File size: 17,911 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
from __future__ import annotations
from itertools import product

from sympy.core.add import Add
from sympy.core.assumptions import StdFactKB
from sympy.core.expr import AtomicExpr, Expr
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
from sympy.vector.basisdependent import (BasisDependentZero,
    BasisDependent, BasisDependentMul, BasisDependentAdd)
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.dyadic import Dyadic, BaseDyadic, DyadicAdd


class Vector(BasisDependent):
    """
    Super class for all Vector classes.
    Ideally, neither this class nor any of its subclasses should be
    instantiated by the user.
    """

    is_scalar = False
    is_Vector = True
    _op_priority = 12.0

    _expr_type: type[Vector]
    _mul_func: type[Vector]
    _add_func: type[Vector]
    _zero_func: type[Vector]
    _base_func: type[Vector]
    zero: VectorZero

    @property
    def components(self):
        """
        Returns the components of this vector in the form of a
        Python dictionary mapping BaseVector instances to the
        corresponding measure numbers.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v.components
        {C.i: 3, C.j: 4, C.k: 5}

        """
        # The '_components' attribute is defined according to the
        # subclass of Vector the instance belongs to.
        return self._components

    def magnitude(self):
        """
        Returns the magnitude of this vector.
        """
        return sqrt(self & self)

    def normalize(self):
        """
        Returns the normalized version of this vector.
        """
        return self / self.magnitude()

    def dot(self, other):
        """
        Returns the dot product of this Vector, either with another
        Vector, or a Dyadic, or a Del operator.
        If 'other' is a Vector, returns the dot product scalar (SymPy
        expression).
        If 'other' is a Dyadic, the dot product is returned as a Vector.
        If 'other' is an instance of Del, returns the directional
        derivative operator as a Python function. If this function is
        applied to a scalar expression, it returns the directional
        derivative of the scalar field wrt this Vector.

        Parameters
        ==========

        other: Vector/Dyadic/Del
            The Vector or Dyadic we are dotting with, or a Del operator .

        Examples
        ========

        >>> from sympy.vector import CoordSys3D, Del
        >>> C = CoordSys3D('C')
        >>> delop = Del()
        >>> C.i.dot(C.j)
        0
        >>> C.i & C.i
        1
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v.dot(C.k)
        5
        >>> (C.i & delop)(C.x*C.y*C.z)
        C.y*C.z
        >>> d = C.i.outer(C.i)
        >>> C.i.dot(d)
        C.i

        """

        # Check special cases
        if isinstance(other, Dyadic):
            if isinstance(self, VectorZero):
                return Vector.zero
            outvec = Vector.zero
            for k, v in other.components.items():
                vect_dot = k.args[0].dot(self)
                outvec += vect_dot * v * k.args[1]
            return outvec
        from sympy.vector.deloperator import Del
        if not isinstance(other, (Del, Vector)):
            raise TypeError(str(other) + " is not a vector, dyadic or " +
                            "del operator")

        # Check if the other is a del operator
        if isinstance(other, Del):
            def directional_derivative(field):
                from sympy.vector.functions import directional_derivative
                return directional_derivative(field, self)
            return directional_derivative

        return dot(self, other)

    def __and__(self, other):
        return self.dot(other)

    __and__.__doc__ = dot.__doc__

    def cross(self, other):
        """
        Returns the cross product of this Vector with another Vector or
        Dyadic instance.
        The cross product is a Vector, if 'other' is a Vector. If 'other'
        is a Dyadic, this returns a Dyadic instance.

        Parameters
        ==========

        other: Vector/Dyadic
            The Vector or Dyadic we are crossing with.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> C.i.cross(C.j)
        C.k
        >>> C.i ^ C.i
        0
        >>> v = 3*C.i + 4*C.j + 5*C.k
        >>> v ^ C.i
        5*C.j + (-4)*C.k
        >>> d = C.i.outer(C.i)
        >>> C.j.cross(d)
        (-1)*(C.k|C.i)

        """

        # Check special cases
        if isinstance(other, Dyadic):
            if isinstance(self, VectorZero):
                return Dyadic.zero
            outdyad = Dyadic.zero
            for k, v in other.components.items():
                cross_product = self.cross(k.args[0])
                outer = cross_product.outer(k.args[1])
                outdyad += v * outer
            return outdyad

        return cross(self, other)

    def __xor__(self, other):
        return self.cross(other)

    __xor__.__doc__ = cross.__doc__

    def outer(self, other):
        """
        Returns the outer product of this vector with another, in the
        form of a Dyadic instance.

        Parameters
        ==========

        other : Vector
            The Vector with respect to which the outer product is to
            be computed.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> N = CoordSys3D('N')
        >>> N.i.outer(N.j)
        (N.i|N.j)

        """

        # Handle the special cases
        if not isinstance(other, Vector):
            raise TypeError("Invalid operand for outer product")
        elif (isinstance(self, VectorZero) or
                isinstance(other, VectorZero)):
            return Dyadic.zero

        # Iterate over components of both the vectors to generate
        # the required Dyadic instance
        args = [(v1 * v2) * BaseDyadic(k1, k2) for (k1, v1), (k2, v2)
                in product(self.components.items(), other.components.items())]

        return DyadicAdd(*args)

    def projection(self, other, scalar=False):
        """
        Returns the vector or scalar projection of the 'other' on 'self'.

        Examples
        ========

        >>> from sympy.vector.coordsysrect import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> i, j, k = C.base_vectors()
        >>> v1 = i + j + k
        >>> v2 = 3*i + 4*j
        >>> v1.projection(v2)
        7/3*C.i + 7/3*C.j + 7/3*C.k
        >>> v1.projection(v2, scalar=True)
        7/3

        """
        if self.equals(Vector.zero):
            return S.Zero if scalar else Vector.zero

        if scalar:
            return self.dot(other) / self.dot(self)
        else:
            return self.dot(other) / self.dot(self) * self

    @property
    def _projections(self):
        """
        Returns the components of this vector but the output includes
        also zero values components.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D, Vector
        >>> C = CoordSys3D('C')
        >>> v1 = 3*C.i + 4*C.j + 5*C.k
        >>> v1._projections
        (3, 4, 5)
        >>> v2 = C.x*C.y*C.z*C.i
        >>> v2._projections
        (C.x*C.y*C.z, 0, 0)
        >>> v3 = Vector.zero
        >>> v3._projections
        (0, 0, 0)
        """

        from sympy.vector.operators import _get_coord_systems
        if isinstance(self, VectorZero):
            return (S.Zero, S.Zero, S.Zero)
        base_vec = next(iter(_get_coord_systems(self))).base_vectors()
        return tuple([self.dot(i) for i in base_vec])

    def __or__(self, other):
        return self.outer(other)

    __or__.__doc__ = outer.__doc__

    def to_matrix(self, system):
        """
        Returns the matrix form of this vector with respect to the
        specified coordinate system.

        Parameters
        ==========

        system : CoordSys3D
            The system wrt which the matrix form is to be computed

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> C = CoordSys3D('C')
        >>> from sympy.abc import a, b, c
        >>> v = a*C.i + b*C.j + c*C.k
        >>> v.to_matrix(C)
        Matrix([
        [a],
        [b],
        [c]])

        """

        return Matrix([self.dot(unit_vec) for unit_vec in
                       system.base_vectors()])

    def separate(self):
        """
        The constituents of this vector in different coordinate systems,
        as per its definition.

        Returns a dict mapping each CoordSys3D to the corresponding
        constituent Vector.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> R1 = CoordSys3D('R1')
        >>> R2 = CoordSys3D('R2')
        >>> v = R1.i + R2.i
        >>> v.separate() == {R1: R1.i, R2: R2.i}
        True

        """

        parts = {}
        for vect, measure in self.components.items():
            parts[vect.system] = (parts.get(vect.system, Vector.zero) +
                                  vect * measure)
        return parts

    def _div_helper(one, other):
        """ Helper for division involving vectors. """
        if isinstance(one, Vector) and isinstance(other, Vector):
            raise TypeError("Cannot divide two vectors")
        elif isinstance(one, Vector):
            if other == S.Zero:
                raise ValueError("Cannot divide a vector by zero")
            return VectorMul(one, Pow(other, S.NegativeOne))
        else:
            raise TypeError("Invalid division involving a vector")


class BaseVector(Vector, AtomicExpr):
    """
    Class to denote a base vector.

    """

    def __new__(cls, index, system, pretty_str=None, latex_str=None):
        if pretty_str is None:
            pretty_str = "x{}".format(index)
        if latex_str is None:
            latex_str = "x_{}".format(index)
        pretty_str = str(pretty_str)
        latex_str = str(latex_str)
        # Verify arguments
        if index not in range(0, 3):
            raise ValueError("index must be 0, 1 or 2")
        if not isinstance(system, CoordSys3D):
            raise TypeError("system should be a CoordSys3D")
        name = system._vector_names[index]
        # Initialize an object
        obj = super().__new__(cls, S(index), system)
        # Assign important attributes
        obj._base_instance = obj
        obj._components = {obj: S.One}
        obj._measure_number = S.One
        obj._name = system._name + '.' + name
        obj._pretty_form = '' + pretty_str
        obj._latex_form = latex_str
        obj._system = system
        # The _id is used for printing purposes
        obj._id = (index, system)
        assumptions = {'commutative': True}
        obj._assumptions = StdFactKB(assumptions)

        # This attr is used for re-expression to one of the systems
        # involved in the definition of the Vector. Applies to
        # VectorMul and VectorAdd too.
        obj._sys = system

        return obj

    @property
    def system(self):
        return self._system

    def _sympystr(self, printer):
        return self._name

    def _sympyrepr(self, printer):
        index, system = self._id
        return printer._print(system) + '.' + system._vector_names[index]

    @property
    def free_symbols(self):
        return {self}


class VectorAdd(BasisDependentAdd, Vector):
    """
    Class to denote sum of Vector instances.
    """

    def __new__(cls, *args, **options):
        obj = BasisDependentAdd.__new__(cls, *args, **options)
        return obj

    def _sympystr(self, printer):
        ret_str = ''
        items = list(self.separate().items())
        items.sort(key=lambda x: x[0].__str__())
        for system, vect in items:
            base_vects = system.base_vectors()
            for x in base_vects:
                if x in vect.components:
                    temp_vect = self.components[x] * x
                    ret_str += printer._print(temp_vect) + " + "
        return ret_str[:-3]


class VectorMul(BasisDependentMul, Vector):
    """
    Class to denote products of scalars and BaseVectors.
    """

    def __new__(cls, *args, **options):
        obj = BasisDependentMul.__new__(cls, *args, **options)
        return obj

    @property
    def base_vector(self):
        """ The BaseVector involved in the product. """
        return self._base_instance

    @property
    def measure_number(self):
        """ The scalar expression involved in the definition of
        this VectorMul.
        """
        return self._measure_number


class VectorZero(BasisDependentZero, Vector):
    """
    Class to denote a zero vector
    """

    _op_priority = 12.1
    _pretty_form = '0'
    _latex_form = r'\mathbf{\hat{0}}'

    def __new__(cls):
        obj = BasisDependentZero.__new__(cls)
        return obj


class Cross(Vector):
    """
    Represents unevaluated Cross product.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Cross
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> Cross(v1, v2)
    Cross(R.i + R.j + R.k, R.x*R.i + R.y*R.j + R.z*R.k)
    >>> Cross(v1, v2).doit()
    (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k

    """

    def __new__(cls, expr1, expr2):
        expr1 = sympify(expr1)
        expr2 = sympify(expr2)
        if default_sort_key(expr1) > default_sort_key(expr2):
            return -Cross(expr2, expr1)
        obj = Expr.__new__(cls, expr1, expr2)
        obj._expr1 = expr1
        obj._expr2 = expr2
        return obj

    def doit(self, **hints):
        return cross(self._expr1, self._expr2)


class Dot(Expr):
    """
    Represents unevaluated Dot product.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Dot
    >>> from sympy import symbols
    >>> R = CoordSys3D('R')
    >>> a, b, c = symbols('a b c')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = a * R.i + b * R.j + c * R.k
    >>> Dot(v1, v2)
    Dot(R.i + R.j + R.k, a*R.i + b*R.j + c*R.k)
    >>> Dot(v1, v2).doit()
    a + b + c

    """

    def __new__(cls, expr1, expr2):
        expr1 = sympify(expr1)
        expr2 = sympify(expr2)
        expr1, expr2 = sorted([expr1, expr2], key=default_sort_key)
        obj = Expr.__new__(cls, expr1, expr2)
        obj._expr1 = expr1
        obj._expr2 = expr2
        return obj

    def doit(self, **hints):
        return dot(self._expr1, self._expr2)


def cross(vect1, vect2):
    """
    Returns cross product of two vectors.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector.vector import cross
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> cross(v1, v2)
    (-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k

    """
    if isinstance(vect1, Add):
        return VectorAdd.fromiter(cross(i, vect2) for i in vect1.args)
    if isinstance(vect2, Add):
        return VectorAdd.fromiter(cross(vect1, i) for i in vect2.args)
    if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector):
        if vect1._sys == vect2._sys:
            n1 = vect1.args[0]
            n2 = vect2.args[0]
            if n1 == n2:
                return Vector.zero
            n3 = ({0,1,2}.difference({n1, n2})).pop()
            sign = 1 if ((n1 + 1) % 3 == n2) else -1
            return sign*vect1._sys.base_vectors()[n3]
        from .functions import express
        try:
            v = express(vect1, vect2._sys)
        except ValueError:
            return Cross(vect1, vect2)
        else:
            return cross(v, vect2)
    if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero):
        return Vector.zero
    if isinstance(vect1, VectorMul):
        v1, m1 = next(iter(vect1.components.items()))
        return m1*cross(v1, vect2)
    if isinstance(vect2, VectorMul):
        v2, m2 = next(iter(vect2.components.items()))
        return m2*cross(vect1, v2)

    return Cross(vect1, vect2)


def dot(vect1, vect2):
    """
    Returns dot product of two vectors.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D
    >>> from sympy.vector.vector import dot
    >>> R = CoordSys3D('R')
    >>> v1 = R.i + R.j + R.k
    >>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
    >>> dot(v1, v2)
    R.x + R.y + R.z

    """
    if isinstance(vect1, Add):
        return Add.fromiter(dot(i, vect2) for i in vect1.args)
    if isinstance(vect2, Add):
        return Add.fromiter(dot(vect1, i) for i in vect2.args)
    if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector):
        if vect1._sys == vect2._sys:
            return S.One if vect1 == vect2 else S.Zero
        from .functions import express
        try:
            v = express(vect2, vect1._sys)
        except ValueError:
            return Dot(vect1, vect2)
        else:
            return dot(vect1, v)
    if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero):
        return S.Zero
    if isinstance(vect1, VectorMul):
        v1, m1 = next(iter(vect1.components.items()))
        return m1*dot(v1, vect2)
    if isinstance(vect2, VectorMul):
        v2, m2 = next(iter(vect2.components.items()))
        return m2*dot(vect1, v2)

    return Dot(vect1, vect2)


Vector._expr_type = Vector
Vector._mul_func = VectorMul
Vector._add_func = VectorAdd
Vector._zero_func = VectorZero
Vector._base_func = BaseVector
Vector.zero = VectorZero()