"))
[(0, None), (1, '5pm'), (2, None)]
>>> list(G.nodes(data="time", default="Not Available"))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
>>> list(G.nodes.data("time", default="Not Available"))
[(0, 'Not Available'), (1, '5pm'), (2, 'Not Available')]
If some of your nodes have an attribute and the rest are assumed
to have a default attribute value you can create a dictionary
from node/attribute pairs using the `default` keyword argument
to guarantee the value is never None::
>>> G = nx.Graph()
>>> G.add_node(0)
>>> G.add_node(1, weight=2)
>>> G.add_node(2, weight=3)
>>> dict(G.nodes(data="weight", default=1))
{0: 1, 1: 2, 2: 3}
"""
return NodeView(self)
def number_of_nodes(self):
"""Returns the number of nodes in the graph.
Returns
-------
nnodes : int
The number of nodes in the graph.
See Also
--------
order: identical method
__len__: identical method
Examples
--------
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.number_of_nodes()
3
"""
return len(self._node)
def order(self):
"""Returns the number of nodes in the graph.
Returns
-------
nnodes : int
The number of nodes in the graph.
See Also
--------
number_of_nodes: identical method
__len__: identical method
Examples
--------
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.order()
3
"""
return len(self._node)
def has_node(self, n):
"""Returns True if the graph contains the node n.
Identical to `n in G`
Parameters
----------
n : node
Examples
--------
>>> G = nx.path_graph(3) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.has_node(0)
True
It is more readable and simpler to use
>>> 0 in G
True
"""
try:
return n in self._node
except TypeError:
return False
def add_edge(self, u_of_edge, v_of_edge, **attr):
"""Add an edge between u and v.
The nodes u and v will be automatically added if they are
not already in the graph.
Edge attributes can be specified with keywords or by directly
accessing the edge's attribute dictionary. See examples below.
Parameters
----------
u_of_edge, v_of_edge : nodes
Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using
keyword arguments.
See Also
--------
add_edges_from : add a collection of edges
Notes
-----
Adding an edge that already exists updates the edge data.
Many NetworkX algorithms designed for weighted graphs use
an edge attribute (by default `weight`) to hold a numerical value.
Examples
--------
The following all add the edge e=(1, 2) to graph G:
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1, 2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1, 2)]) # add edges from iterable container
Associate data to edges using keywords:
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
For non-string attribute keys, use subscript notation.
>>> G.add_edge(1, 2)
>>> G[1][2].update({0: 5})
>>> G.edges[1, 2].update({0: 5})
"""
u, v = u_of_edge, v_of_edge
# add nodes
if u not in self._node:
if u is None:
raise ValueError("None cannot be a node")
self._adj[u] = self.adjlist_inner_dict_factory()
self._node[u] = self.node_attr_dict_factory()
if v not in self._node:
if v is None:
raise ValueError("None cannot be a node")
self._adj[v] = self.adjlist_inner_dict_factory()
self._node[v] = self.node_attr_dict_factory()
# add the edge
datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
datadict.update(attr)
self._adj[u][v] = datadict
self._adj[v][u] = datadict
def add_edges_from(self, ebunch_to_add, **attr):
"""Add all the edges in ebunch_to_add.
Parameters
----------
ebunch_to_add : container of edges
Each edge given in the container will be added to the
graph. The edges must be given as 2-tuples (u, v) or
3-tuples (u, v, d) where d is a dictionary containing edge data.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using
keyword arguments.
See Also
--------
add_edge : add a single edge
add_weighted_edges_from : convenient way to add weighted edges
Notes
-----
Adding the same edge twice has no effect but any edge data
will be updated when each duplicate edge is added.
Edge attributes specified in an ebunch take precedence over
attributes specified via keyword arguments.
When adding edges from an iterator over the graph you are changing,
a `RuntimeError` can be raised with message:
`RuntimeError: dictionary changed size during iteration`. This
happens when the graph's underlying dictionary is modified during
iteration. To avoid this error, evaluate the iterator into a separate
object, e.g. by using `list(iterator_of_edges)`, and pass this
object to `G.add_edges_from`.
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0, 1), (1, 2)]) # using a list of edge tuples
>>> e = zip(range(0, 3), range(1, 4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
Associate data to edges
>>> G.add_edges_from([(1, 2), (2, 3)], weight=3)
>>> G.add_edges_from([(3, 4), (1, 4)], label="WN2898")
Evaluate an iterator over a graph if using it to modify the same graph
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4)])
>>> # Grow graph by one new node, adding edges to all existing nodes.
>>> # wrong way - will raise RuntimeError
>>> # G.add_edges_from(((5, n) for n in G.nodes))
>>> # correct way - note that there will be no self-edge for node 5
>>> G.add_edges_from(list((5, n) for n in G.nodes))
"""
for e in ebunch_to_add:
ne = len(e)
if ne == 3:
u, v, dd = e
elif ne == 2:
u, v = e
dd = {} # doesn't need edge_attr_dict_factory
else:
raise NetworkXError(f"Edge tuple {e} must be a 2-tuple or 3-tuple.")
if u not in self._node:
if u is None:
raise ValueError("None cannot be a node")
self._adj[u] = self.adjlist_inner_dict_factory()
self._node[u] = self.node_attr_dict_factory()
if v not in self._node:
if v is None:
raise ValueError("None cannot be a node")
self._adj[v] = self.adjlist_inner_dict_factory()
self._node[v] = self.node_attr_dict_factory()
datadict = self._adj[u].get(v, self.edge_attr_dict_factory())
datadict.update(attr)
datadict.update(dd)
self._adj[u][v] = datadict
self._adj[v][u] = datadict
def add_weighted_edges_from(self, ebunch_to_add, weight="weight", **attr):
"""Add weighted edges in `ebunch_to_add` with specified weight attr
Parameters
----------
ebunch_to_add : container of edges
Each edge given in the list or container will be added
to the graph. The edges must be given as 3-tuples (u, v, w)
where w is a number.
weight : string, optional (default= 'weight')
The attribute name for the edge weights to be added.
attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.
See Also
--------
add_edge : add a single edge
add_edges_from : add multiple edges
Notes
-----
Adding the same edge twice for Graph/DiGraph simply updates
the edge data. For MultiGraph/MultiDiGraph, duplicate edges
are stored.
When adding edges from an iterator over the graph you are changing,
a `RuntimeError` can be raised with message:
`RuntimeError: dictionary changed size during iteration`. This
happens when the graph's underlying dictionary is modified during
iteration. To avoid this error, evaluate the iterator into a separate
object, e.g. by using `list(iterator_of_edges)`, and pass this
object to `G.add_weighted_edges_from`.
Examples
--------
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0, 1, 3.0), (1, 2, 7.5)])
Evaluate an iterator over edges before passing it
>>> G = nx.Graph([(1, 2), (2, 3), (3, 4)])
>>> weight = 0.1
>>> # Grow graph by one new node, adding edges to all existing nodes.
>>> # wrong way - will raise RuntimeError
>>> # G.add_weighted_edges_from(((5, n, weight) for n in G.nodes))
>>> # correct way - note that there will be no self-edge for node 5
>>> G.add_weighted_edges_from(list((5, n, weight) for n in G.nodes))
"""
self.add_edges_from(((u, v, {weight: d}) for u, v, d in ebunch_to_add), **attr)
def remove_edge(self, u, v):
"""Remove the edge between u and v.
Parameters
----------
u, v : nodes
Remove the edge between nodes u and v.
Raises
------
NetworkXError
If there is not an edge between u and v.
See Also
--------
remove_edges_from : remove a collection of edges
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, etc
>>> G.remove_edge(0, 1)
>>> e = (1, 2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2, 3, {"weight": 7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple
"""
try:
del self._adj[u][v]
if u != v: # self-loop needs only one entry removed
del self._adj[v][u]
except KeyError as err:
raise NetworkXError(f"The edge {u}-{v} is not in the graph") from err
def remove_edges_from(self, ebunch):
"""Remove all edges specified in ebunch.
Parameters
----------
ebunch: list or container of edge tuples
Each edge given in the list or container will be removed
from the graph. The edges can be:
- 2-tuples (u, v) edge between u and v.
- 3-tuples (u, v, k) where k is ignored.
See Also
--------
remove_edge : remove a single edge
Notes
-----
Will fail silently if an edge in ebunch is not in the graph.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> ebunch = [(1, 2), (2, 3)]
>>> G.remove_edges_from(ebunch)
"""
adj = self._adj
for e in ebunch:
u, v = e[:2] # ignore edge data if present
if u in adj and v in adj[u]:
del adj[u][v]
if u != v: # self loop needs only one entry removed
del adj[v][u]
def update(self, edges=None, nodes=None):
"""Update the graph using nodes/edges/graphs as input.
Like dict.update, this method takes a graph as input, adding the
graph's nodes and edges to this graph. It can also take two inputs:
edges and nodes. Finally it can take either edges or nodes.
To specify only nodes the keyword `nodes` must be used.
The collections of edges and nodes are treated similarly to
the add_edges_from/add_nodes_from methods. When iterated, they
should yield 2-tuples (u, v) or 3-tuples (u, v, datadict).
Parameters
----------
edges : Graph object, collection of edges, or None
The first parameter can be a graph or some edges. If it has
attributes `nodes` and `edges`, then it is taken to be a
Graph-like object and those attributes are used as collections
of nodes and edges to be added to the graph.
If the first parameter does not have those attributes, it is
treated as a collection of edges and added to the graph.
If the first argument is None, no edges are added.
nodes : collection of nodes, or None
The second parameter is treated as a collection of nodes
to be added to the graph unless it is None.
If `edges is None` and `nodes is None` an exception is raised.
If the first parameter is a Graph, then `nodes` is ignored.
Examples
--------
>>> G = nx.path_graph(5)
>>> G.update(nx.complete_graph(range(4, 10)))
>>> from itertools import combinations
>>> edges = (
... (u, v, {"power": u * v})
... for u, v in combinations(range(10, 20), 2)
... if u * v < 225
... )
>>> nodes = [1000] # for singleton, use a container
>>> G.update(edges, nodes)
Notes
-----
It you want to update the graph using an adjacency structure
it is straightforward to obtain the edges/nodes from adjacency.
The following examples provide common cases, your adjacency may
be slightly different and require tweaks of these examples::
>>> # dict-of-set/list/tuple
>>> adj = {1: {2, 3}, 2: {1, 3}, 3: {1, 2}}
>>> e = [(u, v) for u, nbrs in adj.items() for v in nbrs]
>>> G.update(edges=e, nodes=adj)
>>> DG = nx.DiGraph()
>>> # dict-of-dict-of-attribute
>>> adj = {1: {2: 1.3, 3: 0.7}, 2: {1: 1.4}, 3: {1: 0.7}}
>>> e = [
... (u, v, {"weight": d})
... for u, nbrs in adj.items()
... for v, d in nbrs.items()
... ]
>>> DG.update(edges=e, nodes=adj)
>>> # dict-of-dict-of-dict
>>> adj = {1: {2: {"weight": 1.3}, 3: {"color": 0.7, "weight": 1.2}}}
>>> e = [
... (u, v, {"weight": d})
... for u, nbrs in adj.items()
... for v, d in nbrs.items()
... ]
>>> DG.update(edges=e, nodes=adj)
>>> # predecessor adjacency (dict-of-set)
>>> pred = {1: {2, 3}, 2: {3}, 3: {3}}
>>> e = [(v, u) for u, nbrs in pred.items() for v in nbrs]
>>> # MultiGraph dict-of-dict-of-dict-of-attribute
>>> MDG = nx.MultiDiGraph()
>>> adj = {
... 1: {2: {0: {"weight": 1.3}, 1: {"weight": 1.2}}},
... 3: {2: {0: {"weight": 0.7}}},
... }
>>> e = [
... (u, v, ekey, d)
... for u, nbrs in adj.items()
... for v, keydict in nbrs.items()
... for ekey, d in keydict.items()
... ]
>>> MDG.update(edges=e)
See Also
--------
add_edges_from: add multiple edges to a graph
add_nodes_from: add multiple nodes to a graph
"""
if edges is not None:
if nodes is not None:
self.add_nodes_from(nodes)
self.add_edges_from(edges)
else:
# check if edges is a Graph object
try:
graph_nodes = edges.nodes
graph_edges = edges.edges
except AttributeError:
# edge not Graph-like
self.add_edges_from(edges)
else: # edges is Graph-like
self.add_nodes_from(graph_nodes.data())
self.add_edges_from(graph_edges.data())
self.graph.update(edges.graph)
elif nodes is not None:
self.add_nodes_from(nodes)
else:
raise NetworkXError("update needs nodes or edges input")
def has_edge(self, u, v):
"""Returns True if the edge (u, v) is in the graph.
This is the same as `v in G[u]` without KeyError exceptions.
Parameters
----------
u, v : nodes
Nodes can be, for example, strings or numbers.
Nodes must be hashable (and not None) Python objects.
Returns
-------
edge_ind : bool
True if edge is in the graph, False otherwise.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.has_edge(0, 1) # using two nodes
True
>>> e = (0, 1)
>>> G.has_edge(*e) # e is a 2-tuple (u, v)
True
>>> e = (0, 1, {"weight": 7})
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u, v, data_dictionary)
True
The following syntax are equivalent:
>>> G.has_edge(0, 1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
"""
try:
return v in self._adj[u]
except KeyError:
return False
def neighbors(self, n):
"""Returns an iterator over all neighbors of node n.
This is identical to `iter(G[n])`
Parameters
----------
n : node
A node in the graph
Returns
-------
neighbors : iterator
An iterator over all neighbors of node n
Raises
------
NetworkXError
If the node n is not in the graph.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [n for n in G.neighbors(0)]
[1]
Notes
-----
Alternate ways to access the neighbors are ``G.adj[n]`` or ``G[n]``:
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge("a", "b", weight=7)
>>> G["a"]
AtlasView({'b': {'weight': 7}})
>>> G = nx.path_graph(4)
>>> [n for n in G[0]]
[1]
"""
try:
return iter(self._adj[n])
except KeyError as err:
raise NetworkXError(f"The node {n} is not in the graph.") from err
@cached_property
def edges(self):
"""An EdgeView of the Graph as G.edges or G.edges().
edges(self, nbunch=None, data=False, default=None)
The EdgeView provides set-like operations on the edge-tuples
as well as edge attribute lookup. When called, it also provides
an EdgeDataView object which allows control of access to edge
attributes (but does not provide set-like operations).
Hence, `G.edges[u, v]['color']` provides the value of the color
attribute for edge `(u, v)` while
`for (u, v, c) in G.edges.data('color', default='red'):`
iterates through all the edges yielding the color attribute
with default `'red'` if no color attribute exists.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges from these nodes.
data : string or bool, optional (default=False)
The edge attribute returned in 3-tuple (u, v, ddict[data]).
If True, return edge attribute dict in 3-tuple (u, v, ddict).
If False, return 2-tuple (u, v).
default : value, optional (default=None)
Value used for edges that don't have the requested attribute.
Only relevant if data is not True or False.
Returns
-------
edges : EdgeView
A view of edge attributes, usually it iterates over (u, v)
or (u, v, d) tuples of edges, but can also be used for
attribute lookup as `edges[u, v]['foo']`.
Notes
-----
Nodes in nbunch that are not in the graph will be (quietly) ignored.
For directed graphs this returns the out-edges.
Examples
--------
>>> G = nx.path_graph(3) # or MultiGraph, etc
>>> G.add_edge(2, 3, weight=5)
>>> [e for e in G.edges]
[(0, 1), (1, 2), (2, 3)]
>>> G.edges.data() # default data is {} (empty dict)
EdgeDataView([(0, 1, {}), (1, 2, {}), (2, 3, {'weight': 5})])
>>> G.edges.data("weight", default=1)
EdgeDataView([(0, 1, 1), (1, 2, 1), (2, 3, 5)])
>>> G.edges([0, 3]) # only edges from these nodes
EdgeDataView([(0, 1), (3, 2)])
>>> G.edges(0) # only edges from node 0
EdgeDataView([(0, 1)])
"""
return EdgeView(self)
def get_edge_data(self, u, v, default=None):
"""Returns the attribute dictionary associated with edge (u, v).
This is identical to `G[u][v]` except the default is returned
instead of an exception if the edge doesn't exist.
Parameters
----------
u, v : nodes
default: any Python object (default=None)
Value to return if the edge (u, v) is not found.
Returns
-------
edge_dict : dictionary
The edge attribute dictionary.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G[0][1]
{}
Warning: Assigning to `G[u][v]` is not permitted.
But it is safe to assign attributes `G[u][v]['foo']`
>>> G[0][1]["weight"] = 7
>>> G[0][1]["weight"]
7
>>> G[1][0]["weight"]
7
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.get_edge_data(0, 1) # default edge data is {}
{}
>>> e = (0, 1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data("a", "b", default=0) # edge not in graph, return 0
0
"""
try:
return self._adj[u][v]
except KeyError:
return default
def adjacency(self):
"""Returns an iterator over (node, adjacency dict) tuples for all nodes.
For directed graphs, only outgoing neighbors/adjacencies are included.
Returns
-------
adj_iter : iterator
An iterator over (node, adjacency dictionary) for all nodes in
the graph.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> [(n, nbrdict) for n, nbrdict in G.adjacency()]
[(0, {1: {}}), (1, {0: {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]
"""
return iter(self._adj.items())
@cached_property
def degree(self):
"""A DegreeView for the Graph as G.degree or G.degree().
The node degree is the number of edges adjacent to the node.
The weighted node degree is the sum of the edge weights for
edges incident to that node.
This object provides an iterator for (node, degree) as well as
lookup for the degree for a single node.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
weight : string or None, optional (default=None)
The name of an edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.
Returns
-------
DegreeView or int
If multiple nodes are requested (the default), returns a `DegreeView`
mapping nodes to their degree.
If a single node is requested, returns the degree of the node as an integer.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.degree[0] # node 0 has degree 1
1
>>> list(G.degree([0, 1, 2]))
[(0, 1), (1, 2), (2, 2)]
"""
return DegreeView(self)
def clear(self):
"""Remove all nodes and edges from the graph.
This also removes the name, and all graph, node, and edge attributes.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.clear()
>>> list(G.nodes)
[]
>>> list(G.edges)
[]
"""
self._adj.clear()
self._node.clear()
self.graph.clear()
def clear_edges(self):
"""Remove all edges from the graph without altering nodes.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.clear_edges()
>>> list(G.nodes)
[0, 1, 2, 3]
>>> list(G.edges)
[]
"""
for neighbours_dict in self._adj.values():
neighbours_dict.clear()
def is_multigraph(self):
"""Returns True if graph is a multigraph, False otherwise."""
return False
def is_directed(self):
"""Returns True if graph is directed, False otherwise."""
return False
def copy(self, as_view=False):
"""Returns a copy of the graph.
The copy method by default returns an independent shallow copy
of the graph and attributes. That is, if an attribute is a
container, that container is shared by the original an the copy.
Use Python's `copy.deepcopy` for new containers.
If `as_view` is True then a view is returned instead of a copy.
Notes
-----
All copies reproduce the graph structure, but data attributes
may be handled in different ways. There are four types of copies
of a graph that people might want.
Deepcopy -- A "deepcopy" copies the graph structure as well as
all data attributes and any objects they might contain.
The entire graph object is new so that changes in the copy
do not affect the original object. (see Python's copy.deepcopy)
Data Reference (Shallow) -- For a shallow copy the graph structure
is copied but the edge, node and graph attribute dicts are
references to those in the original graph. This saves
time and memory but could cause confusion if you change an attribute
in one graph and it changes the attribute in the other.
NetworkX does not provide this level of shallow copy.
Independent Shallow -- This copy creates new independent attribute
dicts and then does a shallow copy of the attributes. That is, any
attributes that are containers are shared between the new graph
and the original. This is exactly what `dict.copy()` provides.
You can obtain this style copy using:
>>> G = nx.path_graph(5)
>>> H = G.copy()
>>> H = G.copy(as_view=False)
>>> H = nx.Graph(G)
>>> H = G.__class__(G)
Fresh Data -- For fresh data, the graph structure is copied while
new empty data attribute dicts are created. The resulting graph
is independent of the original and it has no edge, node or graph
attributes. Fresh copies are not enabled. Instead use:
>>> H = G.__class__()
>>> H.add_nodes_from(G)
>>> H.add_edges_from(G.edges)
View -- Inspired by dict-views, graph-views act like read-only
versions of the original graph, providing a copy of the original
structure without requiring any memory for copying the information.
See the Python copy module for more information on shallow
and deep copies, https://docs.python.org/3/library/copy.html.
Parameters
----------
as_view : bool, optional (default=False)
If True, the returned graph-view provides a read-only view
of the original graph without actually copying any data.
Returns
-------
G : Graph
A copy of the graph.
See Also
--------
to_directed: return a directed copy of the graph.
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.copy()
"""
if as_view is True:
return nx.graphviews.generic_graph_view(self)
G = self.__class__()
G.graph.update(self.graph)
G.add_nodes_from((n, d.copy()) for n, d in self._node.items())
G.add_edges_from(
(u, v, datadict.copy())
for u, nbrs in self._adj.items()
for v, datadict in nbrs.items()
)
return G
def to_directed(self, as_view=False):
"""Returns a directed representation of the graph.
Returns
-------
G : DiGraph
A directed graph with the same name, same nodes, and with
each edge (u, v, data) replaced by two directed edges
(u, v, data) and (v, u, data).
Notes
-----
This returns a "deepcopy" of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.
This is in contrast to the similar D=DiGraph(G) which returns a
shallow copy of the data.
See the Python copy module for more information on shallow
and deep copies, https://docs.python.org/3/library/copy.html.
Warning: If you have subclassed Graph to use dict-like objects
in the data structure, those changes do not transfer to the
DiGraph created by this method.
Examples
--------
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_edge(0, 1)
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]
If already directed, return a (deep) copy
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_edge(0, 1)
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1)]
"""
graph_class = self.to_directed_class()
if as_view is True:
return nx.graphviews.generic_graph_view(self, graph_class)
# deepcopy when not a view
G = graph_class()
G.graph.update(deepcopy(self.graph))
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
G.add_edges_from(
(u, v, deepcopy(data))
for u, nbrs in self._adj.items()
for v, data in nbrs.items()
)
return G
def to_undirected(self, as_view=False):
"""Returns an undirected copy of the graph.
Parameters
----------
as_view : bool (optional, default=False)
If True return a view of the original undirected graph.
Returns
-------
G : Graph/MultiGraph
A deepcopy of the graph.
See Also
--------
Graph, copy, add_edge, add_edges_from
Notes
-----
This returns a "deepcopy" of the edge, node, and
graph attributes which attempts to completely copy
all of the data and references.
This is in contrast to the similar `G = nx.DiGraph(D)` which returns a
shallow copy of the data.
See the Python copy module for more information on shallow
and deep copies, https://docs.python.org/3/library/copy.html.
Warning: If you have subclassed DiGraph to use dict-like objects
in the data structure, those changes do not transfer to the
Graph created by this method.
Examples
--------
>>> G = nx.path_graph(2) # or MultiGraph, etc
>>> H = G.to_directed()
>>> list(H.edges)
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> list(G2.edges)
[(0, 1)]
"""
graph_class = self.to_undirected_class()
if as_view is True:
return nx.graphviews.generic_graph_view(self, graph_class)
# deepcopy when not a view
G = graph_class()
G.graph.update(deepcopy(self.graph))
G.add_nodes_from((n, deepcopy(d)) for n, d in self._node.items())
G.add_edges_from(
(u, v, deepcopy(d))
for u, nbrs in self._adj.items()
for v, d in nbrs.items()
)
return G
def subgraph(self, nodes):
"""Returns a SubGraph view of the subgraph induced on `nodes`.
The induced subgraph of the graph contains the nodes in `nodes`
and the edges between those nodes.
Parameters
----------
nodes : list, iterable
A container of nodes which will be iterated through once.
Returns
-------
G : SubGraph View
A subgraph view of the graph. The graph structure cannot be
changed but node/edge attributes can and are shared with the
original graph.
Notes
-----
The graph, edge and node attributes are shared with the original graph.
Changes to the graph structure is ruled out by the view, but changes
to attributes are reflected in the original graph.
To create a subgraph with its own copy of the edge/node attributes use:
G.subgraph(nodes).copy()
For an inplace reduction of a graph to a subgraph you can remove nodes:
G.remove_nodes_from([n for n in G if n not in set(nodes)])
Subgraph views are sometimes NOT what you want. In most cases where
you want to do more than simply look at the induced edges, it makes
more sense to just create the subgraph as its own graph with code like:
::
# Create a subgraph SG based on a (possibly multigraph) G
SG = G.__class__()
SG.add_nodes_from((n, G.nodes[n]) for n in largest_wcc)
if SG.is_multigraph():
SG.add_edges_from((n, nbr, key, d)
for n, nbrs in G.adj.items() if n in largest_wcc
for nbr, keydict in nbrs.items() if nbr in largest_wcc
for key, d in keydict.items())
else:
SG.add_edges_from((n, nbr, d)
for n, nbrs in G.adj.items() if n in largest_wcc
for nbr, d in nbrs.items() if nbr in largest_wcc)
SG.graph.update(G.graph)
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> H = G.subgraph([0, 1, 2])
>>> list(H.edges)
[(0, 1), (1, 2)]
"""
induced_nodes = nx.filters.show_nodes(self.nbunch_iter(nodes))
# if already a subgraph, don't make a chain
subgraph = nx.subgraph_view
if hasattr(self, "_NODE_OK"):
return subgraph(
self._graph, filter_node=induced_nodes, filter_edge=self._EDGE_OK
)
return subgraph(self, filter_node=induced_nodes)
def edge_subgraph(self, edges):
"""Returns the subgraph induced by the specified edges.
The induced subgraph contains each edge in `edges` and each
node incident to any one of those edges.
Parameters
----------
edges : iterable
An iterable of edges in this graph.
Returns
-------
G : Graph
An edge-induced subgraph of this graph with the same edge
attributes.
Notes
-----
The graph, edge, and node attributes in the returned subgraph
view are references to the corresponding attributes in the original
graph. The view is read-only.
To create a full graph version of the subgraph with its own copy
of the edge or node attributes, use::
G.edge_subgraph(edges).copy()
Examples
--------
>>> G = nx.path_graph(5)
>>> H = G.edge_subgraph([(0, 1), (3, 4)])
>>> list(H.nodes)
[0, 1, 3, 4]
>>> list(H.edges)
[(0, 1), (3, 4)]
"""
return nx.edge_subgraph(self, edges)
def size(self, weight=None):
"""Returns the number of edges or total of all edge weights.
Parameters
----------
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used
as a weight. If None, then each edge has weight 1.
Returns
-------
size : numeric
The number of edges or
(if weight keyword is provided) the total weight sum.
If weight is None, returns an int. Otherwise a float
(or more general numeric if the weights are more general).
See Also
--------
number_of_edges
Examples
--------
>>> G = nx.path_graph(4) # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.size()
3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge("a", "b", weight=2)
>>> G.add_edge("b", "c", weight=4)
>>> G.size()
2
>>> G.size(weight="weight")
6.0
"""
s = sum(d for v, d in self.degree(weight=weight))
# If `weight` is None, the sum of the degrees is guaranteed to be
# even, so we can perform integer division and hence return an
# integer. Otherwise, the sum of the weighted degrees is not
# guaranteed to be an integer, so we perform "real" division.
return s // 2 if weight is None else s / 2
def number_of_edges(self, u=None, v=None):
"""Returns the number of edges between two nodes.
Parameters
----------
u, v : nodes, optional (default=all edges)
If u and v are specified, return the number of edges between
u and v. Otherwise return the total number of all edges.
Returns
-------
nedges : int
The number of edges in the graph. If nodes `u` and `v` are
specified return the number of edges between those nodes. If
the graph is directed, this only returns the number of edges
from `u` to `v`.
See Also
--------
size
Examples
--------
For undirected graphs, this method counts the total number of
edges in the graph:
>>> G = nx.path_graph(4)
>>> G.number_of_edges()
3
If you specify two nodes, this counts the total number of edges
joining the two nodes:
>>> G.number_of_edges(0, 1)
1
For directed graphs, this method can count the total number of
directed edges from `u` to `v`:
>>> G = nx.DiGraph()
>>> G.add_edge(0, 1)
>>> G.add_edge(1, 0)
>>> G.number_of_edges(0, 1)
1
"""
if u is None:
return int(self.size())
if v in self._adj[u]:
return 1
return 0
def nbunch_iter(self, nbunch=None):
"""Returns an iterator over nodes contained in nbunch that are
also in the graph.
The nodes in nbunch are checked for membership in the graph
and if not are silently ignored.
Parameters
----------
nbunch : single node, container, or all nodes (default= all nodes)
The view will only report edges incident to these nodes.
Returns
-------
niter : iterator
An iterator over nodes in nbunch that are also in the graph.
If nbunch is None, iterate over all nodes in the graph.
Raises
------
NetworkXError
If nbunch is not a node or sequence of nodes.
If a node in nbunch is not hashable.
See Also
--------
Graph.__iter__
Notes
-----
When nbunch is an iterator, the returned iterator yields values
directly from nbunch, becoming exhausted when nbunch is exhausted.
To test whether nbunch is a single node, one can use
"if nbunch in self:", even after processing with this routine.
If nbunch is not a node or a (possibly empty) sequence/iterator
or None, a :exc:`NetworkXError` is raised. Also, if any object in
nbunch is not hashable, a :exc:`NetworkXError` is raised.
"""
if nbunch is None: # include all nodes via iterator
bunch = iter(self._adj)
elif nbunch in self: # if nbunch is a single node
bunch = iter([nbunch])
else: # if nbunch is a sequence of nodes
def bunch_iter(nlist, adj):
try:
for n in nlist:
if n in adj:
yield n
except TypeError as err:
exc, message = err, err.args[0]
# capture error for non-sequence/iterator nbunch.
if "iter" in message:
exc = NetworkXError(
"nbunch is not a node or a sequence of nodes."
)
# capture error for unhashable node.
if "hashable" in message:
exc = NetworkXError(
f"Node {n} in sequence nbunch is not a valid node."
)
raise exc
bunch = bunch_iter(nbunch, self._adj)
return bunch
|