File size: 11,798 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
from sympy.core.basic import Basic
from sympy.core.sympify import sympify
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.matrices.dense import (eye, rot_axis1, rot_axis2, rot_axis3)
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
from sympy.core.cache import cacheit
from sympy.core.symbol import Str
import sympy.vector


class Orienter(Basic):
    """
    Super-class for all orienter classes.
    """

    def rotation_matrix(self):
        """
        The rotation matrix corresponding to this orienter
        instance.
        """
        return self._parent_orient


class AxisOrienter(Orienter):
    """
    Class to denote an axis orienter.
    """

    def __new__(cls, angle, axis):
        if not isinstance(axis, sympy.vector.Vector):
            raise TypeError("axis should be a Vector")
        angle = sympify(angle)

        obj = super().__new__(cls, angle, axis)
        obj._angle = angle
        obj._axis = axis

        return obj

    def __init__(self, angle, axis):
        """
        Axis rotation is a rotation about an arbitrary axis by
        some angle. The angle is supplied as a SymPy expr scalar, and
        the axis is supplied as a Vector.

        Parameters
        ==========

        angle : Expr
            The angle by which the new system is to be rotated

        axis : Vector
            The axis around which the rotation has to be performed

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import symbols
        >>> q1 = symbols('q1')
        >>> N = CoordSys3D('N')
        >>> from sympy.vector import AxisOrienter
        >>> orienter = AxisOrienter(q1, N.i + 2 * N.j)
        >>> B = N.orient_new('B', (orienter, ))

        """
        # Dummy initializer for docstrings
        pass

    @cacheit
    def rotation_matrix(self, system):
        """
        The rotation matrix corresponding to this orienter
        instance.

        Parameters
        ==========

        system : CoordSys3D
            The coordinate system wrt which the rotation matrix
            is to be computed
        """

        axis = sympy.vector.express(self.axis, system).normalize()
        axis = axis.to_matrix(system)
        theta = self.angle
        parent_orient = ((eye(3) - axis * axis.T) * cos(theta) +
                         Matrix([[0, -axis[2], axis[1]],
                                 [axis[2], 0, -axis[0]],
                                 [-axis[1], axis[0], 0]]) * sin(theta) +
                         axis * axis.T)
        parent_orient = parent_orient.T
        return parent_orient

    @property
    def angle(self):
        return self._angle

    @property
    def axis(self):
        return self._axis


class ThreeAngleOrienter(Orienter):
    """
    Super-class for Body and Space orienters.
    """

    def __new__(cls, angle1, angle2, angle3, rot_order):
        if isinstance(rot_order, Str):
            rot_order = rot_order.name

        approved_orders = ('123', '231', '312', '132', '213',
                           '321', '121', '131', '212', '232',
                           '313', '323', '')
        original_rot_order = rot_order
        rot_order = str(rot_order).upper()
        if not (len(rot_order) == 3):
            raise TypeError('rot_order should be a str of length 3')
        rot_order = [i.replace('X', '1') for i in rot_order]
        rot_order = [i.replace('Y', '2') for i in rot_order]
        rot_order = [i.replace('Z', '3') for i in rot_order]
        rot_order = ''.join(rot_order)
        if rot_order not in approved_orders:
            raise TypeError('Invalid rot_type parameter')
        a1 = int(rot_order[0])
        a2 = int(rot_order[1])
        a3 = int(rot_order[2])
        angle1 = sympify(angle1)
        angle2 = sympify(angle2)
        angle3 = sympify(angle3)
        if cls._in_order:
            parent_orient = (_rot(a1, angle1) *
                             _rot(a2, angle2) *
                             _rot(a3, angle3))
        else:
            parent_orient = (_rot(a3, angle3) *
                             _rot(a2, angle2) *
                             _rot(a1, angle1))
        parent_orient = parent_orient.T

        obj = super().__new__(
            cls, angle1, angle2, angle3, Str(rot_order))
        obj._angle1 = angle1
        obj._angle2 = angle2
        obj._angle3 = angle3
        obj._rot_order = original_rot_order
        obj._parent_orient = parent_orient

        return obj

    @property
    def angle1(self):
        return self._angle1

    @property
    def angle2(self):
        return self._angle2

    @property
    def angle3(self):
        return self._angle3

    @property
    def rot_order(self):
        return self._rot_order


class BodyOrienter(ThreeAngleOrienter):
    """
    Class to denote a body-orienter.
    """

    _in_order = True

    def __new__(cls, angle1, angle2, angle3, rot_order):
        obj = ThreeAngleOrienter.__new__(cls, angle1, angle2, angle3,
                                         rot_order)
        return obj

    def __init__(self, angle1, angle2, angle3, rot_order):
        """
        Body orientation takes this coordinate system through three
        successive simple rotations.

        Body fixed rotations include both Euler Angles and
        Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.

        Parameters
        ==========

        angle1, angle2, angle3 : Expr
            Three successive angles to rotate the coordinate system by

        rotation_order : string
            String defining the order of axes for rotation

        Examples
        ========

        >>> from sympy.vector import CoordSys3D, BodyOrienter
        >>> from sympy import symbols
        >>> q1, q2, q3 = symbols('q1 q2 q3')
        >>> N = CoordSys3D('N')

        A 'Body' fixed rotation is described by three angles and
        three body-fixed rotation axes. To orient a coordinate system D
        with respect to N, each sequential rotation is always about
        the orthogonal unit vectors fixed to D. For example, a '123'
        rotation will specify rotations about N.i, then D.j, then
        D.k. (Initially, D.i is same as N.i)
        Therefore,

        >>> body_orienter = BodyOrienter(q1, q2, q3, '123')
        >>> D = N.orient_new('D', (body_orienter, ))

        is same as

        >>> from sympy.vector import AxisOrienter
        >>> axis_orienter1 = AxisOrienter(q1, N.i)
        >>> D = N.orient_new('D', (axis_orienter1, ))
        >>> axis_orienter2 = AxisOrienter(q2, D.j)
        >>> D = D.orient_new('D', (axis_orienter2, ))
        >>> axis_orienter3 = AxisOrienter(q3, D.k)
        >>> D = D.orient_new('D', (axis_orienter3, ))

        Acceptable rotation orders are of length 3, expressed in XYZ or
        123, and cannot have a rotation about about an axis twice in a row.

        >>> body_orienter1 = BodyOrienter(q1, q2, q3, '123')
        >>> body_orienter2 = BodyOrienter(q1, q2, 0, 'ZXZ')
        >>> body_orienter3 = BodyOrienter(0, 0, 0, 'XYX')

        """
        # Dummy initializer for docstrings
        pass


class SpaceOrienter(ThreeAngleOrienter):
    """
    Class to denote a space-orienter.
    """

    _in_order = False

    def __new__(cls, angle1, angle2, angle3, rot_order):
        obj = ThreeAngleOrienter.__new__(cls, angle1, angle2, angle3,
                                         rot_order)
        return obj

    def __init__(self, angle1, angle2, angle3, rot_order):
        """
        Space rotation is similar to Body rotation, but the rotations
        are applied in the opposite order.

        Parameters
        ==========

        angle1, angle2, angle3 : Expr
            Three successive angles to rotate the coordinate system by

        rotation_order : string
            String defining the order of axes for rotation

        See Also
        ========

        BodyOrienter : Orienter to orient systems wrt Euler angles.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D, SpaceOrienter
        >>> from sympy import symbols
        >>> q1, q2, q3 = symbols('q1 q2 q3')
        >>> N = CoordSys3D('N')

        To orient a coordinate system D with respect to N, each
        sequential rotation is always about N's orthogonal unit vectors.
        For example, a '123' rotation will specify rotations about
        N.i, then N.j, then N.k.
        Therefore,

        >>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
        >>> D = N.orient_new('D', (space_orienter, ))

        is same as

        >>> from sympy.vector import AxisOrienter
        >>> axis_orienter1 = AxisOrienter(q1, N.i)
        >>> B = N.orient_new('B', (axis_orienter1, ))
        >>> axis_orienter2 = AxisOrienter(q2, N.j)
        >>> C = B.orient_new('C', (axis_orienter2, ))
        >>> axis_orienter3 = AxisOrienter(q3, N.k)
        >>> D = C.orient_new('C', (axis_orienter3, ))

        """
        # Dummy initializer for docstrings
        pass


class QuaternionOrienter(Orienter):
    """
    Class to denote a quaternion-orienter.
    """

    def __new__(cls, q0, q1, q2, q3):
        q0 = sympify(q0)
        q1 = sympify(q1)
        q2 = sympify(q2)
        q3 = sympify(q3)
        parent_orient = (Matrix([[q0 ** 2 + q1 ** 2 - q2 ** 2 -
                                  q3 ** 2,
                                  2 * (q1 * q2 - q0 * q3),
                                  2 * (q0 * q2 + q1 * q3)],
                                 [2 * (q1 * q2 + q0 * q3),
                                  q0 ** 2 - q1 ** 2 +
                                  q2 ** 2 - q3 ** 2,
                                  2 * (q2 * q3 - q0 * q1)],
                                 [2 * (q1 * q3 - q0 * q2),
                                  2 * (q0 * q1 + q2 * q3),
                                  q0 ** 2 - q1 ** 2 -
                                  q2 ** 2 + q3 ** 2]]))
        parent_orient = parent_orient.T

        obj = super().__new__(cls, q0, q1, q2, q3)
        obj._q0 = q0
        obj._q1 = q1
        obj._q2 = q2
        obj._q3 = q3
        obj._parent_orient = parent_orient

        return obj

    def __init__(self, angle1, angle2, angle3, rot_order):
        """
        Quaternion orientation orients the new CoordSys3D with
        Quaternions, defined as a finite rotation about lambda, a unit
        vector, by some amount theta.

        This orientation is described by four parameters:

        q0 = cos(theta/2)

        q1 = lambda_x sin(theta/2)

        q2 = lambda_y sin(theta/2)

        q3 = lambda_z sin(theta/2)

        Quaternion does not take in a rotation order.

        Parameters
        ==========

        q0, q1, q2, q3 : Expr
            The quaternions to rotate the coordinate system by

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import symbols
        >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
        >>> N = CoordSys3D('N')
        >>> from sympy.vector import QuaternionOrienter
        >>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
        >>> B = N.orient_new('B', (q_orienter, ))

        """
        # Dummy initializer for docstrings
        pass

    @property
    def q0(self):
        return self._q0

    @property
    def q1(self):
        return self._q1

    @property
    def q2(self):
        return self._q2

    @property
    def q3(self):
        return self._q3


def _rot(axis, angle):
    """DCM for simple axis 1, 2 or 3 rotations. """
    if axis == 1:
        return Matrix(rot_axis1(angle).T)
    elif axis == 2:
        return Matrix(rot_axis2(angle).T)
    elif axis == 3:
        return Matrix(rot_axis3(angle).T)