File size: 36,861 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
from collections.abc import Callable

from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core import S, Dummy, Lambda
from sympy.core.symbol import Str
from sympy.core.symbol import symbols
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
from sympy.matrices.matrixbase import MatrixBase
from sympy.solvers import solve
from sympy.vector.scalar import BaseScalar
from sympy.core.containers import Tuple
from sympy.core.function import diff
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin)
from sympy.matrices.dense import eye
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.simplify.simplify import simplify
from sympy.simplify.trigsimp import trigsimp
import sympy.vector
from sympy.vector.orienters import (Orienter, AxisOrienter, BodyOrienter,
                                    SpaceOrienter, QuaternionOrienter)


class CoordSys3D(Basic):
    """
    Represents a coordinate system in 3-D space.
    """

    def __new__(cls, name, transformation=None, parent=None, location=None,
                rotation_matrix=None, vector_names=None, variable_names=None):
        """
        The orientation/location parameters are necessary if this system
        is being defined at a certain orientation or location wrt another.

        Parameters
        ==========

        name : str
            The name of the new CoordSys3D instance.

        transformation : Lambda, Tuple, str
            Transformation defined by transformation equations or chosen
            from predefined ones.

        location : Vector
            The position vector of the new system's origin wrt the parent
            instance.

        rotation_matrix : SymPy ImmutableMatrix
            The rotation matrix of the new coordinate system with respect
            to the parent. In other words, the output of
            new_system.rotation_matrix(parent).

        parent : CoordSys3D
            The coordinate system wrt which the orientation/location
            (or both) is being defined.

        vector_names, variable_names : iterable(optional)
            Iterables of 3 strings each, with custom names for base
            vectors and base scalars of the new system respectively.
            Used for simple str printing.

        """

        name = str(name)
        Vector = sympy.vector.Vector
        Point = sympy.vector.Point

        if not isinstance(name, str):
            raise TypeError("name should be a string")

        if transformation is not None:
            if (location is not None) or (rotation_matrix is not None):
                raise ValueError("specify either `transformation` or "
                                 "`location`/`rotation_matrix`")
            if isinstance(transformation, (Tuple, tuple, list)):
                if isinstance(transformation[0], MatrixBase):
                    rotation_matrix = transformation[0]
                    location = transformation[1]
                else:
                    transformation = Lambda(transformation[0],
                                            transformation[1])
            elif isinstance(transformation, Callable):
                x1, x2, x3 = symbols('x1 x2 x3', cls=Dummy)
                transformation = Lambda((x1, x2, x3),
                                        transformation(x1, x2, x3))
            elif isinstance(transformation, str):
                transformation = Str(transformation)
            elif isinstance(transformation, (Str, Lambda)):
                pass
            else:
                raise TypeError("transformation: "
                                "wrong type {}".format(type(transformation)))

        # If orientation information has been provided, store
        # the rotation matrix accordingly
        if rotation_matrix is None:
            rotation_matrix = ImmutableDenseMatrix(eye(3))
        else:
            if not isinstance(rotation_matrix, MatrixBase):
                raise TypeError("rotation_matrix should be an Immutable" +
                                "Matrix instance")
            rotation_matrix = rotation_matrix.as_immutable()

        # If location information is not given, adjust the default
        # location as Vector.zero
        if parent is not None:
            if not isinstance(parent, CoordSys3D):
                raise TypeError("parent should be a " +
                                "CoordSys3D/None")
            if location is None:
                location = Vector.zero
            else:
                if not isinstance(location, Vector):
                    raise TypeError("location should be a Vector")
                # Check that location does not contain base
                # scalars
                for x in location.free_symbols:
                    if isinstance(x, BaseScalar):
                        raise ValueError("location should not contain" +
                                         " BaseScalars")
            origin = parent.origin.locate_new(name + '.origin',
                                              location)
        else:
            location = Vector.zero
            origin = Point(name + '.origin')

        if transformation is None:
            transformation = Tuple(rotation_matrix, location)

        if isinstance(transformation, Tuple):
            lambda_transformation = CoordSys3D._compose_rotation_and_translation(
                transformation[0],
                transformation[1],
                parent
            )
            r, l = transformation
            l = l._projections
            lambda_lame = CoordSys3D._get_lame_coeff('cartesian')
            lambda_inverse = lambda x, y, z: r.inv()*Matrix(
                [x-l[0], y-l[1], z-l[2]])
        elif isinstance(transformation, Str):
            trname = transformation.name
            lambda_transformation = CoordSys3D._get_transformation_lambdas(trname)
            if parent is not None:
                if parent.lame_coefficients() != (S.One, S.One, S.One):
                    raise ValueError('Parent for pre-defined coordinate '
                                 'system should be Cartesian.')
            lambda_lame = CoordSys3D._get_lame_coeff(trname)
            lambda_inverse = CoordSys3D._set_inv_trans_equations(trname)
        elif isinstance(transformation, Lambda):
            if not CoordSys3D._check_orthogonality(transformation):
                raise ValueError("The transformation equation does not "
                                 "create orthogonal coordinate system")
            lambda_transformation = transformation
            lambda_lame = CoordSys3D._calculate_lame_coeff(lambda_transformation)
            lambda_inverse = None
        else:
            lambda_transformation = lambda x, y, z: transformation(x, y, z)
            lambda_lame = CoordSys3D._get_lame_coeff(transformation)
            lambda_inverse = None

        if variable_names is None:
            if isinstance(transformation, Lambda):
                variable_names = ["x1", "x2", "x3"]
            elif isinstance(transformation, Str):
                if transformation.name == 'spherical':
                    variable_names = ["r", "theta", "phi"]
                elif transformation.name == 'cylindrical':
                    variable_names = ["r", "theta", "z"]
                else:
                    variable_names = ["x", "y", "z"]
            else:
                variable_names = ["x", "y", "z"]
        if vector_names is None:
            vector_names = ["i", "j", "k"]

        # All systems that are defined as 'roots' are unequal, unless
        # they have the same name.
        # Systems defined at same orientation/position wrt the same
        # 'parent' are equal, irrespective of the name.
        # This is true even if the same orientation is provided via
        # different methods like Axis/Body/Space/Quaternion.
        # However, coincident systems may be seen as unequal if
        # positioned/oriented wrt different parents, even though
        # they may actually be 'coincident' wrt the root system.
        if parent is not None:
            obj = super().__new__(
                cls, Str(name), transformation, parent)
        else:
            obj = super().__new__(
                cls, Str(name), transformation)
        obj._name = name
        # Initialize the base vectors

        _check_strings('vector_names', vector_names)
        vector_names = list(vector_names)
        latex_vects = [(r'\mathbf{\hat{%s}_{%s}}' % (x, name)) for
                           x in vector_names]
        pretty_vects = ['%s_%s' % (x, name) for x in vector_names]

        obj._vector_names = vector_names

        v1 = BaseVector(0, obj, pretty_vects[0], latex_vects[0])
        v2 = BaseVector(1, obj, pretty_vects[1], latex_vects[1])
        v3 = BaseVector(2, obj, pretty_vects[2], latex_vects[2])

        obj._base_vectors = (v1, v2, v3)

        # Initialize the base scalars

        _check_strings('variable_names', vector_names)
        variable_names = list(variable_names)
        latex_scalars = [(r"\mathbf{{%s}_{%s}}" % (x, name)) for
                         x in variable_names]
        pretty_scalars = ['%s_%s' % (x, name) for x in variable_names]

        obj._variable_names = variable_names
        obj._vector_names = vector_names

        x1 = BaseScalar(0, obj, pretty_scalars[0], latex_scalars[0])
        x2 = BaseScalar(1, obj, pretty_scalars[1], latex_scalars[1])
        x3 = BaseScalar(2, obj, pretty_scalars[2], latex_scalars[2])

        obj._base_scalars = (x1, x2, x3)

        obj._transformation = transformation
        obj._transformation_lambda = lambda_transformation
        obj._lame_coefficients = lambda_lame(x1, x2, x3)
        obj._transformation_from_parent_lambda = lambda_inverse

        setattr(obj, variable_names[0], x1)
        setattr(obj, variable_names[1], x2)
        setattr(obj, variable_names[2], x3)

        setattr(obj, vector_names[0], v1)
        setattr(obj, vector_names[1], v2)
        setattr(obj, vector_names[2], v3)

        # Assign params
        obj._parent = parent
        if obj._parent is not None:
            obj._root = obj._parent._root
        else:
            obj._root = obj

        obj._parent_rotation_matrix = rotation_matrix
        obj._origin = origin

        # Return the instance
        return obj

    def _sympystr(self, printer):
        return self._name

    def __iter__(self):
        return iter(self.base_vectors())

    @staticmethod
    def _check_orthogonality(equations):
        """
        Helper method for _connect_to_cartesian. It checks if
        set of transformation equations create orthogonal curvilinear
        coordinate system

        Parameters
        ==========

        equations : Lambda
            Lambda of transformation equations

        """

        x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy)
        equations = equations(x1, x2, x3)
        v1 = Matrix([diff(equations[0], x1),
                     diff(equations[1], x1), diff(equations[2], x1)])

        v2 = Matrix([diff(equations[0], x2),
                     diff(equations[1], x2), diff(equations[2], x2)])

        v3 = Matrix([diff(equations[0], x3),
                     diff(equations[1], x3), diff(equations[2], x3)])

        if any(simplify(i[0] + i[1] + i[2]) == 0 for i in (v1, v2, v3)):
            return False
        else:
            if simplify(v1.dot(v2)) == 0 and simplify(v2.dot(v3)) == 0 \
                and simplify(v3.dot(v1)) == 0:
                return True
            else:
                return False

    @staticmethod
    def _set_inv_trans_equations(curv_coord_name):
        """
        Store information about inverse transformation equations for
        pre-defined coordinate systems.

        Parameters
        ==========

        curv_coord_name : str
            Name of coordinate system

        """
        if curv_coord_name == 'cartesian':
            return lambda x, y, z: (x, y, z)

        if curv_coord_name == 'spherical':
            return lambda x, y, z: (
                sqrt(x**2 + y**2 + z**2),
                acos(z/sqrt(x**2 + y**2 + z**2)),
                atan2(y, x)
            )
        if curv_coord_name == 'cylindrical':
            return lambda x, y, z: (
                sqrt(x**2 + y**2),
                atan2(y, x),
                z
            )
        raise ValueError('Wrong set of parameters.'
                         'Type of coordinate system is defined')

    def _calculate_inv_trans_equations(self):
        """
        Helper method for set_coordinate_type. It calculates inverse
        transformation equations for given transformations equations.

        """
        x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy, reals=True)
        x, y, z = symbols("x, y, z", cls=Dummy)

        equations = self._transformation(x1, x2, x3)

        solved = solve([equations[0] - x,
                        equations[1] - y,
                        equations[2] - z], (x1, x2, x3), dict=True)[0]
        solved = solved[x1], solved[x2], solved[x3]
        self._transformation_from_parent_lambda = \
            lambda x1, x2, x3: tuple(i.subs(list(zip((x, y, z), (x1, x2, x3)))) for i in solved)

    @staticmethod
    def _get_lame_coeff(curv_coord_name):
        """
        Store information about Lame coefficients for pre-defined
        coordinate systems.

        Parameters
        ==========

        curv_coord_name : str
            Name of coordinate system

        """
        if isinstance(curv_coord_name, str):
            if curv_coord_name == 'cartesian':
                return lambda x, y, z: (S.One, S.One, S.One)
            if curv_coord_name == 'spherical':
                return lambda r, theta, phi: (S.One, r, r*sin(theta))
            if curv_coord_name == 'cylindrical':
                return lambda r, theta, h: (S.One, r, S.One)
            raise ValueError('Wrong set of parameters.'
                             ' Type of coordinate system is not defined')
        return CoordSys3D._calculate_lame_coefficients(curv_coord_name)

    @staticmethod
    def _calculate_lame_coeff(equations):
        """
        It calculates Lame coefficients
        for given transformations equations.

        Parameters
        ==========

        equations : Lambda
            Lambda of transformation equations.

        """
        return lambda x1, x2, x3: (
                          sqrt(diff(equations(x1, x2, x3)[0], x1)**2 +
                               diff(equations(x1, x2, x3)[1], x1)**2 +
                               diff(equations(x1, x2, x3)[2], x1)**2),
                          sqrt(diff(equations(x1, x2, x3)[0], x2)**2 +
                               diff(equations(x1, x2, x3)[1], x2)**2 +
                               diff(equations(x1, x2, x3)[2], x2)**2),
                          sqrt(diff(equations(x1, x2, x3)[0], x3)**2 +
                               diff(equations(x1, x2, x3)[1], x3)**2 +
                               diff(equations(x1, x2, x3)[2], x3)**2)
                      )

    def _inverse_rotation_matrix(self):
        """
        Returns inverse rotation matrix.
        """
        return simplify(self._parent_rotation_matrix**-1)

    @staticmethod
    def _get_transformation_lambdas(curv_coord_name):
        """
        Store information about transformation equations for pre-defined
        coordinate systems.

        Parameters
        ==========

        curv_coord_name : str
            Name of coordinate system

        """
        if isinstance(curv_coord_name, str):
            if curv_coord_name == 'cartesian':
                return lambda x, y, z: (x, y, z)
            if curv_coord_name == 'spherical':
                return lambda r, theta, phi: (
                    r*sin(theta)*cos(phi),
                    r*sin(theta)*sin(phi),
                    r*cos(theta)
                )
            if curv_coord_name == 'cylindrical':
                return lambda r, theta, h: (
                    r*cos(theta),
                    r*sin(theta),
                    h
                )
            raise ValueError('Wrong set of parameters.'
                             'Type of coordinate system is defined')

    @classmethod
    def _rotation_trans_equations(cls, matrix, equations):
        """
        Returns the transformation equations obtained from rotation matrix.

        Parameters
        ==========

        matrix : Matrix
            Rotation matrix

        equations : tuple
            Transformation equations

        """
        return tuple(matrix * Matrix(equations))

    @property
    def origin(self):
        return self._origin

    def base_vectors(self):
        return self._base_vectors

    def base_scalars(self):
        return self._base_scalars

    def lame_coefficients(self):
        return self._lame_coefficients

    def transformation_to_parent(self):
        return self._transformation_lambda(*self.base_scalars())

    def transformation_from_parent(self):
        if self._parent is None:
            raise ValueError("no parent coordinate system, use "
                             "`transformation_from_parent_function()`")
        return self._transformation_from_parent_lambda(
                            *self._parent.base_scalars())

    def transformation_from_parent_function(self):
        return self._transformation_from_parent_lambda

    def rotation_matrix(self, other):
        """
        Returns the direction cosine matrix(DCM), also known as the
        'rotation matrix' of this coordinate system with respect to
        another system.

        If v_a is a vector defined in system 'A' (in matrix format)
        and v_b is the same vector defined in system 'B', then
        v_a = A.rotation_matrix(B) * v_b.

        A SymPy Matrix is returned.

        Parameters
        ==========

        other : CoordSys3D
            The system which the DCM is generated to.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import symbols
        >>> q1 = symbols('q1')
        >>> N = CoordSys3D('N')
        >>> A = N.orient_new_axis('A', q1, N.i)
        >>> N.rotation_matrix(A)
        Matrix([
        [1,       0,        0],
        [0, cos(q1), -sin(q1)],
        [0, sin(q1),  cos(q1)]])

        """
        from sympy.vector.functions import _path
        if not isinstance(other, CoordSys3D):
            raise TypeError(str(other) +
                            " is not a CoordSys3D")
        # Handle special cases
        if other == self:
            return eye(3)
        elif other == self._parent:
            return self._parent_rotation_matrix
        elif other._parent == self:
            return other._parent_rotation_matrix.T
        # Else, use tree to calculate position
        rootindex, path = _path(self, other)
        result = eye(3)
        i = -1
        for i in range(rootindex):
            result *= path[i]._parent_rotation_matrix
        i += 2
        while i < len(path):
            result *= path[i]._parent_rotation_matrix.T
            i += 1
        return result

    @cacheit
    def position_wrt(self, other):
        """
        Returns the position vector of the origin of this coordinate
        system with respect to another Point/CoordSys3D.

        Parameters
        ==========

        other : Point/CoordSys3D
            If other is a Point, the position of this system's origin
            wrt it is returned. If its an instance of CoordSyRect,
            the position wrt its origin is returned.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> N = CoordSys3D('N')
        >>> N1 = N.locate_new('N1', 10 * N.i)
        >>> N.position_wrt(N1)
        (-10)*N.i

        """
        return self.origin.position_wrt(other)

    def scalar_map(self, other):
        """
        Returns a dictionary which expresses the coordinate variables
        (base scalars) of this frame in terms of the variables of
        otherframe.

        Parameters
        ==========

        otherframe : CoordSys3D
            The other system to map the variables to.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import Symbol
        >>> A = CoordSys3D('A')
        >>> q = Symbol('q')
        >>> B = A.orient_new_axis('B', q, A.k)
        >>> A.scalar_map(B)
        {A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}

        """

        origin_coords = tuple(self.position_wrt(other).to_matrix(other))
        relocated_scalars = [x - origin_coords[i]
                             for i, x in enumerate(other.base_scalars())]

        vars_matrix = (self.rotation_matrix(other) *
                       Matrix(relocated_scalars))
        return {x: trigsimp(vars_matrix[i])
                for i, x in enumerate(self.base_scalars())}

    def locate_new(self, name, position, vector_names=None,
                   variable_names=None):
        """
        Returns a CoordSys3D with its origin located at the given
        position wrt this coordinate system's origin.

        Parameters
        ==========

        name : str
            The name of the new CoordSys3D instance.

        position : Vector
            The position vector of the new system's origin wrt this
            one.

        vector_names, variable_names : iterable(optional)
            Iterables of 3 strings each, with custom names for base
            vectors and base scalars of the new system respectively.
            Used for simple str printing.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> A = CoordSys3D('A')
        >>> B = A.locate_new('B', 10 * A.i)
        >>> B.origin.position_wrt(A.origin)
        10*A.i

        """
        if variable_names is None:
            variable_names = self._variable_names
        if vector_names is None:
            vector_names = self._vector_names

        return CoordSys3D(name, location=position,
                          vector_names=vector_names,
                          variable_names=variable_names,
                          parent=self)

    def orient_new(self, name, orienters, location=None,
                   vector_names=None, variable_names=None):
        """
        Creates a new CoordSys3D oriented in the user-specified way
        with respect to this system.

        Please refer to the documentation of the orienter classes
        for more information about the orientation procedure.

        Parameters
        ==========

        name : str
            The name of the new CoordSys3D instance.

        orienters : iterable/Orienter
            An Orienter or an iterable of Orienters for orienting the
            new coordinate system.
            If an Orienter is provided, it is applied to get the new
            system.
            If an iterable is provided, the orienters will be applied
            in the order in which they appear in the iterable.

        location : Vector(optional)
            The location of the new coordinate system's origin wrt this
            system's origin. If not specified, the origins are taken to
            be coincident.

        vector_names, variable_names : iterable(optional)
            Iterables of 3 strings each, with custom names for base
            vectors and base scalars of the new system respectively.
            Used for simple str printing.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import symbols
        >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
        >>> N = CoordSys3D('N')

        Using an AxisOrienter

        >>> from sympy.vector import AxisOrienter
        >>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j)
        >>> A = N.orient_new('A', (axis_orienter, ))

        Using a BodyOrienter

        >>> from sympy.vector import BodyOrienter
        >>> body_orienter = BodyOrienter(q1, q2, q3, '123')
        >>> B = N.orient_new('B', (body_orienter, ))

        Using a SpaceOrienter

        >>> from sympy.vector import SpaceOrienter
        >>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
        >>> C = N.orient_new('C', (space_orienter, ))

        Using a QuaternionOrienter

        >>> from sympy.vector import QuaternionOrienter
        >>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
        >>> D = N.orient_new('D', (q_orienter, ))
        """
        if variable_names is None:
            variable_names = self._variable_names
        if vector_names is None:
            vector_names = self._vector_names

        if isinstance(orienters, Orienter):
            if isinstance(orienters, AxisOrienter):
                final_matrix = orienters.rotation_matrix(self)
            else:
                final_matrix = orienters.rotation_matrix()
            # TODO: trigsimp is needed here so that the matrix becomes
            # canonical (scalar_map also calls trigsimp; without this, you can
            # end up with the same CoordinateSystem that compares differently
            # due to a differently formatted matrix). However, this is
            # probably not so good for performance.
            final_matrix = trigsimp(final_matrix)
        else:
            final_matrix = Matrix(eye(3))
            for orienter in orienters:
                if isinstance(orienter, AxisOrienter):
                    final_matrix *= orienter.rotation_matrix(self)
                else:
                    final_matrix *= orienter.rotation_matrix()

        return CoordSys3D(name, rotation_matrix=final_matrix,
                          vector_names=vector_names,
                          variable_names=variable_names,
                          location=location,
                          parent=self)

    def orient_new_axis(self, name, angle, axis, location=None,
                        vector_names=None, variable_names=None):
        """
        Axis rotation is a rotation about an arbitrary axis by
        some angle. The angle is supplied as a SymPy expr scalar, and
        the axis is supplied as a Vector.

        Parameters
        ==========

        name : string
            The name of the new coordinate system

        angle : Expr
            The angle by which the new system is to be rotated

        axis : Vector
            The axis around which the rotation has to be performed

        location : Vector(optional)
            The location of the new coordinate system's origin wrt this
            system's origin. If not specified, the origins are taken to
            be coincident.

        vector_names, variable_names : iterable(optional)
            Iterables of 3 strings each, with custom names for base
            vectors and base scalars of the new system respectively.
            Used for simple str printing.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import symbols
        >>> q1 = symbols('q1')
        >>> N = CoordSys3D('N')
        >>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j)

        """
        if variable_names is None:
            variable_names = self._variable_names
        if vector_names is None:
            vector_names = self._vector_names

        orienter = AxisOrienter(angle, axis)
        return self.orient_new(name, orienter,
                               location=location,
                               vector_names=vector_names,
                               variable_names=variable_names)

    def orient_new_body(self, name, angle1, angle2, angle3,
                        rotation_order, location=None,
                        vector_names=None, variable_names=None):
        """
        Body orientation takes this coordinate system through three
        successive simple rotations.

        Body fixed rotations include both Euler Angles and
        Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.

        Parameters
        ==========

        name : string
            The name of the new coordinate system

        angle1, angle2, angle3 : Expr
            Three successive angles to rotate the coordinate system by

        rotation_order : string
            String defining the order of axes for rotation

        location : Vector(optional)
            The location of the new coordinate system's origin wrt this
            system's origin. If not specified, the origins are taken to
            be coincident.

        vector_names, variable_names : iterable(optional)
            Iterables of 3 strings each, with custom names for base
            vectors and base scalars of the new system respectively.
            Used for simple str printing.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import symbols
        >>> q1, q2, q3 = symbols('q1 q2 q3')
        >>> N = CoordSys3D('N')

        A 'Body' fixed rotation is described by three angles and
        three body-fixed rotation axes. To orient a coordinate system D
        with respect to N, each sequential rotation is always about
        the orthogonal unit vectors fixed to D. For example, a '123'
        rotation will specify rotations about N.i, then D.j, then
        D.k. (Initially, D.i is same as N.i)
        Therefore,

        >>> D = N.orient_new_body('D', q1, q2, q3, '123')

        is same as

        >>> D = N.orient_new_axis('D', q1, N.i)
        >>> D = D.orient_new_axis('D', q2, D.j)
        >>> D = D.orient_new_axis('D', q3, D.k)

        Acceptable rotation orders are of length 3, expressed in XYZ or
        123, and cannot have a rotation about about an axis twice in a row.

        >>> B = N.orient_new_body('B', q1, q2, q3, '123')
        >>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ')
        >>> B = N.orient_new_body('B', 0, 0, 0, 'XYX')

        """

        orienter = BodyOrienter(angle1, angle2, angle3, rotation_order)
        return self.orient_new(name, orienter,
                               location=location,
                               vector_names=vector_names,
                               variable_names=variable_names)

    def orient_new_space(self, name, angle1, angle2, angle3,
                         rotation_order, location=None,
                         vector_names=None, variable_names=None):
        """
        Space rotation is similar to Body rotation, but the rotations
        are applied in the opposite order.

        Parameters
        ==========

        name : string
            The name of the new coordinate system

        angle1, angle2, angle3 : Expr
            Three successive angles to rotate the coordinate system by

        rotation_order : string
            String defining the order of axes for rotation

        location : Vector(optional)
            The location of the new coordinate system's origin wrt this
            system's origin. If not specified, the origins are taken to
            be coincident.

        vector_names, variable_names : iterable(optional)
            Iterables of 3 strings each, with custom names for base
            vectors and base scalars of the new system respectively.
            Used for simple str printing.

        See Also
        ========

        CoordSys3D.orient_new_body : method to orient via Euler
            angles

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import symbols
        >>> q1, q2, q3 = symbols('q1 q2 q3')
        >>> N = CoordSys3D('N')

        To orient a coordinate system D with respect to N, each
        sequential rotation is always about N's orthogonal unit vectors.
        For example, a '123' rotation will specify rotations about
        N.i, then N.j, then N.k.
        Therefore,

        >>> D = N.orient_new_space('D', q1, q2, q3, '312')

        is same as

        >>> B = N.orient_new_axis('B', q1, N.i)
        >>> C = B.orient_new_axis('C', q2, N.j)
        >>> D = C.orient_new_axis('D', q3, N.k)

        """

        orienter = SpaceOrienter(angle1, angle2, angle3, rotation_order)
        return self.orient_new(name, orienter,
                               location=location,
                               vector_names=vector_names,
                               variable_names=variable_names)

    def orient_new_quaternion(self, name, q0, q1, q2, q3, location=None,
                              vector_names=None, variable_names=None):
        """
        Quaternion orientation orients the new CoordSys3D with
        Quaternions, defined as a finite rotation about lambda, a unit
        vector, by some amount theta.

        This orientation is described by four parameters:

        q0 = cos(theta/2)

        q1 = lambda_x sin(theta/2)

        q2 = lambda_y sin(theta/2)

        q3 = lambda_z sin(theta/2)

        Quaternion does not take in a rotation order.

        Parameters
        ==========

        name : string
            The name of the new coordinate system

        q0, q1, q2, q3 : Expr
            The quaternions to rotate the coordinate system by

        location : Vector(optional)
            The location of the new coordinate system's origin wrt this
            system's origin. If not specified, the origins are taken to
            be coincident.

        vector_names, variable_names : iterable(optional)
            Iterables of 3 strings each, with custom names for base
            vectors and base scalars of the new system respectively.
            Used for simple str printing.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> from sympy import symbols
        >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
        >>> N = CoordSys3D('N')
        >>> B = N.orient_new_quaternion('B', q0, q1, q2, q3)

        """

        orienter = QuaternionOrienter(q0, q1, q2, q3)
        return self.orient_new(name, orienter,
                               location=location,
                               vector_names=vector_names,
                               variable_names=variable_names)

    def create_new(self, name, transformation, variable_names=None, vector_names=None):
        """
        Returns a CoordSys3D which is connected to self by transformation.

        Parameters
        ==========

        name : str
            The name of the new CoordSys3D instance.

        transformation : Lambda, Tuple, str
            Transformation defined by transformation equations or chosen
            from predefined ones.

        vector_names, variable_names : iterable(optional)
            Iterables of 3 strings each, with custom names for base
            vectors and base scalars of the new system respectively.
            Used for simple str printing.

        Examples
        ========

        >>> from sympy.vector import CoordSys3D
        >>> a = CoordSys3D('a')
        >>> b = a.create_new('b', transformation='spherical')
        >>> b.transformation_to_parent()
        (b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta))
        >>> b.transformation_from_parent()
        (sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))

        """
        return CoordSys3D(name, parent=self, transformation=transformation,
                          variable_names=variable_names, vector_names=vector_names)

    def __init__(self, name, location=None, rotation_matrix=None,
                 parent=None, vector_names=None, variable_names=None,
                 latex_vects=None, pretty_vects=None, latex_scalars=None,
                 pretty_scalars=None, transformation=None):
        # Dummy initializer for setting docstring
        pass

    __init__.__doc__ = __new__.__doc__

    @staticmethod
    def _compose_rotation_and_translation(rot, translation, parent):
        r = lambda x, y, z: CoordSys3D._rotation_trans_equations(rot, (x, y, z))
        if parent is None:
            return r

        dx, dy, dz = [translation.dot(i) for i in parent.base_vectors()]
        t = lambda x, y, z: (
            x + dx,
            y + dy,
            z + dz,
        )
        return lambda x, y, z: t(*r(x, y, z))


def _check_strings(arg_name, arg):
    errorstr = arg_name + " must be an iterable of 3 string-types"
    if len(arg) != 3:
        raise ValueError(errorstr)
    for s in arg:
        if not isinstance(s, str):
            raise TypeError(errorstr)


# Delayed import to avoid cyclic import problems:
from sympy.vector.vector import BaseVector