File size: 91,103 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
from collections import Counter, defaultdict, OrderedDict
from itertools import (
    chain, combinations, combinations_with_replacement, cycle, islice,
    permutations, product, groupby
)
# For backwards compatibility
from itertools import product as cartes # noqa: F401
from operator import gt



# this is the logical location of these functions
from sympy.utilities.enumerative import (
    multiset_partitions_taocp, list_visitor, MultisetPartitionTraverser)

from sympy.utilities.misc import as_int
from sympy.utilities.decorator import deprecated


def is_palindromic(s, i=0, j=None):
    """
    Return True if the sequence is the same from left to right as it
    is from right to left in the whole sequence (default) or in the
    Python slice ``s[i: j]``; else False.

    Examples
    ========

    >>> from sympy.utilities.iterables import is_palindromic
    >>> is_palindromic([1, 0, 1])
    True
    >>> is_palindromic('abcbb')
    False
    >>> is_palindromic('abcbb', 1)
    False

    Normal Python slicing is performed in place so there is no need to
    create a slice of the sequence for testing:

    >>> is_palindromic('abcbb', 1, -1)
    True
    >>> is_palindromic('abcbb', -4, -1)
    True

    See Also
    ========

    sympy.ntheory.digits.is_palindromic: tests integers

    """
    i, j, _ = slice(i, j).indices(len(s))
    m = (j - i)//2
    # if length is odd, middle element will be ignored
    return all(s[i + k] == s[j - 1 - k] for k in range(m))


def flatten(iterable, levels=None, cls=None):  # noqa: F811
    """
    Recursively denest iterable containers.

    >>> from sympy import flatten

    >>> flatten([1, 2, 3])
    [1, 2, 3]
    >>> flatten([1, 2, [3]])
    [1, 2, 3]
    >>> flatten([1, [2, 3], [4, 5]])
    [1, 2, 3, 4, 5]
    >>> flatten([1.0, 2, (1, None)])
    [1.0, 2, 1, None]

    If you want to denest only a specified number of levels of
    nested containers, then set ``levels`` flag to the desired
    number of levels::

    >>> ls = [[(-2, -1), (1, 2)], [(0, 0)]]

    >>> flatten(ls, levels=1)
    [(-2, -1), (1, 2), (0, 0)]

    If cls argument is specified, it will only flatten instances of that
    class, for example:

    >>> from sympy import Basic, S
    >>> class MyOp(Basic):
    ...     pass
    ...
    >>> flatten([MyOp(S(1), MyOp(S(2), S(3)))], cls=MyOp)
    [1, 2, 3]

    adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks
    """
    from sympy.tensor.array import NDimArray
    if levels is not None:
        if not levels:
            return iterable
        elif levels > 0:
            levels -= 1
        else:
            raise ValueError(
                "expected non-negative number of levels, got %s" % levels)

    if cls is None:
        def reducible(x):
            return is_sequence(x, set)
    else:
        def reducible(x):
            return isinstance(x, cls)

    result = []

    for el in iterable:
        if reducible(el):
            if hasattr(el, 'args') and not isinstance(el, NDimArray):
                el = el.args
            result.extend(flatten(el, levels=levels, cls=cls))
        else:
            result.append(el)

    return result


def unflatten(iter, n=2):
    """Group ``iter`` into tuples of length ``n``. Raise an error if
    the length of ``iter`` is not a multiple of ``n``.
    """
    if n < 1 or len(iter) % n:
        raise ValueError('iter length is not a multiple of %i' % n)
    return list(zip(*(iter[i::n] for i in range(n))))


def reshape(seq, how):
    """Reshape the sequence according to the template in ``how``.

    Examples
    ========

    >>> from sympy.utilities import reshape
    >>> seq = list(range(1, 9))

    >>> reshape(seq, [4]) # lists of 4
    [[1, 2, 3, 4], [5, 6, 7, 8]]

    >>> reshape(seq, (4,)) # tuples of 4
    [(1, 2, 3, 4), (5, 6, 7, 8)]

    >>> reshape(seq, (2, 2)) # tuples of 4
    [(1, 2, 3, 4), (5, 6, 7, 8)]

    >>> reshape(seq, (2, [2])) # (i, i, [i, i])
    [(1, 2, [3, 4]), (5, 6, [7, 8])]

    >>> reshape(seq, ((2,), [2])) # etc....
    [((1, 2), [3, 4]), ((5, 6), [7, 8])]

    >>> reshape(seq, (1, [2], 1))
    [(1, [2, 3], 4), (5, [6, 7], 8)]

    >>> reshape(tuple(seq), ([[1], 1, (2,)],))
    (([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))

    >>> reshape(tuple(seq), ([1], 1, (2,)))
    (([1], 2, (3, 4)), ([5], 6, (7, 8)))

    >>> reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)])
    [[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]

    """
    m = sum(flatten(how))
    n, rem = divmod(len(seq), m)
    if m < 0 or rem:
        raise ValueError('template must sum to positive number '
        'that divides the length of the sequence')
    i = 0
    container = type(how)
    rv = [None]*n
    for k in range(len(rv)):
        _rv = []
        for hi in how:
            if isinstance(hi, int):
                _rv.extend(seq[i: i + hi])
                i += hi
            else:
                n = sum(flatten(hi))
                hi_type = type(hi)
                _rv.append(hi_type(reshape(seq[i: i + n], hi)[0]))
                i += n
        rv[k] = container(_rv)
    return type(seq)(rv)


def group(seq, multiple=True):
    """
    Splits a sequence into a list of lists of equal, adjacent elements.

    Examples
    ========

    >>> from sympy import group

    >>> group([1, 1, 1, 2, 2, 3])
    [[1, 1, 1], [2, 2], [3]]
    >>> group([1, 1, 1, 2, 2, 3], multiple=False)
    [(1, 3), (2, 2), (3, 1)]
    >>> group([1, 1, 3, 2, 2, 1], multiple=False)
    [(1, 2), (3, 1), (2, 2), (1, 1)]

    See Also
    ========

    multiset

    """
    if multiple:
        return [(list(g)) for _, g in groupby(seq)]
    return [(k, len(list(g))) for k, g in groupby(seq)]


def _iproduct2(iterable1, iterable2):
    '''Cartesian product of two possibly infinite iterables'''

    it1 = iter(iterable1)
    it2 = iter(iterable2)

    elems1 = []
    elems2 = []

    sentinel = object()
    def append(it, elems):
        e = next(it, sentinel)
        if e is not sentinel:
            elems.append(e)

    n = 0
    append(it1, elems1)
    append(it2, elems2)

    while n <= len(elems1) + len(elems2):
        for m in range(n-len(elems1)+1, len(elems2)):
            yield (elems1[n-m], elems2[m])
        n += 1
        append(it1, elems1)
        append(it2, elems2)


def iproduct(*iterables):
    '''
    Cartesian product of iterables.

    Generator of the Cartesian product of iterables. This is analogous to
    itertools.product except that it works with infinite iterables and will
    yield any item from the infinite product eventually.

    Examples
    ========

    >>> from sympy.utilities.iterables import iproduct
    >>> sorted(iproduct([1,2], [3,4]))
    [(1, 3), (1, 4), (2, 3), (2, 4)]

    With an infinite iterator:

    >>> from sympy import S
    >>> (3,) in iproduct(S.Integers)
    True
    >>> (3, 4) in iproduct(S.Integers, S.Integers)
    True

    .. seealso::

       `itertools.product
       <https://docs.python.org/3/library/itertools.html#itertools.product>`_
    '''
    if len(iterables) == 0:
        yield ()
        return
    elif len(iterables) == 1:
        for e in iterables[0]:
            yield (e,)
    elif len(iterables) == 2:
        yield from _iproduct2(*iterables)
    else:
        first, others = iterables[0], iterables[1:]
        for ef, eo in _iproduct2(first, iproduct(*others)):
            yield (ef,) + eo


def multiset(seq):
    """Return the hashable sequence in multiset form with values being the
    multiplicity of the item in the sequence.

    Examples
    ========

    >>> from sympy.utilities.iterables import multiset
    >>> multiset('mississippi')
    {'i': 4, 'm': 1, 'p': 2, 's': 4}

    See Also
    ========

    group

    """
    return dict(Counter(seq).items())




def ibin(n, bits=None, str=False):
    """Return a list of length ``bits`` corresponding to the binary value
    of ``n`` with small bits to the right (last). If bits is omitted, the
    length will be the number required to represent ``n``. If the bits are
    desired in reversed order, use the ``[::-1]`` slice of the returned list.

    If a sequence of all bits-length lists starting from ``[0, 0,..., 0]``
    through ``[1, 1, ..., 1]`` are desired, pass a non-integer for bits, e.g.
    ``'all'``.

    If the bit *string* is desired pass ``str=True``.

    Examples
    ========

    >>> from sympy.utilities.iterables import ibin
    >>> ibin(2)
    [1, 0]
    >>> ibin(2, 4)
    [0, 0, 1, 0]

    If all lists corresponding to 0 to 2**n - 1, pass a non-integer
    for bits:

    >>> bits = 2
    >>> for i in ibin(2, 'all'):
    ...     print(i)
    (0, 0)
    (0, 1)
    (1, 0)
    (1, 1)

    If a bit string is desired of a given length, use str=True:

    >>> n = 123
    >>> bits = 10
    >>> ibin(n, bits, str=True)
    '0001111011'
    >>> ibin(n, bits, str=True)[::-1]  # small bits left
    '1101111000'
    >>> list(ibin(3, 'all', str=True))
    ['000', '001', '010', '011', '100', '101', '110', '111']

    """
    if n < 0:
        raise ValueError("negative numbers are not allowed")
    n = as_int(n)

    if bits is None:
        bits = 0
    else:
        try:
            bits = as_int(bits)
        except ValueError:
            bits = -1
        else:
            if n.bit_length() > bits:
                raise ValueError(
                    "`bits` must be >= {}".format(n.bit_length()))

    if not str:
        if bits >= 0:
            return [1 if i == "1" else 0 for i in bin(n)[2:].rjust(bits, "0")]
        else:
            return variations(range(2), n, repetition=True)
    else:
        if bits >= 0:
            return bin(n)[2:].rjust(bits, "0")
        else:
            return (bin(i)[2:].rjust(n, "0") for i in range(2**n))


def variations(seq, n, repetition=False):
    r"""Returns an iterator over the n-sized variations of ``seq`` (size N).
    ``repetition`` controls whether items in ``seq`` can appear more than once;

    Examples
    ========

    ``variations(seq, n)`` will return `\frac{N!}{(N - n)!}` permutations without
    repetition of ``seq``'s elements:

        >>> from sympy import variations
        >>> list(variations([1, 2], 2))
        [(1, 2), (2, 1)]

    ``variations(seq, n, True)`` will return the `N^n` permutations obtained
    by allowing repetition of elements:

        >>> list(variations([1, 2], 2, repetition=True))
        [(1, 1), (1, 2), (2, 1), (2, 2)]

    If you ask for more items than are in the set you get the empty set unless
    you allow repetitions:

        >>> list(variations([0, 1], 3, repetition=False))
        []
        >>> list(variations([0, 1], 3, repetition=True))[:4]
        [(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)]

    .. seealso::

       `itertools.permutations
       <https://docs.python.org/3/library/itertools.html#itertools.permutations>`_,
       `itertools.product
       <https://docs.python.org/3/library/itertools.html#itertools.product>`_
    """
    if not repetition:
        seq = tuple(seq)
        if len(seq) < n:
            return iter(())  # 0 length iterator
        return permutations(seq, n)
    else:
        if n == 0:
            return iter(((),))  # yields 1 empty tuple
        else:
            return product(seq, repeat=n)


def subsets(seq, k=None, repetition=False):
    r"""Generates all `k`-subsets (combinations) from an `n`-element set, ``seq``.

    A `k`-subset of an `n`-element set is any subset of length exactly `k`. The
    number of `k`-subsets of an `n`-element set is given by ``binomial(n, k)``,
    whereas there are `2^n` subsets all together. If `k` is ``None`` then all
    `2^n` subsets will be returned from shortest to longest.

    Examples
    ========

    >>> from sympy import subsets

    ``subsets(seq, k)`` will return the
    `\frac{n!}{k!(n - k)!}` `k`-subsets (combinations)
    without repetition, i.e. once an item has been removed, it can no
    longer be "taken":

        >>> list(subsets([1, 2], 2))
        [(1, 2)]
        >>> list(subsets([1, 2]))
        [(), (1,), (2,), (1, 2)]
        >>> list(subsets([1, 2, 3], 2))
        [(1, 2), (1, 3), (2, 3)]


    ``subsets(seq, k, repetition=True)`` will return the
    `\frac{(n - 1 + k)!}{k!(n - 1)!}`
    combinations *with* repetition:

        >>> list(subsets([1, 2], 2, repetition=True))
        [(1, 1), (1, 2), (2, 2)]

    If you ask for more items than are in the set you get the empty set unless
    you allow repetitions:

        >>> list(subsets([0, 1], 3, repetition=False))
        []
        >>> list(subsets([0, 1], 3, repetition=True))
        [(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]

    """
    if k is None:
        if not repetition:
            return chain.from_iterable((combinations(seq, k)
                                        for k in range(len(seq) + 1)))
        else:
            return chain.from_iterable((combinations_with_replacement(seq, k)
                                        for k in range(len(seq) + 1)))
    else:
        if not repetition:
            return combinations(seq, k)
        else:
            return combinations_with_replacement(seq, k)


def filter_symbols(iterator, exclude):
    """
    Only yield elements from `iterator` that do not occur in `exclude`.

    Parameters
    ==========

    iterator : iterable
        iterator to take elements from

    exclude : iterable
        elements to exclude

    Returns
    =======

    iterator : iterator
        filtered iterator
    """
    exclude = set(exclude)
    for s in iterator:
        if s not in exclude:
            yield s

def numbered_symbols(prefix='x', cls=None, start=0, exclude=(), *args, **assumptions):
    """
    Generate an infinite stream of Symbols consisting of a prefix and
    increasing subscripts provided that they do not occur in ``exclude``.

    Parameters
    ==========

    prefix : str, optional
        The prefix to use. By default, this function will generate symbols of
        the form "x0", "x1", etc.

    cls : class, optional
        The class to use. By default, it uses ``Symbol``, but you can also use ``Wild``
        or ``Dummy``.

    start : int, optional
        The start number.  By default, it is 0.

    exclude : list, tuple, set of cls, optional
        Symbols to be excluded.

    *args, **kwargs
        Additional positional and keyword arguments are passed to the *cls* class.

    Returns
    =======

    sym : Symbol
        The subscripted symbols.
    """
    exclude = set(exclude or [])
    if cls is None:
        # We can't just make the default cls=Symbol because it isn't
        # imported yet.
        from sympy.core import Symbol
        cls = Symbol

    while True:
        name = '%s%s' % (prefix, start)
        s = cls(name, *args, **assumptions)
        if s not in exclude:
            yield s
        start += 1


def capture(func):
    """Return the printed output of func().

    ``func`` should be a function without arguments that produces output with
    print statements.

    >>> from sympy.utilities.iterables import capture
    >>> from sympy import pprint
    >>> from sympy.abc import x
    >>> def foo():
    ...     print('hello world!')
    ...
    >>> 'hello' in capture(foo) # foo, not foo()
    True
    >>> capture(lambda: pprint(2/x))
    '2\\n-\\nx\\n'

    """
    from io import StringIO
    import sys

    stdout = sys.stdout
    sys.stdout = file = StringIO()
    try:
        func()
    finally:
        sys.stdout = stdout
    return file.getvalue()


def sift(seq, keyfunc, binary=False):
    """
    Sift the sequence, ``seq`` according to ``keyfunc``.

    Returns
    =======

    When ``binary`` is ``False`` (default), the output is a dictionary
    where elements of ``seq`` are stored in a list keyed to the value
    of keyfunc for that element. If ``binary`` is True then a tuple
    with lists ``T`` and ``F`` are returned where ``T`` is a list
    containing elements of seq for which ``keyfunc`` was ``True`` and
    ``F`` containing those elements for which ``keyfunc`` was ``False``;
    a ValueError is raised if the ``keyfunc`` is not binary.

    Examples
    ========

    >>> from sympy.utilities import sift
    >>> from sympy.abc import x, y
    >>> from sympy import sqrt, exp, pi, Tuple

    >>> sift(range(5), lambda x: x % 2)
    {0: [0, 2, 4], 1: [1, 3]}

    sift() returns a defaultdict() object, so any key that has no matches will
    give [].

    >>> sift([x], lambda x: x.is_commutative)
    {True: [x]}
    >>> _[False]
    []

    Sometimes you will not know how many keys you will get:

    >>> sift([sqrt(x), exp(x), (y**x)**2],
    ...      lambda x: x.as_base_exp()[0])
    {E: [exp(x)], x: [sqrt(x)], y: [y**(2*x)]}

    Sometimes you expect the results to be binary; the
    results can be unpacked by setting ``binary`` to True:

    >>> sift(range(4), lambda x: x % 2, binary=True)
    ([1, 3], [0, 2])
    >>> sift(Tuple(1, pi), lambda x: x.is_rational, binary=True)
    ([1], [pi])

    A ValueError is raised if the predicate was not actually binary
    (which is a good test for the logic where sifting is used and
    binary results were expected):

    >>> unknown = exp(1) - pi  # the rationality of this is unknown
    >>> args = Tuple(1, pi, unknown)
    >>> sift(args, lambda x: x.is_rational, binary=True)
    Traceback (most recent call last):
    ...
    ValueError: keyfunc gave non-binary output

    The non-binary sifting shows that there were 3 keys generated:

    >>> set(sift(args, lambda x: x.is_rational).keys())
    {None, False, True}

    If you need to sort the sifted items it might be better to use
    ``ordered`` which can economically apply multiple sort keys
    to a sequence while sorting.

    See Also
    ========

    ordered

    """
    if not binary:
        m = defaultdict(list)
        for i in seq:
            m[keyfunc(i)].append(i)
        return m
    sift = F, T = [], []
    for i in seq:
        try:
            sift[keyfunc(i)].append(i)
        except (IndexError, TypeError):
            raise ValueError('keyfunc gave non-binary output')
    return T, F


def take(iter, n):
    """Return ``n`` items from ``iter`` iterator. """
    return [ value for _, value in zip(range(n), iter) ]


def dict_merge(*dicts):
    """Merge dictionaries into a single dictionary. """
    merged = {}

    for dict in dicts:
        merged.update(dict)

    return merged


def common_prefix(*seqs):
    """Return the subsequence that is a common start of sequences in ``seqs``.

    >>> from sympy.utilities.iterables import common_prefix
    >>> common_prefix(list(range(3)))
    [0, 1, 2]
    >>> common_prefix(list(range(3)), list(range(4)))
    [0, 1, 2]
    >>> common_prefix([1, 2, 3], [1, 2, 5])
    [1, 2]
    >>> common_prefix([1, 2, 3], [1, 3, 5])
    [1]
    """
    if not all(seqs):
        return []
    elif len(seqs) == 1:
        return seqs[0]
    i = 0
    for i in range(min(len(s) for s in seqs)):
        if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
            break
    else:
        i += 1
    return seqs[0][:i]


def common_suffix(*seqs):
    """Return the subsequence that is a common ending of sequences in ``seqs``.

    >>> from sympy.utilities.iterables import common_suffix
    >>> common_suffix(list(range(3)))
    [0, 1, 2]
    >>> common_suffix(list(range(3)), list(range(4)))
    []
    >>> common_suffix([1, 2, 3], [9, 2, 3])
    [2, 3]
    >>> common_suffix([1, 2, 3], [9, 7, 3])
    [3]
    """

    if not all(seqs):
        return []
    elif len(seqs) == 1:
        return seqs[0]
    i = 0
    for i in range(-1, -min(len(s) for s in seqs) - 1, -1):
        if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
            break
    else:
        i -= 1
    if i == -1:
        return []
    else:
        return seqs[0][i + 1:]


def prefixes(seq):
    """
    Generate all prefixes of a sequence.

    Examples
    ========

    >>> from sympy.utilities.iterables import prefixes

    >>> list(prefixes([1,2,3,4]))
    [[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]

    """
    n = len(seq)

    for i in range(n):
        yield seq[:i + 1]


def postfixes(seq):
    """
    Generate all postfixes of a sequence.

    Examples
    ========

    >>> from sympy.utilities.iterables import postfixes

    >>> list(postfixes([1,2,3,4]))
    [[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]]

    """
    n = len(seq)

    for i in range(n):
        yield seq[n - i - 1:]


def topological_sort(graph, key=None):
    r"""
    Topological sort of graph's vertices.

    Parameters
    ==========

    graph : tuple[list, list[tuple[T, T]]
        A tuple consisting of a list of vertices and a list of edges of
        a graph to be sorted topologically.

    key : callable[T] (optional)
        Ordering key for vertices on the same level. By default the natural
        (e.g. lexicographic) ordering is used (in this case the base type
        must implement ordering relations).

    Examples
    ========

    Consider a graph::

        +---+     +---+     +---+
        | 7 |\    | 5 |     | 3 |
        +---+ \   +---+     +---+
          |   _\___/ ____   _/ |
          |  /  \___/    \ /   |
          V  V           V V   |
         +----+         +---+  |
         | 11 |         | 8 |  |
         +----+         +---+  |
          | | \____   ___/ _   |
          | \      \ /    / \  |
          V  \     V V   /  V  V
        +---+ \   +---+ |  +----+
        | 2 |  |  | 9 | |  | 10 |
        +---+  |  +---+ |  +----+
               \________/

    where vertices are integers. This graph can be encoded using
    elementary Python's data structures as follows::

        >>> V = [2, 3, 5, 7, 8, 9, 10, 11]
        >>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10),
        ...      (11, 2), (11, 9), (11, 10), (8, 9)]

    To compute a topological sort for graph ``(V, E)`` issue::

        >>> from sympy.utilities.iterables import topological_sort

        >>> topological_sort((V, E))
        [3, 5, 7, 8, 11, 2, 9, 10]

    If specific tie breaking approach is needed, use ``key`` parameter::

        >>> topological_sort((V, E), key=lambda v: -v)
        [7, 5, 11, 3, 10, 8, 9, 2]

    Only acyclic graphs can be sorted. If the input graph has a cycle,
    then ``ValueError`` will be raised::

        >>> topological_sort((V, E + [(10, 7)]))
        Traceback (most recent call last):
        ...
        ValueError: cycle detected

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Topological_sorting

    """
    V, E = graph

    L = []
    S = set(V)
    E = list(E)

    S.difference_update(u for v, u in E)

    if key is None:
        def key(value):
            return value

    S = sorted(S, key=key, reverse=True)

    while S:
        node = S.pop()
        L.append(node)

        for u, v in list(E):
            if u == node:
                E.remove((u, v))

                for _u, _v in E:
                    if v == _v:
                        break
                else:
                    kv = key(v)

                    for i, s in enumerate(S):
                        ks = key(s)

                        if kv > ks:
                            S.insert(i, v)
                            break
                    else:
                        S.append(v)

    if E:
        raise ValueError("cycle detected")
    else:
        return L


def strongly_connected_components(G):
    r"""
    Strongly connected components of a directed graph in reverse topological
    order.


    Parameters
    ==========

    G : tuple[list, list[tuple[T, T]]
        A tuple consisting of a list of vertices and a list of edges of
        a graph whose strongly connected components are to be found.


    Examples
    ========

    Consider a directed graph (in dot notation)::

        digraph {
            A -> B
            A -> C
            B -> C
            C -> B
            B -> D
        }

    .. graphviz::

        digraph {
            A -> B
            A -> C
            B -> C
            C -> B
            B -> D
        }

    where vertices are the letters A, B, C and D. This graph can be encoded
    using Python's elementary data structures as follows::

        >>> V = ['A', 'B', 'C', 'D']
        >>> E = [('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B'), ('B', 'D')]

    The strongly connected components of this graph can be computed as

        >>> from sympy.utilities.iterables import strongly_connected_components

        >>> strongly_connected_components((V, E))
        [['D'], ['B', 'C'], ['A']]

    This also gives the components in reverse topological order.

    Since the subgraph containing B and C has a cycle they must be together in
    a strongly connected component. A and D are connected to the rest of the
    graph but not in a cyclic manner so they appear as their own strongly
    connected components.


    Notes
    =====

    The vertices of the graph must be hashable for the data structures used.
    If the vertices are unhashable replace them with integer indices.

    This function uses Tarjan's algorithm to compute the strongly connected
    components in `O(|V|+|E|)` (linear) time.


    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Strongly_connected_component
    .. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm


    See Also
    ========

    sympy.utilities.iterables.connected_components

    """
    # Map from a vertex to its neighbours
    V, E = G
    Gmap = {vi: [] for vi in V}
    for v1, v2 in E:
        Gmap[v1].append(v2)
    return _strongly_connected_components(V, Gmap)


def _strongly_connected_components(V, Gmap):
    """More efficient internal routine for strongly_connected_components"""
    #
    # Here V is an iterable of vertices and Gmap is a dict mapping each vertex
    # to a list of neighbours e.g.:
    #
    #   V = [0, 1, 2, 3]
    #   Gmap = {0: [2, 3], 1: [0]}
    #
    # For a large graph these data structures can often be created more
    # efficiently then those expected by strongly_connected_components() which
    # in this case would be
    #
    #   V = [0, 1, 2, 3]
    #   Gmap = [(0, 2), (0, 3), (1, 0)]
    #
    # XXX: Maybe this should be the recommended function to use instead...
    #

    # Non-recursive Tarjan's algorithm:
    lowlink = {}
    indices = {}
    stack = OrderedDict()
    callstack = []
    components = []
    nomore = object()

    def start(v):
        index = len(stack)
        indices[v] = lowlink[v] = index
        stack[v] = None
        callstack.append((v, iter(Gmap[v])))

    def finish(v1):
        # Finished a component?
        if lowlink[v1] == indices[v1]:
            component = [stack.popitem()[0]]
            while component[-1] is not v1:
                component.append(stack.popitem()[0])
            components.append(component[::-1])
        v2, _ = callstack.pop()
        if callstack:
            v1, _ = callstack[-1]
            lowlink[v1] = min(lowlink[v1], lowlink[v2])

    for v in V:
        if v in indices:
            continue
        start(v)
        while callstack:
            v1, it1 = callstack[-1]
            v2 = next(it1, nomore)
            # Finished children of v1?
            if v2 is nomore:
                finish(v1)
            # Recurse on v2
            elif v2 not in indices:
                start(v2)
            elif v2 in stack:
                lowlink[v1] = min(lowlink[v1], indices[v2])

    # Reverse topological sort order:
    return components


def connected_components(G):
    r"""
    Connected components of an undirected graph or weakly connected components
    of a directed graph.


    Parameters
    ==========

    G : tuple[list, list[tuple[T, T]]
        A tuple consisting of a list of vertices and a list of edges of
        a graph whose connected components are to be found.


    Examples
    ========


    Given an undirected graph::

        graph {
            A -- B
            C -- D
        }

    .. graphviz::

        graph {
            A -- B
            C -- D
        }

    We can find the connected components using this function if we include
    each edge in both directions::

        >>> from sympy.utilities.iterables import connected_components

        >>> V = ['A', 'B', 'C', 'D']
        >>> E = [('A', 'B'), ('B', 'A'), ('C', 'D'), ('D', 'C')]
        >>> connected_components((V, E))
        [['A', 'B'], ['C', 'D']]

    The weakly connected components of a directed graph can found the same
    way.


    Notes
    =====

    The vertices of the graph must be hashable for the data structures used.
    If the vertices are unhashable replace them with integer indices.

    This function uses Tarjan's algorithm to compute the connected components
    in `O(|V|+|E|)` (linear) time.


    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Component_%28graph_theory%29
    .. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm


    See Also
    ========

    sympy.utilities.iterables.strongly_connected_components

    """
    # Duplicate edges both ways so that the graph is effectively undirected
    # and return the strongly connected components:
    V, E = G
    E_undirected = []
    for v1, v2 in E:
        E_undirected.extend([(v1, v2), (v2, v1)])
    return strongly_connected_components((V, E_undirected))


def rotate_left(x, y):
    """
    Left rotates a list x by the number of steps specified
    in y.

    Examples
    ========

    >>> from sympy.utilities.iterables import rotate_left
    >>> a = [0, 1, 2]
    >>> rotate_left(a, 1)
    [1, 2, 0]
    """
    if len(x) == 0:
        return []
    y = y % len(x)
    return x[y:] + x[:y]


def rotate_right(x, y):
    """
    Right rotates a list x by the number of steps specified
    in y.

    Examples
    ========

    >>> from sympy.utilities.iterables import rotate_right
    >>> a = [0, 1, 2]
    >>> rotate_right(a, 1)
    [2, 0, 1]
    """
    if len(x) == 0:
        return []
    y = len(x) - y % len(x)
    return x[y:] + x[:y]


def least_rotation(x, key=None):
    '''
    Returns the number of steps of left rotation required to
    obtain lexicographically minimal string/list/tuple, etc.

    Examples
    ========

    >>> from sympy.utilities.iterables import least_rotation, rotate_left
    >>> a = [3, 1, 5, 1, 2]
    >>> least_rotation(a)
    3
    >>> rotate_left(a, _)
    [1, 2, 3, 1, 5]

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation

    '''
    from sympy.functions.elementary.miscellaneous import Id
    if key is None: key = Id
    S = x + x      # Concatenate string to it self to avoid modular arithmetic
    f = [-1] * len(S)     # Failure function
    k = 0       # Least rotation of string found so far
    for j in range(1,len(S)):
        sj = S[j]
        i = f[j-k-1]
        while i != -1 and sj != S[k+i+1]:
            if key(sj) < key(S[k+i+1]):
                k = j-i-1
            i = f[i]
        if sj != S[k+i+1]:
            if key(sj) < key(S[k]):
                k = j
            f[j-k] = -1
        else:
            f[j-k] = i+1
    return k


def multiset_combinations(m, n, g=None):
    """
    Return the unique combinations of size ``n`` from multiset ``m``.

    Examples
    ========

    >>> from sympy.utilities.iterables import multiset_combinations
    >>> from itertools import combinations
    >>> [''.join(i) for i in  multiset_combinations('baby', 3)]
    ['abb', 'aby', 'bby']

    >>> def count(f, s): return len(list(f(s, 3)))

    The number of combinations depends on the number of letters; the
    number of unique combinations depends on how the letters are
    repeated.

    >>> s1 = 'abracadabra'
    >>> s2 = 'banana tree'
    >>> count(combinations, s1), count(multiset_combinations, s1)
    (165, 23)
    >>> count(combinations, s2), count(multiset_combinations, s2)
    (165, 54)

    """
    from sympy.core.sorting import ordered
    if g is None:
        if isinstance(m, dict):
            if any(as_int(v) < 0 for v in m.values()):
                raise ValueError('counts cannot be negative')
            N = sum(m.values())
            if n > N:
                return
            g = [[k, m[k]] for k in ordered(m)]
        else:
            m = list(m)
            N = len(m)
            if n > N:
                return
            try:
                m = multiset(m)
                g = [(k, m[k]) for k in ordered(m)]
            except TypeError:
                m = list(ordered(m))
                g = [list(i) for i in group(m, multiple=False)]
        del m
    else:
        # not checking counts since g is intended for internal use
        N = sum(v for k, v in g)
    if n > N or not n:
        yield []
    else:
        for i, (k, v) in enumerate(g):
            if v >= n:
                yield [k]*n
                v = n - 1
            for v in range(min(n, v), 0, -1):
                for j in multiset_combinations(None, n - v, g[i + 1:]):
                    rv = [k]*v + j
                    if len(rv) == n:
                        yield rv

def multiset_permutations(m, size=None, g=None):
    """
    Return the unique permutations of multiset ``m``.

    Examples
    ========

    >>> from sympy.utilities.iterables import multiset_permutations
    >>> from sympy import factorial
    >>> [''.join(i) for i in multiset_permutations('aab')]
    ['aab', 'aba', 'baa']
    >>> factorial(len('banana'))
    720
    >>> len(list(multiset_permutations('banana')))
    60
    """
    from sympy.core.sorting import ordered
    if g is None:
        if isinstance(m, dict):
            if any(as_int(v) < 0 for v in m.values()):
                raise ValueError('counts cannot be negative')
            g = [[k, m[k]] for k in ordered(m)]
        else:
            m = list(ordered(m))
            g = [list(i) for i in group(m, multiple=False)]
        del m
    do = [gi for gi in g if gi[1] > 0]
    SUM = sum(gi[1] for gi in do)
    if not do or size is not None and (size > SUM or size < 1):
        if not do and size is None or size == 0:
            yield []
        return
    elif size == 1:
        for k, v in do:
            yield [k]
    elif len(do) == 1:
        k, v = do[0]
        v = v if size is None else (size if size <= v else 0)
        yield [k for i in range(v)]
    elif all(v == 1 for k, v in do):
        for p in permutations([k for k, v in do], size):
            yield list(p)
    else:
        size = size if size is not None else SUM
        for i, (k, v) in enumerate(do):
            do[i][1] -= 1
            for j in multiset_permutations(None, size - 1, do):
                if j:
                    yield [k] + j
            do[i][1] += 1


def _partition(seq, vector, m=None):
    """
    Return the partition of seq as specified by the partition vector.

    Examples
    ========

    >>> from sympy.utilities.iterables import _partition
    >>> _partition('abcde', [1, 0, 1, 2, 0])
    [['b', 'e'], ['a', 'c'], ['d']]

    Specifying the number of bins in the partition is optional:

    >>> _partition('abcde', [1, 0, 1, 2, 0], 3)
    [['b', 'e'], ['a', 'c'], ['d']]

    The output of _set_partitions can be passed as follows:

    >>> output = (3, [1, 0, 1, 2, 0])
    >>> _partition('abcde', *output)
    [['b', 'e'], ['a', 'c'], ['d']]

    See Also
    ========

    combinatorics.partitions.Partition.from_rgs

    """
    if m is None:
        m = max(vector) + 1
    elif isinstance(vector, int):  # entered as m, vector
        vector, m = m, vector
    p = [[] for i in range(m)]
    for i, v in enumerate(vector):
        p[v].append(seq[i])
    return p


def _set_partitions(n):
    """Cycle through all partitions of n elements, yielding the
    current number of partitions, ``m``, and a mutable list, ``q``
    such that ``element[i]`` is in part ``q[i]`` of the partition.

    NOTE: ``q`` is modified in place and generally should not be changed
    between function calls.

    Examples
    ========

    >>> from sympy.utilities.iterables import _set_partitions, _partition
    >>> for m, q in _set_partitions(3):
    ...     print('%s %s %s' % (m, q, _partition('abc', q, m)))
    1 [0, 0, 0] [['a', 'b', 'c']]
    2 [0, 0, 1] [['a', 'b'], ['c']]
    2 [0, 1, 0] [['a', 'c'], ['b']]
    2 [0, 1, 1] [['a'], ['b', 'c']]
    3 [0, 1, 2] [['a'], ['b'], ['c']]

    Notes
    =====

    This algorithm is similar to, and solves the same problem as,
    Algorithm 7.2.1.5H, from volume 4A of Knuth's The Art of Computer
    Programming.  Knuth uses the term "restricted growth string" where
    this code refers to a "partition vector". In each case, the meaning is
    the same: the value in the ith element of the vector specifies to
    which part the ith set element is to be assigned.

    At the lowest level, this code implements an n-digit big-endian
    counter (stored in the array q) which is incremented (with carries) to
    get the next partition in the sequence.  A special twist is that a
    digit is constrained to be at most one greater than the maximum of all
    the digits to the left of it.  The array p maintains this maximum, so
    that the code can efficiently decide when a digit can be incremented
    in place or whether it needs to be reset to 0 and trigger a carry to
    the next digit.  The enumeration starts with all the digits 0 (which
    corresponds to all the set elements being assigned to the same 0th
    part), and ends with 0123...n, which corresponds to each set element
    being assigned to a different, singleton, part.

    This routine was rewritten to use 0-based lists while trying to
    preserve the beauty and efficiency of the original algorithm.

    References
    ==========

    .. [1] Nijenhuis, Albert and Wilf, Herbert. (1978) Combinatorial Algorithms,
        2nd Ed, p 91, algorithm "nexequ". Available online from
        https://www.math.upenn.edu/~wilf/website/CombAlgDownld.html (viewed
        November 17, 2012).

    """
    p = [0]*n
    q = [0]*n
    nc = 1
    yield nc, q
    while nc != n:
        m = n
        while 1:
            m -= 1
            i = q[m]
            if p[i] != 1:
                break
            q[m] = 0
        i += 1
        q[m] = i
        m += 1
        nc += m - n
        p[0] += n - m
        if i == nc:
            p[nc] = 0
            nc += 1
        p[i - 1] -= 1
        p[i] += 1
        yield nc, q


def multiset_partitions(multiset, m=None):
    """
    Return unique partitions of the given multiset (in list form).
    If ``m`` is None, all multisets will be returned, otherwise only
    partitions with ``m`` parts will be returned.

    If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1]
    will be supplied.

    Examples
    ========

    >>> from sympy.utilities.iterables import multiset_partitions
    >>> list(multiset_partitions([1, 2, 3, 4], 2))
    [[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
    [[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
    [[1], [2, 3, 4]]]
    >>> list(multiset_partitions([1, 2, 3, 4], 1))
    [[[1, 2, 3, 4]]]

    Only unique partitions are returned and these will be returned in a
    canonical order regardless of the order of the input:

    >>> a = [1, 2, 2, 1]
    >>> ans = list(multiset_partitions(a, 2))
    >>> a.sort()
    >>> list(multiset_partitions(a, 2)) == ans
    True
    >>> a = range(3, 1, -1)
    >>> (list(multiset_partitions(a)) ==
    ...  list(multiset_partitions(sorted(a))))
    True

    If m is omitted then all partitions will be returned:

    >>> list(multiset_partitions([1, 1, 2]))
    [[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
    >>> list(multiset_partitions([1]*3))
    [[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]

    Counting
    ========

    The number of partitions of a set is given by the bell number:

    >>> from sympy import bell
    >>> len(list(multiset_partitions(5))) == bell(5) == 52
    True

    The number of partitions of length k from a set of size n is given by the
    Stirling Number of the 2nd kind:

    >>> from sympy.functions.combinatorial.numbers import stirling
    >>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15
    True

    These comments on counting apply to *sets*, not multisets.

    Notes
    =====

    When all the elements are the same in the multiset, the order
    of the returned partitions is determined by the ``partitions``
    routine. If one is counting partitions then it is better to use
    the ``nT`` function.

    See Also
    ========

    partitions
    sympy.combinatorics.partitions.Partition
    sympy.combinatorics.partitions.IntegerPartition
    sympy.functions.combinatorial.numbers.nT

    """
    # This function looks at the supplied input and dispatches to
    # several special-case routines as they apply.
    if isinstance(multiset, int):
        n = multiset
        if m and m > n:
            return
        multiset = list(range(n))
        if m == 1:
            yield [multiset[:]]
            return

        # If m is not None, it can sometimes be faster to use
        # MultisetPartitionTraverser.enum_range() even for inputs
        # which are sets.  Since the _set_partitions code is quite
        # fast, this is only advantageous when the overall set
        # partitions outnumber those with the desired number of parts
        # by a large factor.  (At least 60.)  Such a switch is not
        # currently implemented.
        for nc, q in _set_partitions(n):
            if m is None or nc == m:
                rv = [[] for i in range(nc)]
                for i in range(n):
                    rv[q[i]].append(multiset[i])
                yield rv
        return

    if len(multiset) == 1 and isinstance(multiset, str):
        multiset = [multiset]

    if not has_variety(multiset):
        # Only one component, repeated n times.  The resulting
        # partitions correspond to partitions of integer n.
        n = len(multiset)
        if m and m > n:
            return
        if m == 1:
            yield [multiset[:]]
            return
        x = multiset[:1]
        for size, p in partitions(n, m, size=True):
            if m is None or size == m:
                rv = []
                for k in sorted(p):
                    rv.extend([x*k]*p[k])
                yield rv
    else:
        from sympy.core.sorting import ordered
        multiset = list(ordered(multiset))
        n = len(multiset)
        if m and m > n:
            return
        if m == 1:
            yield [multiset[:]]
            return

        # Split the information of the multiset into two lists -
        # one of the elements themselves, and one (of the same length)
        # giving the number of repeats for the corresponding element.
        elements, multiplicities = zip(*group(multiset, False))

        if len(elements) < len(multiset):
            # General case - multiset with more than one distinct element
            # and at least one element repeated more than once.
            if m:
                mpt = MultisetPartitionTraverser()
                for state in mpt.enum_range(multiplicities, m-1, m):
                    yield list_visitor(state, elements)
            else:
                for state in multiset_partitions_taocp(multiplicities):
                    yield list_visitor(state, elements)
        else:
            # Set partitions case - no repeated elements. Pretty much
            # same as int argument case above, with same possible, but
            # currently unimplemented optimization for some cases when
            # m is not None
            for nc, q in _set_partitions(n):
                if m is None or nc == m:
                    rv = [[] for i in range(nc)]
                    for i in range(n):
                        rv[q[i]].append(i)
                    yield [[multiset[j] for j in i] for i in rv]


def partitions(n, m=None, k=None, size=False):
    """Generate all partitions of positive integer, n.

    Each partition is represented as a dictionary, mapping an integer
    to the number of copies of that integer in the partition.  For example,
    the first partition of 4 returned is {4: 1}, "4: one of them".

    Parameters
    ==========
    n : int
    m : int, optional
        limits number of parts in partition (mnemonic: m, maximum parts)
    k : int, optional
        limits the numbers that are kept in the partition (mnemonic: k, keys)
    size : bool, default: False
        If ``True``, (M, P) is returned where M is the sum of the
        multiplicities and P is the generated partition.
        If ``False``, only the generated partition is returned.

    Examples
    ========

    >>> from sympy.utilities.iterables import partitions

    The numbers appearing in the partition (the key of the returned dict)
    are limited with k:

    >>> for p in partitions(6, k=2):  # doctest: +SKIP
    ...     print(p)
    {2: 3}
    {1: 2, 2: 2}
    {1: 4, 2: 1}
    {1: 6}

    The maximum number of parts in the partition (the sum of the values in
    the returned dict) are limited with m (default value, None, gives
    partitions from 1 through n):

    >>> for p in partitions(6, m=2):  # doctest: +SKIP
    ...     print(p)
    ...
    {6: 1}
    {1: 1, 5: 1}
    {2: 1, 4: 1}
    {3: 2}

    References
    ==========

    .. [1] modified from Tim Peter's version to allow for k and m values:
           https://code.activestate.com/recipes/218332-generator-for-integer-partitions/

    See Also
    ========

    sympy.combinatorics.partitions.Partition
    sympy.combinatorics.partitions.IntegerPartition

    """
    if (n <= 0 or
        m is not None and m < 1 or
        k is not None and k < 1 or
        m and k and m*k < n):
        # the empty set is the only way to handle these inputs
        # and returning {} to represent it is consistent with
        # the counting convention, e.g. nT(0) == 1.
        if size:
            yield 0, {}
        else:
            yield {}
        return

    if m is None:
        m = n
    else:
        m = min(m, n)
    k = min(k or n, n)

    n, m, k = as_int(n), as_int(m), as_int(k)
    q, r = divmod(n, k)
    ms = {k: q}
    keys = [k]  # ms.keys(), from largest to smallest
    if r:
        ms[r] = 1
        keys.append(r)
    room = m - q - bool(r)
    if size:
        yield sum(ms.values()), ms.copy()
    else:
        yield ms.copy()

    while keys != [1]:
        # Reuse any 1's.
        if keys[-1] == 1:
            del keys[-1]
            reuse = ms.pop(1)
            room += reuse
        else:
            reuse = 0

        while 1:
            # Let i be the smallest key larger than 1.  Reuse one
            # instance of i.
            i = keys[-1]
            newcount = ms[i] = ms[i] - 1
            reuse += i
            if newcount == 0:
                del keys[-1], ms[i]
            room += 1

            # Break the remainder into pieces of size i-1.
            i -= 1
            q, r = divmod(reuse, i)
            need = q + bool(r)
            if need > room:
                if not keys:
                    return
                continue

            ms[i] = q
            keys.append(i)
            if r:
                ms[r] = 1
                keys.append(r)
            break
        room -= need
        if size:
            yield sum(ms.values()), ms.copy()
        else:
            yield ms.copy()


def ordered_partitions(n, m=None, sort=True):
    """Generates ordered partitions of integer *n*.

    Parameters
    ==========
    n : int
    m : int, optional
        The default value gives partitions of all sizes else only
        those with size m. In addition, if *m* is not None then
        partitions are generated *in place* (see examples).
    sort : bool, default: True
        Controls whether partitions are
        returned in sorted order when *m* is not None; when False,
        the partitions are returned as fast as possible with elements
        sorted, but when m|n the partitions will not be in
        ascending lexicographical order.

    Examples
    ========

    >>> from sympy.utilities.iterables import ordered_partitions

    All partitions of 5 in ascending lexicographical:

    >>> for p in ordered_partitions(5):
    ...     print(p)
    [1, 1, 1, 1, 1]
    [1, 1, 1, 2]
    [1, 1, 3]
    [1, 2, 2]
    [1, 4]
    [2, 3]
    [5]

    Only partitions of 5 with two parts:

    >>> for p in ordered_partitions(5, 2):
    ...     print(p)
    [1, 4]
    [2, 3]

    When ``m`` is given, a given list objects will be used more than
    once for speed reasons so you will not see the correct partitions
    unless you make a copy of each as it is generated:

    >>> [p for p in ordered_partitions(7, 3)]
    [[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]]
    >>> [list(p) for p in ordered_partitions(7, 3)]
    [[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]]

    When ``n`` is a multiple of ``m``, the elements are still sorted
    but the partitions themselves will be *unordered* if sort is False;
    the default is to return them in ascending lexicographical order.

    >>> for p in ordered_partitions(6, 2):
    ...     print(p)
    [1, 5]
    [2, 4]
    [3, 3]

    But if speed is more important than ordering, sort can be set to
    False:

    >>> for p in ordered_partitions(6, 2, sort=False):
    ...     print(p)
    [1, 5]
    [3, 3]
    [2, 4]

    References
    ==========

    .. [1] Generating Integer Partitions, [online],
        Available: https://jeromekelleher.net/generating-integer-partitions.html
    .. [2] Jerome Kelleher and Barry O'Sullivan, "Generating All
        Partitions: A Comparison Of Two Encodings", [online],
        Available: https://arxiv.org/pdf/0909.2331v2.pdf
    """
    if n < 1 or m is not None and m < 1:
        # the empty set is the only way to handle these inputs
        # and returning {} to represent it is consistent with
        # the counting convention, e.g. nT(0) == 1.
        yield []
        return

    if m is None:
        # The list `a`'s leading elements contain the partition in which
        # y is the biggest element and x is either the same as y or the
        # 2nd largest element; v and w are adjacent element indices
        # to which x and y are being assigned, respectively.
        a = [1]*n
        y = -1
        v = n
        while v > 0:
            v -= 1
            x = a[v] + 1
            while y >= 2 * x:
                a[v] = x
                y -= x
                v += 1
            w = v + 1
            while x <= y:
                a[v] = x
                a[w] = y
                yield a[:w + 1]
                x += 1
                y -= 1
            a[v] = x + y
            y = a[v] - 1
            yield a[:w]
    elif m == 1:
        yield [n]
    elif n == m:
        yield [1]*n
    else:
        # recursively generate partitions of size m
        for b in range(1, n//m + 1):
            a = [b]*m
            x = n - b*m
            if not x:
                if sort:
                    yield a
            elif not sort and x <= m:
                for ax in ordered_partitions(x, sort=False):
                    mi = len(ax)
                    a[-mi:] = [i + b for i in ax]
                    yield a
                    a[-mi:] = [b]*mi
            else:
                for mi in range(1, m):
                    for ax in ordered_partitions(x, mi, sort=True):
                        a[-mi:] = [i + b for i in ax]
                        yield a
                        a[-mi:] = [b]*mi


def binary_partitions(n):
    """
    Generates the binary partition of *n*.

    A binary partition consists only of numbers that are
    powers of two. Each step reduces a `2^{k+1}` to `2^k` and
    `2^k`. Thus 16 is converted to 8 and 8.

    Examples
    ========

    >>> from sympy.utilities.iterables import binary_partitions
    >>> for i in binary_partitions(5):
    ...     print(i)
    ...
    [4, 1]
    [2, 2, 1]
    [2, 1, 1, 1]
    [1, 1, 1, 1, 1]

    References
    ==========

    .. [1] TAOCP 4, section 7.2.1.5, problem 64

    """
    from math import ceil, log2
    power = int(2**(ceil(log2(n))))
    acc = 0
    partition = []
    while power:
        if acc + power <= n:
            partition.append(power)
            acc += power
        power >>= 1

    last_num = len(partition) - 1 - (n & 1)
    while last_num >= 0:
        yield partition
        if partition[last_num] == 2:
            partition[last_num] = 1
            partition.append(1)
            last_num -= 1
            continue
        partition.append(1)
        partition[last_num] >>= 1
        x = partition[last_num + 1] = partition[last_num]
        last_num += 1
        while x > 1:
            if x <= len(partition) - last_num - 1:
                del partition[-x + 1:]
                last_num += 1
                partition[last_num] = x
            else:
                x >>= 1
    yield [1]*n


def has_dups(seq):
    """Return True if there are any duplicate elements in ``seq``.

    Examples
    ========

    >>> from sympy import has_dups, Dict, Set
    >>> has_dups((1, 2, 1))
    True
    >>> has_dups(range(3))
    False
    >>> all(has_dups(c) is False for c in (set(), Set(), dict(), Dict()))
    True
    """
    from sympy.core.containers import Dict
    from sympy.sets.sets import Set
    if isinstance(seq, (dict, set, Dict, Set)):
        return False
    unique = set()
    try:
        return any(True for s in seq if s in unique or unique.add(s))
    except TypeError:
        return len(seq) != len(list(uniq(seq)))


def has_variety(seq):
    """Return True if there are any different elements in ``seq``.

    Examples
    ========

    >>> from sympy import has_variety

    >>> has_variety((1, 2, 1))
    True
    >>> has_variety((1, 1, 1))
    False
    """
    for i, s in enumerate(seq):
        if i == 0:
            sentinel = s
        else:
            if s != sentinel:
                return True
    return False


def uniq(seq, result=None):
    """
    Yield unique elements from ``seq`` as an iterator. The second
    parameter ``result``  is used internally; it is not necessary
    to pass anything for this.

    Note: changing the sequence during iteration will raise a
    RuntimeError if the size of the sequence is known; if you pass
    an iterator and advance the iterator you will change the
    output of this routine but there will be no warning.

    Examples
    ========

    >>> from sympy.utilities.iterables import uniq
    >>> dat = [1, 4, 1, 5, 4, 2, 1, 2]
    >>> type(uniq(dat)) in (list, tuple)
    False

    >>> list(uniq(dat))
    [1, 4, 5, 2]
    >>> list(uniq(x for x in dat))
    [1, 4, 5, 2]
    >>> list(uniq([[1], [2, 1], [1]]))
    [[1], [2, 1]]
    """
    try:
        n = len(seq)
    except TypeError:
        n = None
    def check():
        # check that size of seq did not change during iteration;
        # if n == None the object won't support size changing, e.g.
        # an iterator can't be changed
        if n is not None and len(seq) != n:
            raise RuntimeError('sequence changed size during iteration')
    try:
        seen = set()
        result = result or []
        for i, s in enumerate(seq):
            if not (s in seen or seen.add(s)):
                yield s
                check()
    except TypeError:
        if s not in result:
            yield s
            check()
            result.append(s)
        if hasattr(seq, '__getitem__'):
            yield from uniq(seq[i + 1:], result)
        else:
            yield from uniq(seq, result)


def generate_bell(n):
    """Return permutations of [0, 1, ..., n - 1] such that each permutation
    differs from the last by the exchange of a single pair of neighbors.
    The ``n!`` permutations are returned as an iterator. In order to obtain
    the next permutation from a random starting permutation, use the
    ``next_trotterjohnson`` method of the Permutation class (which generates
    the same sequence in a different manner).

    Examples
    ========

    >>> from itertools import permutations
    >>> from sympy.utilities.iterables import generate_bell
    >>> from sympy import zeros, Matrix

    This is the sort of permutation used in the ringing of physical bells,
    and does not produce permutations in lexicographical order. Rather, the
    permutations differ from each other by exactly one inversion, and the
    position at which the swapping occurs varies periodically in a simple
    fashion. Consider the first few permutations of 4 elements generated
    by ``permutations`` and ``generate_bell``:

    >>> list(permutations(range(4)))[:5]
    [(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)]
    >>> list(generate_bell(4))[:5]
    [(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)]

    Notice how the 2nd and 3rd lexicographical permutations have 3 elements
    out of place whereas each "bell" permutation always has only two
    elements out of place relative to the previous permutation (and so the
    signature (+/-1) of a permutation is opposite of the signature of the
    previous permutation).

    How the position of inversion varies across the elements can be seen
    by tracing out where the largest number appears in the permutations:

    >>> m = zeros(4, 24)
    >>> for i, p in enumerate(generate_bell(4)):
    ...     m[:, i] = Matrix([j - 3 for j in list(p)])  # make largest zero
    >>> m.print_nonzero('X')
    [XXX  XXXXXX  XXXXXX  XXX]
    [XX XX XXXX XX XXXX XX XX]
    [X XXXX XX XXXX XX XXXX X]
    [ XXXXXX  XXXXXX  XXXXXX ]

    See Also
    ========

    sympy.combinatorics.permutations.Permutation.next_trotterjohnson

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Method_ringing

    .. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018

    .. [3] https://web.archive.org/web/20160313023044/http://programminggeeks.com/bell-algorithm-for-permutation/

    .. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm

    .. [5] Generating involutions, derangements, and relatives by ECO
           Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010

    """
    n = as_int(n)
    if n < 1:
        raise ValueError('n must be a positive integer')
    if n == 1:
        yield (0,)
    elif n == 2:
        yield (0, 1)
        yield (1, 0)
    elif n == 3:
        yield from [(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
    else:
        m = n - 1
        op = [0] + [-1]*m
        l = list(range(n))
        while True:
            yield tuple(l)
            # find biggest element with op
            big = None, -1  # idx, value
            for i in range(n):
                if op[i] and l[i] > big[1]:
                    big = i, l[i]
            i, _ = big
            if i is None:
                break  # there are no ops left
            # swap it with neighbor in the indicated direction
            j = i + op[i]
            l[i], l[j] = l[j], l[i]
            op[i], op[j] = op[j], op[i]
            # if it landed at the end or if the neighbor in the same
            # direction is bigger then turn off op
            if j == 0 or j == m or l[j + op[j]] > l[j]:
                op[j] = 0
            # any element bigger to the left gets +1 op
            for i in range(j):
                if l[i] > l[j]:
                    op[i] = 1
            # any element bigger to the right gets -1 op
            for i in range(j + 1, n):
                if l[i] > l[j]:
                    op[i] = -1


def generate_involutions(n):
    """
    Generates involutions.

    An involution is a permutation that when multiplied
    by itself equals the identity permutation. In this
    implementation the involutions are generated using
    Fixed Points.

    Alternatively, an involution can be considered as
    a permutation that does not contain any cycles with
    a length that is greater than two.

    Examples
    ========

    >>> from sympy.utilities.iterables import generate_involutions
    >>> list(generate_involutions(3))
    [(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)]
    >>> len(list(generate_involutions(4)))
    10

    References
    ==========

    .. [1] https://mathworld.wolfram.com/PermutationInvolution.html

    """
    idx = list(range(n))
    for p in permutations(idx):
        for i in idx:
            if p[p[i]] != i:
                break
        else:
            yield p


def multiset_derangements(s):
    """Generate derangements of the elements of s *in place*.

    Examples
    ========

    >>> from sympy.utilities.iterables import multiset_derangements, uniq

    Because the derangements of multisets (not sets) are generated
    in place, copies of the return value must be made if a collection
    of derangements is desired or else all values will be the same:

    >>> list(uniq([i for i in multiset_derangements('1233')]))
    [[None, None, None, None]]
    >>> [i.copy() for i in multiset_derangements('1233')]
    [['3', '3', '1', '2'], ['3', '3', '2', '1']]
    >>> [''.join(i) for i in multiset_derangements('1233')]
    ['3312', '3321']
    """
    from sympy.core.sorting import ordered
    # create multiset dictionary of hashable elements or else
    # remap elements to integers
    try:
        ms = multiset(s)
    except TypeError:
        # give each element a canonical integer value
        key = dict(enumerate(ordered(uniq(s))))
        h = []
        for si in s:
            for k in key:
                if key[k] == si:
                    h.append(k)
                    break
        for i in multiset_derangements(h):
            yield [key[j] for j in i]
        return

    mx = max(ms.values())  # max repetition of any element
    n = len(s)  # the number of elements

    ## special cases

    # 1) one element has more than half the total cardinality of s: no
    # derangements are possible.
    if mx*2 > n:
        return

    # 2) all elements appear once: singletons
    if len(ms) == n:
        yield from _set_derangements(s)
        return

    # find the first element that is repeated the most to place
    # in the following two special cases where the selection
    # is unambiguous: either there are two elements with multiplicity
    # of mx or else there is only one with multiplicity mx
    for M in ms:
        if ms[M] == mx:
            break

    inonM = [i for i in range(n) if s[i] != M]  # location of non-M
    iM = [i for i in range(n) if s[i] == M]  # locations of M
    rv = [None]*n

    # 3) half are the same
    if 2*mx == n:
        # M goes into non-M locations
        for i in inonM:
            rv[i] = M
        # permutations of non-M go to M locations
        for p in multiset_permutations([s[i] for i in inonM]):
            for i, pi in zip(iM, p):
                rv[i] = pi
            yield rv
        # clean-up (and encourages proper use of routine)
        rv[:] = [None]*n
        return

    # 4) single repeat covers all but 1 of the non-repeats:
    # if there is one repeat then the multiset of the values
    # of ms would be {mx: 1, 1: n - mx}, i.e. there would
    # be n - mx + 1 values with the condition that n - 2*mx = 1
    if n - 2*mx == 1 and len(ms.values()) == n - mx + 1:
        for i, i1 in enumerate(inonM):
            ifill = inonM[:i] + inonM[i+1:]
            for j in ifill:
                rv[j] = M
            for p in permutations([s[j] for j in ifill]):
                rv[i1] = s[i1]
                for j, pi in zip(iM, p):
                    rv[j] = pi
                k = i1
                for j in iM:
                    rv[j], rv[k] = rv[k], rv[j]
                    yield rv
                    k = j
        # clean-up (and encourages proper use of routine)
        rv[:] = [None]*n
        return

    ## general case is handled with 3 helpers:
    #    1) `finish_derangements` will place the last two elements
    #       which have arbitrary multiplicities, e.g. for multiset
    #       {c: 3, a: 2, b: 2}, the last two elements are a and b
    #    2) `iopen` will tell where a given element can be placed
    #    3) `do` will recursively place elements into subsets of
    #        valid locations

    def finish_derangements():
        """Place the last two elements into the partially completed
        derangement, and yield the results.
        """

        a = take[1][0]  # penultimate element
        a_ct = take[1][1]
        b = take[0][0]  # last element to be placed
        b_ct = take[0][1]

        # split the indexes of the not-already-assigned elements of rv into
        # three categories
        forced_a = []  # positions which must have an a
        forced_b = []  # positions which must have a b
        open_free = []  # positions which could take either
        for i in range(len(s)):
            if rv[i] is None:
                if s[i] == a:
                    forced_b.append(i)
                elif s[i] == b:
                    forced_a.append(i)
                else:
                    open_free.append(i)

        if len(forced_a) > a_ct or len(forced_b) > b_ct:
            # No derangement possible
            return

        for i in forced_a:
            rv[i] = a
        for i in forced_b:
            rv[i] = b
        for a_place in combinations(open_free, a_ct - len(forced_a)):
            for a_pos in a_place:
                rv[a_pos] = a
            for i in open_free:
                if rv[i] is None:  # anything not in the subset is set to b
                    rv[i] = b
            yield rv
            # Clean up/undo the final placements
            for i in open_free:
                rv[i] = None

        # additional cleanup - clear forced_a, forced_b
        for i in forced_a:
            rv[i] = None
        for i in forced_b:
            rv[i] = None

    def iopen(v):
        # return indices at which element v can be placed in rv:
        # locations which are not already occupied if that location
        # does not already contain v in the same location of s
        return [i for i in range(n) if rv[i] is None and s[i] != v]

    def do(j):
        if j == 1:
            # handle the last two elements (regardless of multiplicity)
            # with a special method
            yield from finish_derangements()
        else:
            # place the mx elements of M into a subset of places
            # into which it can be replaced
            M, mx = take[j]
            for i in combinations(iopen(M), mx):
                # place M
                for ii in i:
                    rv[ii] = M
                # recursively place the next element
                yield from do(j - 1)
                # mark positions where M was placed as once again
                # open for placement of other elements
                for ii in i:
                    rv[ii] = None

    # process elements in order of canonically decreasing multiplicity
    take = sorted(ms.items(), key=lambda x:(x[1], x[0]))
    yield from do(len(take) - 1)
    rv[:] = [None]*n


def random_derangement(t, choice=None, strict=True):
    """Return a list of elements in which none are in the same positions
    as they were originally. If an element fills more than half of the positions
    then an error will be raised since no derangement is possible. To obtain
    a derangement of as many items as possible--with some of the most numerous
    remaining in their original positions--pass `strict=False`. To produce a
    pseudorandom derangment, pass a pseudorandom selector like `choice` (see
    below).

    Examples
    ========

    >>> from sympy.utilities.iterables import random_derangement
    >>> t = 'SymPy: a CAS in pure Python'
    >>> d = random_derangement(t)
    >>> all(i != j for i, j in zip(d, t))
    True

    A predictable result can be obtained by using a pseudorandom
    generator for the choice:

    >>> from sympy.core.random import seed, choice as c
    >>> seed(1)
    >>> d = [''.join(random_derangement(t, c)) for i in range(5)]
    >>> assert len(set(d)) != 1  # we got different values

    By reseeding, the same sequence can be obtained:

    >>> seed(1)
    >>> d2 = [''.join(random_derangement(t, c)) for i in range(5)]
    >>> assert d == d2
    """
    if choice is None:
        import secrets
        choice = secrets.choice
    def shuffle(rv):
        '''Knuth shuffle'''
        for i in range(len(rv) - 1, 0, -1):
            x = choice(rv[:i + 1])
            j = rv.index(x)
            rv[i], rv[j] = rv[j], rv[i]
    def pick(rv, n):
        '''shuffle rv and return the first n values
        '''
        shuffle(rv)
        return rv[:n]
    ms = multiset(t)
    tot = len(t)
    ms = sorted(ms.items(), key=lambda x: x[1])
  # if there are not enough spaces for the most
  # plentiful element to move to then some of them
  # will have to stay in place
    M, mx = ms[-1]
    n = len(t)
    xs = 2*mx - tot
    if xs > 0:
        if strict:
            raise ValueError('no derangement possible')
        opts = [i for (i, c) in enumerate(t) if c == ms[-1][0]]
        pick(opts, xs)
        stay = sorted(opts[:xs])
        rv = list(t)
        for i in reversed(stay):
            rv.pop(i)
        rv = random_derangement(rv, choice)
        for i in stay:
            rv.insert(i, ms[-1][0])
        return ''.join(rv) if type(t) is str else rv
  # the normal derangement calculated from here
    if n == len(ms):
      # approx 1/3 will succeed
        rv = list(t)
        while True:
            shuffle(rv)
            if all(i != j for i,j in zip(rv, t)):
                break
    else:
      # general case
        rv = [None]*n
        while True:
            j = 0
            while j > -len(ms):  # do most numerous first
                j -= 1
                e, c = ms[j]
                opts = [i for i in range(n) if rv[i] is None and t[i] != e]
                if len(opts) < c:
                    for i in range(n):
                        rv[i] = None
                    break # try again
                pick(opts, c)
                for i in range(c):
                    rv[opts[i]] = e
            else:
                return rv
    return rv


def _set_derangements(s):
    """
    yield derangements of items in ``s`` which are assumed to contain
    no repeated elements
    """
    if len(s) < 2:
        return
    if len(s) == 2:
        yield [s[1], s[0]]
        return
    if len(s) == 3:
        yield [s[1], s[2], s[0]]
        yield [s[2], s[0], s[1]]
        return
    for p in permutations(s):
        if not any(i == j for i, j in zip(p, s)):
            yield list(p)


def generate_derangements(s):
    """
    Return unique derangements of the elements of iterable ``s``.

    Examples
    ========

    >>> from sympy.utilities.iterables import generate_derangements
    >>> list(generate_derangements([0, 1, 2]))
    [[1, 2, 0], [2, 0, 1]]
    >>> list(generate_derangements([0, 1, 2, 2]))
    [[2, 2, 0, 1], [2, 2, 1, 0]]
    >>> list(generate_derangements([0, 1, 1]))
    []

    See Also
    ========

    sympy.functions.combinatorial.factorials.subfactorial

    """
    if not has_dups(s):
        yield from _set_derangements(s)
    else:
        for p in multiset_derangements(s):
            yield list(p)


def necklaces(n, k, free=False):
    """
    A routine to generate necklaces that may (free=True) or may not
    (free=False) be turned over to be viewed. The "necklaces" returned
    are comprised of ``n`` integers (beads) with ``k`` different
    values (colors). Only unique necklaces are returned.

    Examples
    ========

    >>> from sympy.utilities.iterables import necklaces, bracelets
    >>> def show(s, i):
    ...     return ''.join(s[j] for j in i)

    The "unrestricted necklace" is sometimes also referred to as a
    "bracelet" (an object that can be turned over, a sequence that can
    be reversed) and the term "necklace" is used to imply a sequence
    that cannot be reversed. So ACB == ABC for a bracelet (rotate and
    reverse) while the two are different for a necklace since rotation
    alone cannot make the two sequences the same.

    (mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.)

    >>> B = [show('ABC', i) for i in bracelets(3, 3)]
    >>> N = [show('ABC', i) for i in necklaces(3, 3)]
    >>> set(N) - set(B)
    {'ACB'}

    >>> list(necklaces(4, 2))
    [(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1),
     (0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)]

    >>> [show('.o', i) for i in bracelets(4, 2)]
    ['....', '...o', '..oo', '.o.o', '.ooo', 'oooo']

    References
    ==========

    .. [1] https://mathworld.wolfram.com/Necklace.html

    .. [2] Frank Ruskey, Carla Savage, and Terry Min Yih Wang,
        Generating necklaces, Journal of Algorithms 13 (1992), 414-430;
        https://doi.org/10.1016/0196-6774(92)90047-G

    """
    # The FKM algorithm
    if k == 0 and n > 0:
        return
    a = [0]*n
    yield tuple(a)
    if n == 0:
        return
    while True:
        i = n - 1
        while a[i] == k - 1:
            i -= 1
            if i == -1:
                return
        a[i] += 1
        for j in range(n - i - 1):
            a[j + i + 1] = a[j]
        if n % (i + 1) == 0 and (not free or all(a <= a[j::-1] + a[-1:j:-1] for j in range(n - 1))):
            # No need to test j = n - 1.
            yield tuple(a)


def bracelets(n, k):
    """Wrapper to necklaces to return a free (unrestricted) necklace."""
    return necklaces(n, k, free=True)


def generate_oriented_forest(n):
    """
    This algorithm generates oriented forests.

    An oriented graph is a directed graph having no symmetric pair of directed
    edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can
    also be described as a disjoint union of trees, which are graphs in which
    any two vertices are connected by exactly one simple path.

    Examples
    ========

    >>> from sympy.utilities.iterables import generate_oriented_forest
    >>> list(generate_oriented_forest(4))
    [[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], \
    [0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]]

    References
    ==========

    .. [1] T. Beyer and S.M. Hedetniemi: constant time generation of
           rooted trees, SIAM J. Computing Vol. 9, No. 4, November 1980

    .. [2] https://stackoverflow.com/questions/1633833/oriented-forest-taocp-algorithm-in-python

    """
    P = list(range(-1, n))
    while True:
        yield P[1:]
        if P[n] > 0:
            P[n] = P[P[n]]
        else:
            for p in range(n - 1, 0, -1):
                if P[p] != 0:
                    target = P[p] - 1
                    for q in range(p - 1, 0, -1):
                        if P[q] == target:
                            break
                    offset = p - q
                    for i in range(p, n + 1):
                        P[i] = P[i - offset]
                    break
            else:
                break


def minlex(seq, directed=True, key=None):
    r"""
    Return the rotation of the sequence in which the lexically smallest
    elements appear first, e.g. `cba \rightarrow acb`.

    The sequence returned is a tuple, unless the input sequence is a string
    in which case a string is returned.

    If ``directed`` is False then the smaller of the sequence and the
    reversed sequence is returned, e.g. `cba \rightarrow abc`.

    If ``key`` is not None then it is used to extract a comparison key from each element in iterable.

    Examples
    ========

    >>> from sympy.combinatorics.polyhedron import minlex
    >>> minlex((1, 2, 0))
    (0, 1, 2)
    >>> minlex((1, 0, 2))
    (0, 2, 1)
    >>> minlex((1, 0, 2), directed=False)
    (0, 1, 2)

    >>> minlex('11010011000', directed=True)
    '00011010011'
    >>> minlex('11010011000', directed=False)
    '00011001011'

    >>> minlex(('bb', 'aaa', 'c', 'a'))
    ('a', 'bb', 'aaa', 'c')
    >>> minlex(('bb', 'aaa', 'c', 'a'), key=len)
    ('c', 'a', 'bb', 'aaa')

    """
    from sympy.functions.elementary.miscellaneous import Id
    if key is None: key = Id
    best = rotate_left(seq, least_rotation(seq, key=key))
    if not directed:
        rseq = seq[::-1]
        rbest = rotate_left(rseq, least_rotation(rseq, key=key))
        best = min(best, rbest, key=key)

    # Convert to tuple, unless we started with a string.
    return tuple(best) if not isinstance(seq, str) else best


def runs(seq, op=gt):
    """Group the sequence into lists in which successive elements
    all compare the same with the comparison operator, ``op``:
    op(seq[i + 1], seq[i]) is True from all elements in a run.

    Examples
    ========

    >>> from sympy.utilities.iterables import runs
    >>> from operator import ge
    >>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2])
    [[0, 1, 2], [2], [1, 4], [3], [2], [2]]
    >>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=ge)
    [[0, 1, 2, 2], [1, 4], [3], [2, 2]]
    """
    cycles = []
    seq = iter(seq)
    try:
        run = [next(seq)]
    except StopIteration:
        return []
    while True:
        try:
            ei = next(seq)
        except StopIteration:
            break
        if op(ei, run[-1]):
            run.append(ei)
            continue
        else:
            cycles.append(run)
            run = [ei]
    if run:
        cycles.append(run)
    return cycles


def sequence_partitions(l, n, /):
    r"""Returns the partition of sequence $l$ into $n$ bins

    Explanation
    ===========

    Given the sequence $l_1 \cdots l_m \in V^+$ where
    $V^+$ is the Kleene plus of $V$

    The set of $n$ partitions of $l$ is defined as:

    .. math::
        \{(s_1, \cdots, s_n) | s_1 \in V^+, \cdots, s_n \in V^+,
        s_1 \cdots s_n = l_1 \cdots l_m\}

    Parameters
    ==========

    l : Sequence[T]
        A nonempty sequence of any Python objects

    n : int
        A positive integer

    Yields
    ======

    out : list[Sequence[T]]
        A list of sequences with concatenation equals $l$.
        This should conform with the type of $l$.

    Examples
    ========

    >>> from sympy.utilities.iterables import sequence_partitions
    >>> for out in sequence_partitions([1, 2, 3, 4], 2):
    ...     print(out)
    [[1], [2, 3, 4]]
    [[1, 2], [3, 4]]
    [[1, 2, 3], [4]]

    Notes
    =====

    This is modified version of EnricoGiampieri's partition generator
    from https://stackoverflow.com/questions/13131491/partition-n-items-into-k-bins-in-python-lazily

    See Also
    ========

    sequence_partitions_empty
    """
    # Asserting l is nonempty is done only for sanity check
    if n == 1 and l:
        yield [l]
        return
    for i in range(1, len(l)):
        for part in sequence_partitions(l[i:], n - 1):
            yield [l[:i]] + part


def sequence_partitions_empty(l, n, /):
    r"""Returns the partition of sequence $l$ into $n$ bins with
    empty sequence

    Explanation
    ===========

    Given the sequence $l_1 \cdots l_m \in V^*$ where
    $V^*$ is the Kleene star of $V$

    The set of $n$ partitions of $l$ is defined as:

    .. math::
        \{(s_1, \cdots, s_n) | s_1 \in V^*, \cdots, s_n \in V^*,
        s_1 \cdots s_n = l_1 \cdots l_m\}

    There are more combinations than :func:`sequence_partitions` because
    empty sequence can fill everywhere, so we try to provide different
    utility for this.

    Parameters
    ==========

    l : Sequence[T]
        A sequence of any Python objects (can be possibly empty)

    n : int
        A positive integer

    Yields
    ======

    out : list[Sequence[T]]
        A list of sequences with concatenation equals $l$.
        This should conform with the type of $l$.

    Examples
    ========

    >>> from sympy.utilities.iterables import sequence_partitions_empty
    >>> for out in sequence_partitions_empty([1, 2, 3, 4], 2):
    ...     print(out)
    [[], [1, 2, 3, 4]]
    [[1], [2, 3, 4]]
    [[1, 2], [3, 4]]
    [[1, 2, 3], [4]]
    [[1, 2, 3, 4], []]

    See Also
    ========

    sequence_partitions
    """
    if n < 1:
        return
    if n == 1:
        yield [l]
        return
    for i in range(0, len(l) + 1):
        for part in sequence_partitions_empty(l[i:], n - 1):
            yield [l[:i]] + part


def kbins(l, k, ordered=None):
    """
    Return sequence ``l`` partitioned into ``k`` bins.

    Examples
    ========

    The default is to give the items in the same order, but grouped
    into k partitions without any reordering:

    >>> from sympy.utilities.iterables import kbins
    >>> for p in kbins(list(range(5)), 2):
    ...     print(p)
    ...
    [[0], [1, 2, 3, 4]]
    [[0, 1], [2, 3, 4]]
    [[0, 1, 2], [3, 4]]
    [[0, 1, 2, 3], [4]]

    The ``ordered`` flag is either None (to give the simple partition
    of the elements) or is a 2 digit integer indicating whether the order of
    the bins and the order of the items in the bins matters. Given::

        A = [[0], [1, 2]]
        B = [[1, 2], [0]]
        C = [[2, 1], [0]]
        D = [[0], [2, 1]]

    the following values for ``ordered`` have the shown meanings::

        00 means A == B == C == D
        01 means A == B
        10 means A == D
        11 means A == A

    >>> for ordered_flag in [None, 0, 1, 10, 11]:
    ...     print('ordered = %s' % ordered_flag)
    ...     for p in kbins(list(range(3)), 2, ordered=ordered_flag):
    ...         print('     %s' % p)
    ...
    ordered = None
         [[0], [1, 2]]
         [[0, 1], [2]]
    ordered = 0
         [[0, 1], [2]]
         [[0, 2], [1]]
         [[0], [1, 2]]
    ordered = 1
         [[0], [1, 2]]
         [[0], [2, 1]]
         [[1], [0, 2]]
         [[1], [2, 0]]
         [[2], [0, 1]]
         [[2], [1, 0]]
    ordered = 10
         [[0, 1], [2]]
         [[2], [0, 1]]
         [[0, 2], [1]]
         [[1], [0, 2]]
         [[0], [1, 2]]
         [[1, 2], [0]]
    ordered = 11
         [[0], [1, 2]]
         [[0, 1], [2]]
         [[0], [2, 1]]
         [[0, 2], [1]]
         [[1], [0, 2]]
         [[1, 0], [2]]
         [[1], [2, 0]]
         [[1, 2], [0]]
         [[2], [0, 1]]
         [[2, 0], [1]]
         [[2], [1, 0]]
         [[2, 1], [0]]

    See Also
    ========

    partitions, multiset_partitions

    """
    if ordered is None:
        yield from sequence_partitions(l, k)
    elif ordered == 11:
        for pl in multiset_permutations(l):
            pl = list(pl)
            yield from sequence_partitions(pl, k)
    elif ordered == 00:
        yield from multiset_partitions(l, k)
    elif ordered == 10:
        for p in multiset_partitions(l, k):
            for perm in permutations(p):
                yield list(perm)
    elif ordered == 1:
        for kgot, p in partitions(len(l), k, size=True):
            if kgot != k:
                continue
            for li in multiset_permutations(l):
                rv = []
                i = j = 0
                li = list(li)
                for size, multiplicity in sorted(p.items()):
                    for m in range(multiplicity):
                        j = i + size
                        rv.append(li[i: j])
                        i = j
                yield rv
    else:
        raise ValueError(
            'ordered must be one of 00, 01, 10 or 11, not %s' % ordered)


def permute_signs(t):
    """Return iterator in which the signs of non-zero elements
    of t are permuted.

    Examples
    ========

    >>> from sympy.utilities.iterables import permute_signs
    >>> list(permute_signs((0, 1, 2)))
    [(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)]
    """
    for signs in product(*[(1, -1)]*(len(t) - t.count(0))):
        signs = list(signs)
        yield type(t)([i*signs.pop() if i else i for i in t])


def signed_permutations(t):
    """Return iterator in which the signs of non-zero elements
    of t and the order of the elements are permuted and all
    returned values are unique.

    Examples
    ========

    >>> from sympy.utilities.iterables import signed_permutations
    >>> list(signed_permutations((0, 1, 2)))
    [(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1),
    (0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2),
    (1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0),
    (-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1),
    (2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)]
    """
    return (type(t)(i) for j in multiset_permutations(t)
        for i in permute_signs(j))


def rotations(s, dir=1):
    """Return a generator giving the items in s as list where
    each subsequent list has the items rotated to the left (default)
    or right (``dir=-1``) relative to the previous list.

    Examples
    ========

    >>> from sympy import rotations
    >>> list(rotations([1,2,3]))
    [[1, 2, 3], [2, 3, 1], [3, 1, 2]]
    >>> list(rotations([1,2,3], -1))
    [[1, 2, 3], [3, 1, 2], [2, 3, 1]]
    """
    seq = list(s)
    for i in range(len(seq)):
        yield seq
        seq = rotate_left(seq, dir)


def roundrobin(*iterables):
    """roundrobin recipe taken from itertools documentation:
    https://docs.python.org/3/library/itertools.html#itertools-recipes

    roundrobin('ABC', 'D', 'EF') --> A D E B F C

    Recipe credited to George Sakkis
    """
    nexts = cycle(iter(it).__next__ for it in iterables)

    pending = len(iterables)
    while pending:
        try:
            for nxt in nexts:
                yield nxt()
        except StopIteration:
            pending -= 1
            nexts = cycle(islice(nexts, pending))



class NotIterable:
    """
    Use this as mixin when creating a class which is not supposed to
    return true when iterable() is called on its instances because
    calling list() on the instance, for example, would result in
    an infinite loop.
    """
    pass


def iterable(i, exclude=(str, dict, NotIterable)):
    """
    Return a boolean indicating whether ``i`` is SymPy iterable.
    True also indicates that the iterator is finite, e.g. you can
    call list(...) on the instance.

    When SymPy is working with iterables, it is almost always assuming
    that the iterable is not a string or a mapping, so those are excluded
    by default. If you want a pure Python definition, make exclude=None. To
    exclude multiple items, pass them as a tuple.

    You can also set the _iterable attribute to True or False on your class,
    which will override the checks here, including the exclude test.

    As a rule of thumb, some SymPy functions use this to check if they should
    recursively map over an object. If an object is technically iterable in
    the Python sense but does not desire this behavior (e.g., because its
    iteration is not finite, or because iteration might induce an unwanted
    computation), it should disable it by setting the _iterable attribute to False.

    See also: is_sequence

    Examples
    ========

    >>> from sympy.utilities.iterables import iterable
    >>> from sympy import Tuple
    >>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), {1:2}, '1', 1]
    >>> for i in things:
    ...     print('%s %s' % (iterable(i), type(i)))
    True <... 'list'>
    True <... 'tuple'>
    True <... 'set'>
    True <class 'sympy.core.containers.Tuple'>
    True <... 'generator'>
    False <... 'dict'>
    False <... 'str'>
    False <... 'int'>

    >>> iterable({}, exclude=None)
    True
    >>> iterable({}, exclude=str)
    True
    >>> iterable("no", exclude=str)
    False

    """
    if hasattr(i, '_iterable'):
        return i._iterable
    try:
        iter(i)
    except TypeError:
        return False
    if exclude:
        return not isinstance(i, exclude)
    return True


def is_sequence(i, include=None):
    """
    Return a boolean indicating whether ``i`` is a sequence in the SymPy
    sense. If anything that fails the test below should be included as
    being a sequence for your application, set 'include' to that object's
    type; multiple types should be passed as a tuple of types.

    Note: although generators can generate a sequence, they often need special
    handling to make sure their elements are captured before the generator is
    exhausted, so these are not included by default in the definition of a
    sequence.

    See also: iterable

    Examples
    ========

    >>> from sympy.utilities.iterables import is_sequence
    >>> from types import GeneratorType
    >>> is_sequence([])
    True
    >>> is_sequence(set())
    False
    >>> is_sequence('abc')
    False
    >>> is_sequence('abc', include=str)
    True
    >>> generator = (c for c in 'abc')
    >>> is_sequence(generator)
    False
    >>> is_sequence(generator, include=(str, GeneratorType))
    True

    """
    return (hasattr(i, '__getitem__') and
            iterable(i) or
            bool(include) and
            isinstance(i, include))


@deprecated(
    """
    Using postorder_traversal from the sympy.utilities.iterables submodule is
    deprecated.

    Instead, use postorder_traversal from the top-level sympy namespace, like

        sympy.postorder_traversal
    """,
    deprecated_since_version="1.10",
    active_deprecations_target="deprecated-traversal-functions-moved")
def postorder_traversal(node, keys=None):
    from sympy.core.traversal import postorder_traversal as _postorder_traversal
    return _postorder_traversal(node, keys=keys)


@deprecated(
    """
    Using interactive_traversal from the sympy.utilities.iterables submodule
    is deprecated.

    Instead, use interactive_traversal from the top-level sympy namespace,
    like

        sympy.interactive_traversal
    """,
    deprecated_since_version="1.10",
    active_deprecations_target="deprecated-traversal-functions-moved")
def interactive_traversal(expr):
    from sympy.interactive.traversal import interactive_traversal as _interactive_traversal
    return _interactive_traversal(expr)


@deprecated(
    """
    Importing default_sort_key from sympy.utilities.iterables is deprecated.
    Use from sympy import default_sort_key instead.
    """,
    deprecated_since_version="1.10",
active_deprecations_target="deprecated-sympy-core-compatibility",
)
def default_sort_key(*args, **kwargs):
    from sympy import default_sort_key as _default_sort_key
    return _default_sort_key(*args, **kwargs)


@deprecated(
    """
    Importing default_sort_key from sympy.utilities.iterables is deprecated.
    Use from sympy import default_sort_key instead.
    """,
    deprecated_since_version="1.10",
active_deprecations_target="deprecated-sympy-core-compatibility",
)
def ordered(*args, **kwargs):
    from sympy import ordered as _ordered
    return _ordered(*args, **kwargs)