File size: 9,521 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import collections
from sympy.core.expr import Expr
from sympy.core import sympify, S, preorder_traversal
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.vector import Vector, VectorMul, VectorAdd, Cross, Dot
from sympy.core.function import Derivative
from sympy.core.add import Add
from sympy.core.mul import Mul


def _get_coord_systems(expr):
    g = preorder_traversal(expr)
    ret = set()
    for i in g:
        if isinstance(i, CoordSys3D):
            ret.add(i)
            g.skip()
    return frozenset(ret)


def _split_mul_args_wrt_coordsys(expr):
    d = collections.defaultdict(lambda: S.One)
    for i in expr.args:
        d[_get_coord_systems(i)] *= i
    return list(d.values())


class Gradient(Expr):
    """
    Represents unevaluated Gradient.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Gradient
    >>> R = CoordSys3D('R')
    >>> s = R.x*R.y*R.z
    >>> Gradient(s)
    Gradient(R.x*R.y*R.z)

    """

    def __new__(cls, expr):
        expr = sympify(expr)
        obj = Expr.__new__(cls, expr)
        obj._expr = expr
        return obj

    def doit(self, **hints):
        return gradient(self._expr, doit=True)


class Divergence(Expr):
    """
    Represents unevaluated Divergence.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Divergence
    >>> R = CoordSys3D('R')
    >>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
    >>> Divergence(v)
    Divergence(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)

    """

    def __new__(cls, expr):
        expr = sympify(expr)
        obj = Expr.__new__(cls, expr)
        obj._expr = expr
        return obj

    def doit(self, **hints):
        return divergence(self._expr, doit=True)


class Curl(Expr):
    """
    Represents unevaluated Curl.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Curl
    >>> R = CoordSys3D('R')
    >>> v = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
    >>> Curl(v)
    Curl(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)

    """

    def __new__(cls, expr):
        expr = sympify(expr)
        obj = Expr.__new__(cls, expr)
        obj._expr = expr
        return obj

    def doit(self, **hints):
        return curl(self._expr, doit=True)


def curl(vect, doit=True):
    """
    Returns the curl of a vector field computed wrt the base scalars
    of the given coordinate system.

    Parameters
    ==========

    vect : Vector
        The vector operand

    doit : bool
        If True, the result is returned after calling .doit() on
        each component. Else, the returned expression contains
        Derivative instances

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, curl
    >>> R = CoordSys3D('R')
    >>> v1 = R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
    >>> curl(v1)
    0
    >>> v2 = R.x*R.y*R.z*R.i
    >>> curl(v2)
    R.x*R.y*R.j + (-R.x*R.z)*R.k

    """

    coord_sys = _get_coord_systems(vect)

    if len(coord_sys) == 0:
        return Vector.zero
    elif len(coord_sys) == 1:
        coord_sys = next(iter(coord_sys))
        i, j, k = coord_sys.base_vectors()
        x, y, z = coord_sys.base_scalars()
        h1, h2, h3 = coord_sys.lame_coefficients()
        vectx = vect.dot(i)
        vecty = vect.dot(j)
        vectz = vect.dot(k)
        outvec = Vector.zero
        outvec += (Derivative(vectz * h3, y) -
                   Derivative(vecty * h2, z)) * i / (h2 * h3)
        outvec += (Derivative(vectx * h1, z) -
                   Derivative(vectz * h3, x)) * j / (h1 * h3)
        outvec += (Derivative(vecty * h2, x) -
                   Derivative(vectx * h1, y)) * k / (h2 * h1)

        if doit:
            return outvec.doit()
        return outvec
    else:
        if isinstance(vect, (Add, VectorAdd)):
            from sympy.vector import express
            try:
                cs = next(iter(coord_sys))
                args = [express(i, cs, variables=True) for i in vect.args]
            except ValueError:
                args = vect.args
            return VectorAdd.fromiter(curl(i, doit=doit) for i in args)
        elif isinstance(vect, (Mul, VectorMul)):
            vector = [i for i in vect.args if isinstance(i, (Vector, Cross, Gradient))][0]
            scalar = Mul.fromiter(i for i in vect.args if not isinstance(i, (Vector, Cross, Gradient)))
            res = Cross(gradient(scalar), vector).doit() + scalar*curl(vector, doit=doit)
            if doit:
                return res.doit()
            return res
        elif isinstance(vect, (Cross, Curl, Gradient)):
            return Curl(vect)
        else:
            raise Curl(vect)


def divergence(vect, doit=True):
    """
    Returns the divergence of a vector field computed wrt the base
    scalars of the given coordinate system.

    Parameters
    ==========

    vector : Vector
        The vector operand

    doit : bool
        If True, the result is returned after calling .doit() on
        each component. Else, the returned expression contains
        Derivative instances

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, divergence
    >>> R = CoordSys3D('R')
    >>> v1 = R.x*R.y*R.z * (R.i+R.j+R.k)

    >>> divergence(v1)
    R.x*R.y + R.x*R.z + R.y*R.z
    >>> v2 = 2*R.y*R.z*R.j
    >>> divergence(v2)
    2*R.z

    """
    coord_sys = _get_coord_systems(vect)
    if len(coord_sys) == 0:
        return S.Zero
    elif len(coord_sys) == 1:
        if isinstance(vect, (Cross, Curl, Gradient)):
            return Divergence(vect)
        # TODO: is case of many coord systems, this gets a random one:
        coord_sys = next(iter(coord_sys))
        i, j, k = coord_sys.base_vectors()
        x, y, z = coord_sys.base_scalars()
        h1, h2, h3 = coord_sys.lame_coefficients()
        vx = _diff_conditional(vect.dot(i), x, h2, h3) \
             / (h1 * h2 * h3)
        vy = _diff_conditional(vect.dot(j), y, h3, h1) \
             / (h1 * h2 * h3)
        vz = _diff_conditional(vect.dot(k), z, h1, h2) \
             / (h1 * h2 * h3)
        res = vx + vy + vz
        if doit:
            return res.doit()
        return res
    else:
        if isinstance(vect, (Add, VectorAdd)):
            return Add.fromiter(divergence(i, doit=doit) for i in vect.args)
        elif isinstance(vect, (Mul, VectorMul)):
            vector = [i for i in vect.args if isinstance(i, (Vector, Cross, Gradient))][0]
            scalar = Mul.fromiter(i for i in vect.args if not isinstance(i, (Vector, Cross, Gradient)))
            res = Dot(vector, gradient(scalar)) + scalar*divergence(vector, doit=doit)
            if doit:
                return res.doit()
            return res
        elif isinstance(vect, (Cross, Curl, Gradient)):
            return Divergence(vect)
        else:
            raise Divergence(vect)


def gradient(scalar_field, doit=True):
    """
    Returns the vector gradient of a scalar field computed wrt the
    base scalars of the given coordinate system.

    Parameters
    ==========

    scalar_field : SymPy Expr
        The scalar field to compute the gradient of

    doit : bool
        If True, the result is returned after calling .doit() on
        each component. Else, the returned expression contains
        Derivative instances

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, gradient
    >>> R = CoordSys3D('R')
    >>> s1 = R.x*R.y*R.z
    >>> gradient(s1)
    R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k
    >>> s2 = 5*R.x**2*R.z
    >>> gradient(s2)
    10*R.x*R.z*R.i + 5*R.x**2*R.k

    """
    coord_sys = _get_coord_systems(scalar_field)

    if len(coord_sys) == 0:
        return Vector.zero
    elif len(coord_sys) == 1:
        coord_sys = next(iter(coord_sys))
        h1, h2, h3 = coord_sys.lame_coefficients()
        i, j, k = coord_sys.base_vectors()
        x, y, z = coord_sys.base_scalars()
        vx = Derivative(scalar_field, x) / h1
        vy = Derivative(scalar_field, y) / h2
        vz = Derivative(scalar_field, z) / h3

        if doit:
            return (vx * i + vy * j + vz * k).doit()
        return vx * i + vy * j + vz * k
    else:
        if isinstance(scalar_field, (Add, VectorAdd)):
            return VectorAdd.fromiter(gradient(i) for i in scalar_field.args)
        if isinstance(scalar_field, (Mul, VectorMul)):
            s = _split_mul_args_wrt_coordsys(scalar_field)
            return VectorAdd.fromiter(scalar_field / i * gradient(i) for i in s)
        return Gradient(scalar_field)


class Laplacian(Expr):
    """
    Represents unevaluated Laplacian.

    Examples
    ========

    >>> from sympy.vector import CoordSys3D, Laplacian
    >>> R = CoordSys3D('R')
    >>> v = 3*R.x**3*R.y**2*R.z**3
    >>> Laplacian(v)
    Laplacian(3*R.x**3*R.y**2*R.z**3)

    """

    def __new__(cls, expr):
        expr = sympify(expr)
        obj = Expr.__new__(cls, expr)
        obj._expr = expr
        return obj

    def doit(self, **hints):
        from sympy.vector.functions import laplacian
        return laplacian(self._expr)


def _diff_conditional(expr, base_scalar, coeff_1, coeff_2):
    """
    First re-expresses expr in the system that base_scalar belongs to.
    If base_scalar appears in the re-expressed form, differentiates
    it wrt base_scalar.
    Else, returns 0
    """
    from sympy.vector.functions import express
    new_expr = express(expr, base_scalar.system, variables=True)
    arg = coeff_1 * coeff_2 * new_expr
    return Derivative(arg, base_scalar) if arg else S.Zero