File size: 6,837 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
from sympy.core import Basic, diff
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.matrices import Matrix
from sympy.integrals import Integral, integrate
from sympy.geometry.entity import GeometryEntity
from sympy.simplify.simplify import simplify
from sympy.utilities.iterables import topological_sort
from sympy.vector import (CoordSys3D, Vector, ParametricRegion,
                        parametric_region_list, ImplicitRegion)
from sympy.vector.operators import _get_coord_systems


class ParametricIntegral(Basic):
    """
    Represents integral of a scalar or vector field
    over a Parametric Region

    Examples
    ========

    >>> from sympy import cos, sin, pi
    >>> from sympy.vector import CoordSys3D, ParametricRegion, ParametricIntegral
    >>> from sympy.abc import r, t, theta, phi

    >>> C = CoordSys3D('C')
    >>> curve = ParametricRegion((3*t - 2, t + 1), (t, 1, 2))
    >>> ParametricIntegral(C.x, curve)
    5*sqrt(10)/2
    >>> length = ParametricIntegral(1, curve)
    >>> length
    sqrt(10)
    >>> semisphere = ParametricRegion((2*sin(phi)*cos(theta), 2*sin(phi)*sin(theta), 2*cos(phi)),\
                            (theta, 0, 2*pi), (phi, 0, pi/2))
    >>> ParametricIntegral(C.z, semisphere)
    8*pi

    >>> ParametricIntegral(C.j + C.k, ParametricRegion((r*cos(theta), r*sin(theta)), r, theta))
    0

    """

    def __new__(cls, field, parametricregion):

        coord_set = _get_coord_systems(field)

        if len(coord_set) == 0:
            coord_sys = CoordSys3D('C')
        elif len(coord_set) > 1:
            raise ValueError
        else:
            coord_sys = next(iter(coord_set))

        if parametricregion.dimensions == 0:
            return S.Zero

        base_vectors = coord_sys.base_vectors()
        base_scalars = coord_sys.base_scalars()

        parametricfield = field

        r = Vector.zero
        for i in range(len(parametricregion.definition)):
            r += base_vectors[i]*parametricregion.definition[i]

        if len(coord_set) != 0:
            for i in range(len(parametricregion.definition)):
                parametricfield = parametricfield.subs(base_scalars[i], parametricregion.definition[i])

        if parametricregion.dimensions == 1:
            parameter = parametricregion.parameters[0]

            r_diff = diff(r, parameter)
            lower, upper = parametricregion.limits[parameter][0], parametricregion.limits[parameter][1]

            if isinstance(parametricfield, Vector):
                integrand = simplify(r_diff.dot(parametricfield))
            else:
                integrand = simplify(r_diff.magnitude()*parametricfield)

            result = integrate(integrand, (parameter, lower, upper))

        elif parametricregion.dimensions == 2:
            u, v = cls._bounds_case(parametricregion.parameters, parametricregion.limits)

            r_u = diff(r, u)
            r_v = diff(r, v)
            normal_vector = simplify(r_u.cross(r_v))

            if isinstance(parametricfield, Vector):
                integrand = parametricfield.dot(normal_vector)
            else:
                integrand = parametricfield*normal_vector.magnitude()

            integrand = simplify(integrand)

            lower_u, upper_u = parametricregion.limits[u][0], parametricregion.limits[u][1]
            lower_v, upper_v = parametricregion.limits[v][0], parametricregion.limits[v][1]

            result = integrate(integrand, (u, lower_u, upper_u), (v, lower_v, upper_v))

        else:
            variables = cls._bounds_case(parametricregion.parameters, parametricregion.limits)
            coeff = Matrix(parametricregion.definition).jacobian(variables).det()
            integrand = simplify(parametricfield*coeff)

            l = [(var, parametricregion.limits[var][0], parametricregion.limits[var][1]) for var in variables]
            result = integrate(integrand, *l)

        if not isinstance(result, Integral):
            return result
        else:
            return super().__new__(cls, field, parametricregion)

    @classmethod
    def _bounds_case(cls, parameters, limits):

        V = list(limits.keys())
        E = []

        for p in V:
            lower_p = limits[p][0]
            upper_p = limits[p][1]

            lower_p = lower_p.atoms()
            upper_p = upper_p.atoms()
            E.extend((p, q) for q in V if p != q and
                     (lower_p.issuperset({q}) or upper_p.issuperset({q})))

        if not E:
            return parameters
        else:
            return topological_sort((V, E), key=default_sort_key)

    @property
    def field(self):
        return self.args[0]

    @property
    def parametricregion(self):
        return self.args[1]


def vector_integrate(field, *region):
    """
    Compute the integral of a vector/scalar field
    over a a region or a set of parameters.

    Examples
    ========
    >>> from sympy.vector import CoordSys3D, ParametricRegion, vector_integrate
    >>> from sympy.abc import x, y, t
    >>> C = CoordSys3D('C')

    >>> region = ParametricRegion((t, t**2), (t, 1, 5))
    >>> vector_integrate(C.x*C.i, region)
    12

    Integrals over some objects of geometry module can also be calculated.

    >>> from sympy.geometry import Point, Circle, Triangle
    >>> c = Circle(Point(0, 2), 5)
    >>> vector_integrate(C.x**2 + C.y**2, c)
    290*pi
    >>> triangle = Triangle(Point(-2, 3), Point(2, 3), Point(0, 5))
    >>> vector_integrate(3*C.x**2*C.y*C.i + C.j, triangle)
    -8

    Integrals over some simple implicit regions can be computed. But in most cases,
    it takes too long to compute over them. This is due to the expressions of parametric
    representation becoming large.

    >>> from sympy.vector import ImplicitRegion
    >>> c2 = ImplicitRegion((x, y), (x - 2)**2 + (y - 1)**2 - 9)
    >>> vector_integrate(1, c2)
    6*pi

    Integral of fields with respect to base scalars:

    >>> vector_integrate(12*C.y**3, (C.y, 1, 3))
    240
    >>> vector_integrate(C.x**2*C.z, C.x)
    C.x**3*C.z/3
    >>> vector_integrate(C.x*C.i - C.y*C.k, C.x)
    (Integral(C.x, C.x))*C.i + (Integral(-C.y, C.x))*C.k
    >>> _.doit()
    C.x**2/2*C.i + (-C.x*C.y)*C.k

    """
    if len(region) == 1:
        if isinstance(region[0], ParametricRegion):
            return ParametricIntegral(field, region[0])

        if isinstance(region[0], ImplicitRegion):
            region = parametric_region_list(region[0])[0]
            return vector_integrate(field, region)

        if isinstance(region[0], GeometryEntity):
            regions_list = parametric_region_list(region[0])

            result = 0
            for reg in regions_list:
                result += vector_integrate(field, reg)
            return result

    return integrate(field, *region)