Spaces:
Sleeping
Sleeping
File size: 41,270 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 |
"""Module for compiling codegen output, and wrap the binary for use in
python.
.. note:: To use the autowrap module it must first be imported
>>> from sympy.utilities.autowrap import autowrap
This module provides a common interface for different external backends, such
as f2py, fwrap, Cython, SWIG(?) etc. (Currently only f2py and Cython are
implemented) The goal is to provide access to compiled binaries of acceptable
performance with a one-button user interface, e.g.,
>>> from sympy.abc import x,y
>>> expr = (x - y)**25
>>> flat = expr.expand()
>>> binary_callable = autowrap(flat)
>>> binary_callable(2, 3)
-1.0
Although a SymPy user might primarily be interested in working with
mathematical expressions and not in the details of wrapping tools
needed to evaluate such expressions efficiently in numerical form,
the user cannot do so without some understanding of the
limits in the target language. For example, the expanded expression
contains large coefficients which result in loss of precision when
computing the expression:
>>> binary_callable(3, 2)
0.0
>>> binary_callable(4, 5), binary_callable(5, 4)
(-22925376.0, 25165824.0)
Wrapping the unexpanded expression gives the expected behavior:
>>> e = autowrap(expr)
>>> e(4, 5), e(5, 4)
(-1.0, 1.0)
The callable returned from autowrap() is a binary Python function, not a
SymPy object. If it is desired to use the compiled function in symbolic
expressions, it is better to use binary_function() which returns a SymPy
Function object. The binary callable is attached as the _imp_ attribute and
invoked when a numerical evaluation is requested with evalf(), or with
lambdify().
>>> from sympy.utilities.autowrap import binary_function
>>> f = binary_function('f', expr)
>>> 2*f(x, y) + y
y + 2*f(x, y)
>>> (2*f(x, y) + y).evalf(2, subs={x: 1, y:2})
0.e-110
When is this useful?
1) For computations on large arrays, Python iterations may be too slow,
and depending on the mathematical expression, it may be difficult to
exploit the advanced index operations provided by NumPy.
2) For *really* long expressions that will be called repeatedly, the
compiled binary should be significantly faster than SymPy's .evalf()
3) If you are generating code with the codegen utility in order to use
it in another project, the automatic Python wrappers let you test the
binaries immediately from within SymPy.
4) To create customized ufuncs for use with numpy arrays.
See *ufuncify*.
When is this module NOT the best approach?
1) If you are really concerned about speed or memory optimizations,
you will probably get better results by working directly with the
wrapper tools and the low level code. However, the files generated
by this utility may provide a useful starting point and reference
code. Temporary files will be left intact if you supply the keyword
tempdir="path/to/files/".
2) If the array computation can be handled easily by numpy, and you
do not need the binaries for another project.
"""
import sys
import os
import shutil
import tempfile
from subprocess import STDOUT, CalledProcessError, check_output
from string import Template
from warnings import warn
from sympy.core.cache import cacheit
from sympy.core.function import Lambda
from sympy.core.relational import Eq
from sympy.core.symbol import Dummy, Symbol
from sympy.tensor.indexed import Idx, IndexedBase
from sympy.utilities.codegen import (make_routine, get_code_generator,
OutputArgument, InOutArgument,
InputArgument, CodeGenArgumentListError,
Result, ResultBase, C99CodeGen)
from sympy.utilities.iterables import iterable
from sympy.utilities.lambdify import implemented_function
from sympy.utilities.decorator import doctest_depends_on
_doctest_depends_on = {'exe': ('f2py', 'gfortran', 'gcc'),
'modules': ('numpy',)}
class CodeWrapError(Exception):
pass
class CodeWrapper:
"""Base Class for code wrappers"""
_filename = "wrapped_code"
_module_basename = "wrapper_module"
_module_counter = 0
@property
def filename(self):
return "%s_%s" % (self._filename, CodeWrapper._module_counter)
@property
def module_name(self):
return "%s_%s" % (self._module_basename, CodeWrapper._module_counter)
def __init__(self, generator, filepath=None, flags=[], verbose=False):
"""
generator -- the code generator to use
"""
self.generator = generator
self.filepath = filepath
self.flags = flags
self.quiet = not verbose
@property
def include_header(self):
return bool(self.filepath)
@property
def include_empty(self):
return bool(self.filepath)
def _generate_code(self, main_routine, routines):
routines.append(main_routine)
self.generator.write(
routines, self.filename, True, self.include_header,
self.include_empty)
def wrap_code(self, routine, helpers=None):
helpers = helpers or []
if self.filepath:
workdir = os.path.abspath(self.filepath)
else:
workdir = tempfile.mkdtemp("_sympy_compile")
if not os.access(workdir, os.F_OK):
os.mkdir(workdir)
oldwork = os.getcwd()
os.chdir(workdir)
try:
sys.path.append(workdir)
self._generate_code(routine, helpers)
self._prepare_files(routine)
self._process_files(routine)
mod = __import__(self.module_name)
finally:
sys.path.remove(workdir)
CodeWrapper._module_counter += 1
os.chdir(oldwork)
if not self.filepath:
try:
shutil.rmtree(workdir)
except OSError:
# Could be some issues on Windows
pass
return self._get_wrapped_function(mod, routine.name)
def _process_files(self, routine):
command = self.command
command.extend(self.flags)
try:
retoutput = check_output(command, stderr=STDOUT)
except CalledProcessError as e:
raise CodeWrapError(
"Error while executing command: %s. Command output is:\n%s" % (
" ".join(command), e.output.decode('utf-8')))
if not self.quiet:
print(retoutput)
class DummyWrapper(CodeWrapper):
"""Class used for testing independent of backends """
template = """# dummy module for testing of SymPy
def %(name)s():
return "%(expr)s"
%(name)s.args = "%(args)s"
%(name)s.returns = "%(retvals)s"
"""
def _prepare_files(self, routine):
return
def _generate_code(self, routine, helpers):
with open('%s.py' % self.module_name, 'w') as f:
printed = ", ".join(
[str(res.expr) for res in routine.result_variables])
# convert OutputArguments to return value like f2py
args = filter(lambda x: not isinstance(
x, OutputArgument), routine.arguments)
retvals = []
for val in routine.result_variables:
if isinstance(val, Result):
retvals.append('nameless')
else:
retvals.append(val.result_var)
print(DummyWrapper.template % {
'name': routine.name,
'expr': printed,
'args': ", ".join([str(a.name) for a in args]),
'retvals': ", ".join([str(val) for val in retvals])
}, end="", file=f)
def _process_files(self, routine):
return
@classmethod
def _get_wrapped_function(cls, mod, name):
return getattr(mod, name)
class CythonCodeWrapper(CodeWrapper):
"""Wrapper that uses Cython"""
setup_template = """\
from setuptools import setup
from setuptools import Extension
from Cython.Build import cythonize
cy_opts = {cythonize_options}
{np_import}
ext_mods = [Extension(
{ext_args},
include_dirs={include_dirs},
library_dirs={library_dirs},
libraries={libraries},
extra_compile_args={extra_compile_args},
extra_link_args={extra_link_args}
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
"""
_cythonize_options = {'compiler_directives':{'language_level' : "3"}}
pyx_imports = (
"import numpy as np\n"
"cimport numpy as np\n\n")
pyx_header = (
"cdef extern from '{header_file}.h':\n"
" {prototype}\n\n")
pyx_func = (
"def {name}_c({arg_string}):\n"
"\n"
"{declarations}"
"{body}")
std_compile_flag = '-std=c99'
def __init__(self, *args, **kwargs):
"""Instantiates a Cython code wrapper.
The following optional parameters get passed to ``setuptools.Extension``
for building the Python extension module. Read its documentation to
learn more.
Parameters
==========
include_dirs : [list of strings]
A list of directories to search for C/C++ header files (in Unix
form for portability).
library_dirs : [list of strings]
A list of directories to search for C/C++ libraries at link time.
libraries : [list of strings]
A list of library names (not filenames or paths) to link against.
extra_compile_args : [list of strings]
Any extra platform- and compiler-specific information to use when
compiling the source files in 'sources'. For platforms and
compilers where "command line" makes sense, this is typically a
list of command-line arguments, but for other platforms it could be
anything. Note that the attribute ``std_compile_flag`` will be
appended to this list.
extra_link_args : [list of strings]
Any extra platform- and compiler-specific information to use when
linking object files together to create the extension (or to create
a new static Python interpreter). Similar interpretation as for
'extra_compile_args'.
cythonize_options : [dictionary]
Keyword arguments passed on to cythonize.
"""
self._include_dirs = kwargs.pop('include_dirs', [])
self._library_dirs = kwargs.pop('library_dirs', [])
self._libraries = kwargs.pop('libraries', [])
self._extra_compile_args = kwargs.pop('extra_compile_args', [])
self._extra_compile_args.append(self.std_compile_flag)
self._extra_link_args = kwargs.pop('extra_link_args', [])
self._cythonize_options = kwargs.pop('cythonize_options', self._cythonize_options)
self._need_numpy = False
super().__init__(*args, **kwargs)
@property
def command(self):
command = [sys.executable, "setup.py", "build_ext", "--inplace"]
return command
def _prepare_files(self, routine, build_dir=os.curdir):
# NOTE : build_dir is used for testing purposes.
pyxfilename = self.module_name + '.pyx'
codefilename = "%s.%s" % (self.filename, self.generator.code_extension)
# pyx
with open(os.path.join(build_dir, pyxfilename), 'w') as f:
self.dump_pyx([routine], f, self.filename)
# setup.py
ext_args = [repr(self.module_name), repr([pyxfilename, codefilename])]
if self._need_numpy:
np_import = 'import numpy as np\n'
self._include_dirs.append('np.get_include()')
else:
np_import = ''
with open(os.path.join(build_dir, 'setup.py'), 'w') as f:
includes = str(self._include_dirs).replace("'np.get_include()'",
'np.get_include()')
f.write(self.setup_template.format(
ext_args=", ".join(ext_args),
np_import=np_import,
include_dirs=includes,
library_dirs=self._library_dirs,
libraries=self._libraries,
extra_compile_args=self._extra_compile_args,
extra_link_args=self._extra_link_args,
cythonize_options=self._cythonize_options
))
@classmethod
def _get_wrapped_function(cls, mod, name):
return getattr(mod, name + '_c')
def dump_pyx(self, routines, f, prefix):
"""Write a Cython file with Python wrappers
This file contains all the definitions of the routines in c code and
refers to the header file.
Arguments
---------
routines
List of Routine instances
f
File-like object to write the file to
prefix
The filename prefix, used to refer to the proper header file.
Only the basename of the prefix is used.
"""
headers = []
functions = []
for routine in routines:
prototype = self.generator.get_prototype(routine)
# C Function Header Import
headers.append(self.pyx_header.format(header_file=prefix,
prototype=prototype))
# Partition the C function arguments into categories
py_rets, py_args, py_loc, py_inf = self._partition_args(routine.arguments)
# Function prototype
name = routine.name
arg_string = ", ".join(self._prototype_arg(arg) for arg in py_args)
# Local Declarations
local_decs = []
for arg, val in py_inf.items():
proto = self._prototype_arg(arg)
mat, ind = [self._string_var(v) for v in val]
local_decs.append(" cdef {} = {}.shape[{}]".format(proto, mat, ind))
local_decs.extend([" cdef {}".format(self._declare_arg(a)) for a in py_loc])
declarations = "\n".join(local_decs)
if declarations:
declarations = declarations + "\n"
# Function Body
args_c = ", ".join([self._call_arg(a) for a in routine.arguments])
rets = ", ".join([self._string_var(r.name) for r in py_rets])
if routine.results:
body = ' return %s(%s)' % (routine.name, args_c)
if rets:
body = body + ', ' + rets
else:
body = ' %s(%s)\n' % (routine.name, args_c)
body = body + ' return ' + rets
functions.append(self.pyx_func.format(name=name, arg_string=arg_string,
declarations=declarations, body=body))
# Write text to file
if self._need_numpy:
# Only import numpy if required
f.write(self.pyx_imports)
f.write('\n'.join(headers))
f.write('\n'.join(functions))
def _partition_args(self, args):
"""Group function arguments into categories."""
py_args = []
py_returns = []
py_locals = []
py_inferred = {}
for arg in args:
if isinstance(arg, OutputArgument):
py_returns.append(arg)
py_locals.append(arg)
elif isinstance(arg, InOutArgument):
py_returns.append(arg)
py_args.append(arg)
else:
py_args.append(arg)
# Find arguments that are array dimensions. These can be inferred
# locally in the Cython code.
if isinstance(arg, (InputArgument, InOutArgument)) and arg.dimensions:
dims = [d[1] + 1 for d in arg.dimensions]
sym_dims = [(i, d) for (i, d) in enumerate(dims) if
isinstance(d, Symbol)]
for (i, d) in sym_dims:
py_inferred[d] = (arg.name, i)
for arg in args:
if arg.name in py_inferred:
py_inferred[arg] = py_inferred.pop(arg.name)
# Filter inferred arguments from py_args
py_args = [a for a in py_args if a not in py_inferred]
return py_returns, py_args, py_locals, py_inferred
def _prototype_arg(self, arg):
mat_dec = "np.ndarray[{mtype}, ndim={ndim}] {name}"
np_types = {'double': 'np.double_t',
'int': 'np.int_t'}
t = arg.get_datatype('c')
if arg.dimensions:
self._need_numpy = True
ndim = len(arg.dimensions)
mtype = np_types[t]
return mat_dec.format(mtype=mtype, ndim=ndim, name=self._string_var(arg.name))
else:
return "%s %s" % (t, self._string_var(arg.name))
def _declare_arg(self, arg):
proto = self._prototype_arg(arg)
if arg.dimensions:
shape = '(' + ','.join(self._string_var(i[1] + 1) for i in arg.dimensions) + ')'
return proto + " = np.empty({shape})".format(shape=shape)
else:
return proto + " = 0"
def _call_arg(self, arg):
if arg.dimensions:
t = arg.get_datatype('c')
return "<{}*> {}.data".format(t, self._string_var(arg.name))
elif isinstance(arg, ResultBase):
return "&{}".format(self._string_var(arg.name))
else:
return self._string_var(arg.name)
def _string_var(self, var):
printer = self.generator.printer.doprint
return printer(var)
class F2PyCodeWrapper(CodeWrapper):
"""Wrapper that uses f2py"""
def __init__(self, *args, **kwargs):
ext_keys = ['include_dirs', 'library_dirs', 'libraries',
'extra_compile_args', 'extra_link_args']
msg = ('The compilation option kwarg {} is not supported with the f2py '
'backend.')
for k in ext_keys:
if k in kwargs.keys():
warn(msg.format(k))
kwargs.pop(k, None)
super().__init__(*args, **kwargs)
@property
def command(self):
filename = self.filename + '.' + self.generator.code_extension
args = ['-c', '-m', self.module_name, filename]
command = [sys.executable, "-c", "import numpy.f2py as f2py2e;f2py2e.main()"]+args
return command
def _prepare_files(self, routine):
pass
@classmethod
def _get_wrapped_function(cls, mod, name):
return getattr(mod, name)
# Here we define a lookup of backends -> tuples of languages. For now, each
# tuple is of length 1, but if a backend supports more than one language,
# the most preferable language is listed first.
_lang_lookup = {'CYTHON': ('C99', 'C89', 'C'),
'F2PY': ('F95',),
'NUMPY': ('C99', 'C89', 'C'),
'DUMMY': ('F95',)} # Dummy here just for testing
def _infer_language(backend):
"""For a given backend, return the top choice of language"""
langs = _lang_lookup.get(backend.upper(), False)
if not langs:
raise ValueError("Unrecognized backend: " + backend)
return langs[0]
def _validate_backend_language(backend, language):
"""Throws error if backend and language are incompatible"""
langs = _lang_lookup.get(backend.upper(), False)
if not langs:
raise ValueError("Unrecognized backend: " + backend)
if language.upper() not in langs:
raise ValueError(("Backend {} and language {} are "
"incompatible").format(backend, language))
@cacheit
@doctest_depends_on(exe=('f2py', 'gfortran'), modules=('numpy',))
def autowrap(expr, language=None, backend='f2py', tempdir=None, args=None,
flags=None, verbose=False, helpers=None, code_gen=None, **kwargs):
"""Generates Python callable binaries based on the math expression.
Parameters
==========
expr
The SymPy expression that should be wrapped as a binary routine.
language : string, optional
If supplied, (options: 'C' or 'F95'), specifies the language of the
generated code. If ``None`` [default], the language is inferred based
upon the specified backend.
backend : string, optional
Backend used to wrap the generated code. Either 'f2py' [default],
or 'cython'.
tempdir : string, optional
Path to directory for temporary files. If this argument is supplied,
the generated code and the wrapper input files are left intact in the
specified path.
args : iterable, optional
An ordered iterable of symbols. Specifies the argument sequence for the
function.
flags : iterable, optional
Additional option flags that will be passed to the backend.
verbose : bool, optional
If True, autowrap will not mute the command line backends. This can be
helpful for debugging.
helpers : 3-tuple or iterable of 3-tuples, optional
Used to define auxiliary expressions needed for the main expr. If the
main expression needs to call a specialized function it should be
passed in via ``helpers``. Autowrap will then make sure that the
compiled main expression can link to the helper routine. Items should
be 3-tuples with (<function_name>, <sympy_expression>,
<argument_tuple>). It is mandatory to supply an argument sequence to
helper routines.
code_gen : CodeGen instance
An instance of a CodeGen subclass. Overrides ``language``.
include_dirs : [string]
A list of directories to search for C/C++ header files (in Unix form
for portability).
library_dirs : [string]
A list of directories to search for C/C++ libraries at link time.
libraries : [string]
A list of library names (not filenames or paths) to link against.
extra_compile_args : [string]
Any extra platform- and compiler-specific information to use when
compiling the source files in 'sources'. For platforms and compilers
where "command line" makes sense, this is typically a list of
command-line arguments, but for other platforms it could be anything.
extra_link_args : [string]
Any extra platform- and compiler-specific information to use when
linking object files together to create the extension (or to create a
new static Python interpreter). Similar interpretation as for
'extra_compile_args'.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.utilities.autowrap import autowrap
>>> expr = ((x - y + z)**(13)).expand()
>>> binary_func = autowrap(expr)
>>> binary_func(1, 4, 2)
-1.0
"""
if language:
if not isinstance(language, type):
_validate_backend_language(backend, language)
else:
language = _infer_language(backend)
# two cases 1) helpers is an iterable of 3-tuples and 2) helpers is a
# 3-tuple
if iterable(helpers) and len(helpers) != 0 and iterable(helpers[0]):
helpers = helpers if helpers else ()
else:
helpers = [helpers] if helpers else ()
args = list(args) if iterable(args, exclude=set) else args
if code_gen is None:
code_gen = get_code_generator(language, "autowrap")
CodeWrapperClass = {
'F2PY': F2PyCodeWrapper,
'CYTHON': CythonCodeWrapper,
'DUMMY': DummyWrapper
}[backend.upper()]
code_wrapper = CodeWrapperClass(code_gen, tempdir, flags if flags else (),
verbose, **kwargs)
helps = []
for name_h, expr_h, args_h in helpers:
helps.append(code_gen.routine(name_h, expr_h, args_h))
for name_h, expr_h, args_h in helpers:
if expr.has(expr_h):
name_h = binary_function(name_h, expr_h, backend='dummy')
expr = expr.subs(expr_h, name_h(*args_h))
try:
routine = code_gen.routine('autofunc', expr, args)
except CodeGenArgumentListError as e:
# if all missing arguments are for pure output, we simply attach them
# at the end and try again, because the wrappers will silently convert
# them to return values anyway.
new_args = []
for missing in e.missing_args:
if not isinstance(missing, OutputArgument):
raise
new_args.append(missing.name)
routine = code_gen.routine('autofunc', expr, args + new_args)
return code_wrapper.wrap_code(routine, helpers=helps)
@doctest_depends_on(exe=('f2py', 'gfortran'), modules=('numpy',))
def binary_function(symfunc, expr, **kwargs):
"""Returns a SymPy function with expr as binary implementation
This is a convenience function that automates the steps needed to
autowrap the SymPy expression and attaching it to a Function object
with implemented_function().
Parameters
==========
symfunc : SymPy Function
The function to bind the callable to.
expr : SymPy Expression
The expression used to generate the function.
kwargs : dict
Any kwargs accepted by autowrap.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.utilities.autowrap import binary_function
>>> expr = ((x - y)**(25)).expand()
>>> f = binary_function('f', expr)
>>> type(f)
<class 'sympy.core.function.UndefinedFunction'>
>>> 2*f(x, y)
2*f(x, y)
>>> f(x, y).evalf(2, subs={x: 1, y: 2})
-1.0
"""
binary = autowrap(expr, **kwargs)
return implemented_function(symfunc, binary)
#################################################################
# UFUNCIFY #
#################################################################
_ufunc_top = Template("""\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include ${include_file}
static PyMethodDef ${module}Methods[] = {
{NULL, NULL, 0, NULL}
};""")
_ufunc_outcalls = Template("*((double *)out${outnum}) = ${funcname}(${call_args});")
_ufunc_body = Template("""\
#ifdef NPY_1_19_API_VERSION
static void ${funcname}_ufunc(char **args, const npy_intp *dimensions, const npy_intp* steps, void* data)
#else
static void ${funcname}_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
#endif
{
npy_intp i;
npy_intp n = dimensions[0];
${declare_args}
${declare_steps}
for (i = 0; i < n; i++) {
${outcalls}
${step_increments}
}
}
PyUFuncGenericFunction ${funcname}_funcs[1] = {&${funcname}_ufunc};
static char ${funcname}_types[${n_types}] = ${types}
static void *${funcname}_data[1] = {NULL};""")
_ufunc_bottom = Template("""\
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"${module}",
NULL,
-1,
${module}Methods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_${module}(void)
{
PyObject *m, *d;
${function_creation}
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
${ufunc_init}
return m;
}
#else
PyMODINIT_FUNC init${module}(void)
{
PyObject *m, *d;
${function_creation}
m = Py_InitModule("${module}", ${module}Methods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
${ufunc_init}
}
#endif\
""")
_ufunc_init_form = Template("""\
ufunc${ind} = PyUFunc_FromFuncAndData(${funcname}_funcs, ${funcname}_data, ${funcname}_types, 1, ${n_in}, ${n_out},
PyUFunc_None, "${module}", ${docstring}, 0);
PyDict_SetItemString(d, "${funcname}", ufunc${ind});
Py_DECREF(ufunc${ind});""")
_ufunc_setup = Template("""\
from setuptools.extension import Extension
from setuptools import setup
from numpy import get_include
if __name__ == "__main__":
setup(ext_modules=[
Extension('${module}',
sources=['${module}.c', '${filename}.c'],
include_dirs=[get_include()])])
""")
class UfuncifyCodeWrapper(CodeWrapper):
"""Wrapper for Ufuncify"""
def __init__(self, *args, **kwargs):
ext_keys = ['include_dirs', 'library_dirs', 'libraries',
'extra_compile_args', 'extra_link_args']
msg = ('The compilation option kwarg {} is not supported with the numpy'
' backend.')
for k in ext_keys:
if k in kwargs.keys():
warn(msg.format(k))
kwargs.pop(k, None)
super().__init__(*args, **kwargs)
@property
def command(self):
command = [sys.executable, "setup.py", "build_ext", "--inplace"]
return command
def wrap_code(self, routines, helpers=None):
# This routine overrides CodeWrapper because we can't assume funcname == routines[0].name
# Therefore we have to break the CodeWrapper private API.
# There isn't an obvious way to extend multi-expr support to
# the other autowrap backends, so we limit this change to ufuncify.
helpers = helpers if helpers is not None else []
# We just need a consistent name
funcname = 'wrapped_' + str(id(routines) + id(helpers))
workdir = self.filepath or tempfile.mkdtemp("_sympy_compile")
if not os.access(workdir, os.F_OK):
os.mkdir(workdir)
oldwork = os.getcwd()
os.chdir(workdir)
try:
sys.path.append(workdir)
self._generate_code(routines, helpers)
self._prepare_files(routines, funcname)
self._process_files(routines)
mod = __import__(self.module_name)
finally:
sys.path.remove(workdir)
CodeWrapper._module_counter += 1
os.chdir(oldwork)
if not self.filepath:
try:
shutil.rmtree(workdir)
except OSError:
# Could be some issues on Windows
pass
return self._get_wrapped_function(mod, funcname)
def _generate_code(self, main_routines, helper_routines):
all_routines = main_routines + helper_routines
self.generator.write(
all_routines, self.filename, True, self.include_header,
self.include_empty)
def _prepare_files(self, routines, funcname):
# C
codefilename = self.module_name + '.c'
with open(codefilename, 'w') as f:
self.dump_c(routines, f, self.filename, funcname=funcname)
# setup.py
with open('setup.py', 'w') as f:
self.dump_setup(f)
@classmethod
def _get_wrapped_function(cls, mod, name):
return getattr(mod, name)
def dump_setup(self, f):
setup = _ufunc_setup.substitute(module=self.module_name,
filename=self.filename)
f.write(setup)
def dump_c(self, routines, f, prefix, funcname=None):
"""Write a C file with Python wrappers
This file contains all the definitions of the routines in c code.
Arguments
---------
routines
List of Routine instances
f
File-like object to write the file to
prefix
The filename prefix, used to name the imported module.
funcname
Name of the main function to be returned.
"""
if funcname is None:
if len(routines) == 1:
funcname = routines[0].name
else:
msg = 'funcname must be specified for multiple output routines'
raise ValueError(msg)
functions = []
function_creation = []
ufunc_init = []
module = self.module_name
include_file = "\"{}.h\"".format(prefix)
top = _ufunc_top.substitute(include_file=include_file, module=module)
name = funcname
# Partition the C function arguments into categories
# Here we assume all routines accept the same arguments
r_index = 0
py_in, _ = self._partition_args(routines[0].arguments)
n_in = len(py_in)
n_out = len(routines)
# Declare Args
form = "char *{0}{1} = args[{2}];"
arg_decs = [form.format('in', i, i) for i in range(n_in)]
arg_decs.extend([form.format('out', i, i+n_in) for i in range(n_out)])
declare_args = '\n '.join(arg_decs)
# Declare Steps
form = "npy_intp {0}{1}_step = steps[{2}];"
step_decs = [form.format('in', i, i) for i in range(n_in)]
step_decs.extend([form.format('out', i, i+n_in) for i in range(n_out)])
declare_steps = '\n '.join(step_decs)
# Call Args
form = "*(double *)in{0}"
call_args = ', '.join([form.format(a) for a in range(n_in)])
# Step Increments
form = "{0}{1} += {0}{1}_step;"
step_incs = [form.format('in', i) for i in range(n_in)]
step_incs.extend([form.format('out', i, i) for i in range(n_out)])
step_increments = '\n '.join(step_incs)
# Types
n_types = n_in + n_out
types = "{" + ', '.join(["NPY_DOUBLE"]*n_types) + "};"
# Docstring
docstring = '"Created in SymPy with Ufuncify"'
# Function Creation
function_creation.append("PyObject *ufunc{};".format(r_index))
# Ufunc initialization
init_form = _ufunc_init_form.substitute(module=module,
funcname=name,
docstring=docstring,
n_in=n_in, n_out=n_out,
ind=r_index)
ufunc_init.append(init_form)
outcalls = [_ufunc_outcalls.substitute(
outnum=i, call_args=call_args, funcname=routines[i].name) for i in
range(n_out)]
body = _ufunc_body.substitute(module=module, funcname=name,
declare_args=declare_args,
declare_steps=declare_steps,
call_args=call_args,
step_increments=step_increments,
n_types=n_types, types=types,
outcalls='\n '.join(outcalls))
functions.append(body)
body = '\n\n'.join(functions)
ufunc_init = '\n '.join(ufunc_init)
function_creation = '\n '.join(function_creation)
bottom = _ufunc_bottom.substitute(module=module,
ufunc_init=ufunc_init,
function_creation=function_creation)
text = [top, body, bottom]
f.write('\n\n'.join(text))
def _partition_args(self, args):
"""Group function arguments into categories."""
py_in = []
py_out = []
for arg in args:
if isinstance(arg, OutputArgument):
py_out.append(arg)
elif isinstance(arg, InOutArgument):
raise ValueError("Ufuncify doesn't support InOutArguments")
else:
py_in.append(arg)
return py_in, py_out
@cacheit
@doctest_depends_on(exe=('f2py', 'gfortran', 'gcc'), modules=('numpy',))
def ufuncify(args, expr, language=None, backend='numpy', tempdir=None,
flags=None, verbose=False, helpers=None, **kwargs):
"""Generates a binary function that supports broadcasting on numpy arrays.
Parameters
==========
args : iterable
Either a Symbol or an iterable of symbols. Specifies the argument
sequence for the function.
expr
A SymPy expression that defines the element wise operation.
language : string, optional
If supplied, (options: 'C' or 'F95'), specifies the language of the
generated code. If ``None`` [default], the language is inferred based
upon the specified backend.
backend : string, optional
Backend used to wrap the generated code. Either 'numpy' [default],
'cython', or 'f2py'.
tempdir : string, optional
Path to directory for temporary files. If this argument is supplied,
the generated code and the wrapper input files are left intact in
the specified path.
flags : iterable, optional
Additional option flags that will be passed to the backend.
verbose : bool, optional
If True, autowrap will not mute the command line backends. This can
be helpful for debugging.
helpers : iterable, optional
Used to define auxiliary expressions needed for the main expr. If
the main expression needs to call a specialized function it should
be put in the ``helpers`` iterable. Autowrap will then make sure
that the compiled main expression can link to the helper routine.
Items should be tuples with (<funtion_name>, <sympy_expression>,
<arguments>). It is mandatory to supply an argument sequence to
helper routines.
kwargs : dict
These kwargs will be passed to autowrap if the `f2py` or `cython`
backend is used and ignored if the `numpy` backend is used.
Notes
=====
The default backend ('numpy') will create actual instances of
``numpy.ufunc``. These support ndimensional broadcasting, and implicit type
conversion. Use of the other backends will result in a "ufunc-like"
function, which requires equal length 1-dimensional arrays for all
arguments, and will not perform any type conversions.
References
==========
.. [1] https://numpy.org/doc/stable/reference/ufuncs.html
Examples
========
>>> from sympy.utilities.autowrap import ufuncify
>>> from sympy.abc import x, y
>>> import numpy as np
>>> f = ufuncify((x, y), y + x**2)
>>> type(f)
<class 'numpy.ufunc'>
>>> f([1, 2, 3], 2)
array([ 3., 6., 11.])
>>> f(np.arange(5), 3)
array([ 3., 4., 7., 12., 19.])
For the 'f2py' and 'cython' backends, inputs are required to be equal length
1-dimensional arrays. The 'f2py' backend will perform type conversion, but
the Cython backend will error if the inputs are not of the expected type.
>>> f_fortran = ufuncify((x, y), y + x**2, backend='f2py')
>>> f_fortran(1, 2)
array([ 3.])
>>> f_fortran(np.array([1, 2, 3]), np.array([1.0, 2.0, 3.0]))
array([ 2., 6., 12.])
>>> f_cython = ufuncify((x, y), y + x**2, backend='Cython')
>>> f_cython(1, 2) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: Argument '_x' has incorrect type (expected numpy.ndarray, got int)
>>> f_cython(np.array([1.0]), np.array([2.0]))
array([ 3.])
"""
if isinstance(args, Symbol):
args = (args,)
else:
args = tuple(args)
if language:
_validate_backend_language(backend, language)
else:
language = _infer_language(backend)
helpers = helpers if helpers else ()
flags = flags if flags else ()
if backend.upper() == 'NUMPY':
# maxargs is set by numpy compile-time constant NPY_MAXARGS
# If a future version of numpy modifies or removes this restriction
# this variable should be changed or removed
maxargs = 32
helps = []
for name, expr, args in helpers:
helps.append(make_routine(name, expr, args))
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"), tempdir,
flags, verbose)
if not isinstance(expr, (list, tuple)):
expr = [expr]
if len(expr) == 0:
raise ValueError('Expression iterable has zero length')
if len(expr) + len(args) > maxargs:
msg = ('Cannot create ufunc with more than {0} total arguments: '
'got {1} in, {2} out')
raise ValueError(msg.format(maxargs, len(args), len(expr)))
routines = [make_routine('autofunc{}'.format(idx), exprx, args) for
idx, exprx in enumerate(expr)]
return code_wrapper.wrap_code(routines, helpers=helps)
else:
# Dummies are used for all added expressions to prevent name clashes
# within the original expression.
y = IndexedBase(Dummy('y'))
m = Dummy('m', integer=True)
i = Idx(Dummy('i', integer=True), m)
f_dummy = Dummy('f')
f = implemented_function('%s_%d' % (f_dummy.name, f_dummy.dummy_index), Lambda(args, expr))
# For each of the args create an indexed version.
indexed_args = [IndexedBase(Dummy(str(a))) for a in args]
# Order the arguments (out, args, dim)
args = [y] + indexed_args + [m]
args_with_indices = [a[i] for a in indexed_args]
return autowrap(Eq(y[i], f(*args_with_indices)), language, backend,
tempdir, args, flags, verbose, helpers, **kwargs)
|