File size: 5,932 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from functools import singledispatch
from sympy.core.numbers import pi
from sympy.functions.elementary.trigonometric import tan
from sympy.simplify import trigsimp
from sympy.core import Basic, Tuple
from sympy.core.symbol import _symbol
from sympy.solvers import solve
from sympy.geometry import Point, Segment, Curve, Ellipse, Polygon
from sympy.vector import ImplicitRegion


class ParametricRegion(Basic):
    """
    Represents a parametric region in space.

    Examples
    ========

    >>> from sympy import cos, sin, pi
    >>> from sympy.abc import r, theta, t, a, b, x, y
    >>> from sympy.vector import ParametricRegion

    >>> ParametricRegion((t, t**2), (t, -1, 2))
    ParametricRegion((t, t**2), (t, -1, 2))
    >>> ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
    ParametricRegion((x, y), (x, 3, 4), (y, 5, 6))
    >>> ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
    ParametricRegion((r*cos(theta), r*sin(theta)), (r, -2, 2), (theta, 0, pi))
    >>> ParametricRegion((a*cos(t), b*sin(t)), t)
    ParametricRegion((a*cos(t), b*sin(t)), t)

    >>> circle = ParametricRegion((r*cos(theta), r*sin(theta)), r, (theta, 0, pi))
    >>> circle.parameters
    (r, theta)
    >>> circle.definition
    (r*cos(theta), r*sin(theta))
    >>> circle.limits
    {theta: (0, pi)}

    Dimension of a parametric region determines whether a region is a curve, surface
    or volume region. It does not represent its dimensions in space.

    >>> circle.dimensions
    1

    Parameters
    ==========

    definition : tuple to define base scalars in terms of parameters.

    bounds : Parameter or a tuple of length 3 to define parameter and corresponding lower and upper bound.

    """
    def __new__(cls, definition, *bounds):
        parameters = ()
        limits = {}

        if not isinstance(bounds, Tuple):
            bounds = Tuple(*bounds)

        for bound in bounds:
            if isinstance(bound, (tuple, Tuple)):
                if len(bound) != 3:
                    raise ValueError("Tuple should be in the form (parameter, lowerbound, upperbound)")
                parameters += (bound[0],)
                limits[bound[0]] = (bound[1], bound[2])
            else:
                parameters += (bound,)

        if not isinstance(definition, (tuple, Tuple)):
            definition = (definition,)

        obj = super().__new__(cls, Tuple(*definition), *bounds)
        obj._parameters = parameters
        obj._limits = limits

        return obj

    @property
    def definition(self):
        return self.args[0]

    @property
    def limits(self):
        return self._limits

    @property
    def parameters(self):
        return self._parameters

    @property
    def dimensions(self):
        return len(self.limits)


@singledispatch
def parametric_region_list(reg):
    """
    Returns a list of ParametricRegion objects representing the geometric region.

    Examples
    ========

    >>> from sympy.abc import t
    >>> from sympy.vector import parametric_region_list
    >>> from sympy.geometry import Point, Curve, Ellipse, Segment, Polygon

    >>> p = Point(2, 5)
    >>> parametric_region_list(p)
    [ParametricRegion((2, 5))]

    >>> c = Curve((t**3, 4*t), (t, -3, 4))
    >>> parametric_region_list(c)
    [ParametricRegion((t**3, 4*t), (t, -3, 4))]

    >>> e = Ellipse(Point(1, 3), 2, 3)
    >>> parametric_region_list(e)
    [ParametricRegion((2*cos(t) + 1, 3*sin(t) + 3), (t, 0, 2*pi))]

    >>> s = Segment(Point(1, 3), Point(2, 6))
    >>> parametric_region_list(s)
    [ParametricRegion((t + 1, 3*t + 3), (t, 0, 1))]

    >>> p1, p2, p3, p4 = [(0, 1), (2, -3), (5, 3), (-2, 3)]
    >>> poly = Polygon(p1, p2, p3, p4)
    >>> parametric_region_list(poly)
    [ParametricRegion((2*t, 1 - 4*t), (t, 0, 1)), ParametricRegion((3*t + 2, 6*t - 3), (t, 0, 1)),\
     ParametricRegion((5 - 7*t, 3), (t, 0, 1)), ParametricRegion((2*t - 2, 3 - 2*t),  (t, 0, 1))]

    """
    raise ValueError("SymPy cannot determine parametric representation of the region.")


@parametric_region_list.register(Point)
def _(obj):
    return [ParametricRegion(obj.args)]


@parametric_region_list.register(Curve)  # type: ignore
def _(obj):
    definition = obj.arbitrary_point(obj.parameter).args
    bounds = obj.limits
    return [ParametricRegion(definition, bounds)]


@parametric_region_list.register(Ellipse) # type: ignore
def _(obj, parameter='t'):
    definition = obj.arbitrary_point(parameter).args
    t = _symbol(parameter, real=True)
    bounds = (t, 0, 2*pi)
    return [ParametricRegion(definition, bounds)]


@parametric_region_list.register(Segment) # type: ignore
def _(obj, parameter='t'):
    t = _symbol(parameter, real=True)
    definition = obj.arbitrary_point(t).args

    for i in range(0, 3):
        lower_bound = solve(definition[i] - obj.points[0].args[i], t)
        upper_bound = solve(definition[i] - obj.points[1].args[i], t)

        if len(lower_bound) == 1 and len(upper_bound) == 1:
            bounds = t, lower_bound[0], upper_bound[0]
            break

    definition_tuple = obj.arbitrary_point(parameter).args
    return [ParametricRegion(definition_tuple, bounds)]


@parametric_region_list.register(Polygon) # type: ignore
def _(obj, parameter='t'):
    l = [parametric_region_list(side, parameter)[0] for side in obj.sides]
    return l


@parametric_region_list.register(ImplicitRegion) # type: ignore
def _(obj, parameters=('t', 's')):
    definition = obj.rational_parametrization(parameters)
    bounds = []

    for i in range(len(obj.variables) - 1):
        # Each parameter is replaced by its tangent to simplify intergation
        parameter = _symbol(parameters[i], real=True)
        definition = [trigsimp(elem.subs(parameter, tan(parameter/2))) for elem in definition]
        bounds.append((parameter, 0, 2*pi),)

    definition = Tuple(*definition)
    return [ParametricRegion(definition, *bounds)]