Spaces:
Sleeping
Sleeping
File size: 6,322 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
"""Wrapper that stacks frames."""
from collections import deque
from typing import Union
import numpy as np
import gym
from gym.error import DependencyNotInstalled
from gym.spaces import Box
class LazyFrames:
"""Ensures common frames are only stored once to optimize memory use.
To further reduce the memory use, it is optionally to turn on lz4 to compress the observations.
Note:
This object should only be converted to numpy array just before forward pass.
"""
__slots__ = ("frame_shape", "dtype", "shape", "lz4_compress", "_frames")
def __init__(self, frames: list, lz4_compress: bool = False):
"""Lazyframe for a set of frames and if to apply lz4.
Args:
frames (list): The frames to convert to lazy frames
lz4_compress (bool): Use lz4 to compress the frames internally
Raises:
DependencyNotInstalled: lz4 is not installed
"""
self.frame_shape = tuple(frames[0].shape)
self.shape = (len(frames),) + self.frame_shape
self.dtype = frames[0].dtype
if lz4_compress:
try:
from lz4.block import compress
except ImportError:
raise DependencyNotInstalled(
"lz4 is not installed, run `pip install gym[other]`"
)
frames = [compress(frame) for frame in frames]
self._frames = frames
self.lz4_compress = lz4_compress
def __array__(self, dtype=None):
"""Gets a numpy array of stacked frames with specific dtype.
Args:
dtype: The dtype of the stacked frames
Returns:
The array of stacked frames with dtype
"""
arr = self[:]
if dtype is not None:
return arr.astype(dtype)
return arr
def __len__(self):
"""Returns the number of frame stacks.
Returns:
The number of frame stacks
"""
return self.shape[0]
def __getitem__(self, int_or_slice: Union[int, slice]):
"""Gets the stacked frames for a particular index or slice.
Args:
int_or_slice: Index or slice to get items for
Returns:
np.stacked frames for the int or slice
"""
if isinstance(int_or_slice, int):
return self._check_decompress(self._frames[int_or_slice]) # single frame
return np.stack(
[self._check_decompress(f) for f in self._frames[int_or_slice]], axis=0
)
def __eq__(self, other):
"""Checks that the current frames are equal to the other object."""
return self.__array__() == other
def _check_decompress(self, frame):
if self.lz4_compress:
from lz4.block import decompress
return np.frombuffer(decompress(frame), dtype=self.dtype).reshape(
self.frame_shape
)
return frame
class FrameStack(gym.ObservationWrapper):
"""Observation wrapper that stacks the observations in a rolling manner.
For example, if the number of stacks is 4, then the returned observation contains
the most recent 4 observations. For environment 'Pendulum-v1', the original observation
is an array with shape [3], so if we stack 4 observations, the processed observation
has shape [4, 3].
Note:
- To be memory efficient, the stacked observations are wrapped by :class:`LazyFrame`.
- The observation space must be :class:`Box` type. If one uses :class:`Dict`
as observation space, it should apply :class:`FlattenObservation` wrapper first.
- After :meth:`reset` is called, the frame buffer will be filled with the initial observation. I.e. the observation returned by :meth:`reset` will consist of ``num_stack`-many identical frames,
Example:
>>> import gym
>>> env = gym.make('CarRacing-v1')
>>> env = FrameStack(env, 4)
>>> env.observation_space
Box(4, 96, 96, 3)
>>> obs = env.reset()
>>> obs.shape
(4, 96, 96, 3)
"""
def __init__(
self,
env: gym.Env,
num_stack: int,
lz4_compress: bool = False,
):
"""Observation wrapper that stacks the observations in a rolling manner.
Args:
env (Env): The environment to apply the wrapper
num_stack (int): The number of frames to stack
lz4_compress (bool): Use lz4 to compress the frames internally
"""
super().__init__(env)
self.num_stack = num_stack
self.lz4_compress = lz4_compress
self.frames = deque(maxlen=num_stack)
low = np.repeat(self.observation_space.low[np.newaxis, ...], num_stack, axis=0)
high = np.repeat(
self.observation_space.high[np.newaxis, ...], num_stack, axis=0
)
self.observation_space = Box(
low=low, high=high, dtype=self.observation_space.dtype
)
def observation(self, observation):
"""Converts the wrappers current frames to lazy frames.
Args:
observation: Ignored
Returns:
:class:`LazyFrames` object for the wrapper's frame buffer, :attr:`self.frames`
"""
assert len(self.frames) == self.num_stack, (len(self.frames), self.num_stack)
return LazyFrames(list(self.frames), self.lz4_compress)
def step(self, action):
"""Steps through the environment, appending the observation to the frame buffer.
Args:
action: The action to step through the environment with
Returns:
Stacked observations, reward, terminated, truncated, and information from the environment
"""
observation, reward, terminated, truncated, info = self.env.step(action)
self.frames.append(observation)
return self.observation(None), reward, terminated, truncated, info
def reset(self, **kwargs):
"""Reset the environment with kwargs.
Args:
**kwargs: The kwargs for the environment reset
Returns:
The stacked observations
"""
obs, info = self.env.reset(**kwargs)
[self.frames.append(obs) for _ in range(self.num_stack)]
return self.observation(None), info
|