File size: 41,270 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
"""Module for compiling codegen output, and wrap the binary for use in
python.

.. note:: To use the autowrap module it must first be imported

   >>> from sympy.utilities.autowrap import autowrap

This module provides a common interface for different external backends, such
as f2py, fwrap, Cython, SWIG(?) etc. (Currently only f2py and Cython are
implemented) The goal is to provide access to compiled binaries of acceptable
performance with a one-button user interface, e.g.,

    >>> from sympy.abc import x,y
    >>> expr = (x - y)**25
    >>> flat = expr.expand()
    >>> binary_callable = autowrap(flat)
    >>> binary_callable(2, 3)
    -1.0

Although a SymPy user might primarily be interested in working with
mathematical expressions and not in the details of wrapping tools
needed to evaluate such expressions efficiently in numerical form,
the user cannot do so without some understanding of the
limits in the target language. For example, the expanded expression
contains large coefficients which result in loss of precision when
computing the expression:

    >>> binary_callable(3, 2)
    0.0
    >>> binary_callable(4, 5), binary_callable(5, 4)
    (-22925376.0, 25165824.0)

Wrapping the unexpanded expression gives the expected behavior:

    >>> e = autowrap(expr)
    >>> e(4, 5), e(5, 4)
    (-1.0, 1.0)

The callable returned from autowrap() is a binary Python function, not a
SymPy object.  If it is desired to use the compiled function in symbolic
expressions, it is better to use binary_function() which returns a SymPy
Function object.  The binary callable is attached as the _imp_ attribute and
invoked when a numerical evaluation is requested with evalf(), or with
lambdify().

    >>> from sympy.utilities.autowrap import binary_function
    >>> f = binary_function('f', expr)
    >>> 2*f(x, y) + y
    y + 2*f(x, y)
    >>> (2*f(x, y) + y).evalf(2, subs={x: 1, y:2})
    0.e-110

When is this useful?

    1) For computations on large arrays, Python iterations may be too slow,
       and depending on the mathematical expression, it may be difficult to
       exploit the advanced index operations provided by NumPy.

    2) For *really* long expressions that will be called repeatedly, the
       compiled binary should be significantly faster than SymPy's .evalf()

    3) If you are generating code with the codegen utility in order to use
       it in another project, the automatic Python wrappers let you test the
       binaries immediately from within SymPy.

    4) To create customized ufuncs for use with numpy arrays.
       See *ufuncify*.

When is this module NOT the best approach?

    1) If you are really concerned about speed or memory optimizations,
       you will probably get better results by working directly with the
       wrapper tools and the low level code.  However, the files generated
       by this utility may provide a useful starting point and reference
       code. Temporary files will be left intact if you supply the keyword
       tempdir="path/to/files/".

    2) If the array computation can be handled easily by numpy, and you
       do not need the binaries for another project.

"""

import sys
import os
import shutil
import tempfile
from subprocess import STDOUT, CalledProcessError, check_output
from string import Template
from warnings import warn

from sympy.core.cache import cacheit
from sympy.core.function import Lambda
from sympy.core.relational import Eq
from sympy.core.symbol import Dummy, Symbol
from sympy.tensor.indexed import Idx, IndexedBase
from sympy.utilities.codegen import (make_routine, get_code_generator,
                                     OutputArgument, InOutArgument,
                                     InputArgument, CodeGenArgumentListError,
                                     Result, ResultBase, C99CodeGen)
from sympy.utilities.iterables import iterable
from sympy.utilities.lambdify import implemented_function
from sympy.utilities.decorator import doctest_depends_on

_doctest_depends_on = {'exe': ('f2py', 'gfortran', 'gcc'),
                       'modules': ('numpy',)}


class CodeWrapError(Exception):
    pass


class CodeWrapper:
    """Base Class for code wrappers"""
    _filename = "wrapped_code"
    _module_basename = "wrapper_module"
    _module_counter = 0

    @property
    def filename(self):
        return "%s_%s" % (self._filename, CodeWrapper._module_counter)

    @property
    def module_name(self):
        return "%s_%s" % (self._module_basename, CodeWrapper._module_counter)

    def __init__(self, generator, filepath=None, flags=[], verbose=False):
        """
        generator -- the code generator to use
        """
        self.generator = generator
        self.filepath = filepath
        self.flags = flags
        self.quiet = not verbose

    @property
    def include_header(self):
        return bool(self.filepath)

    @property
    def include_empty(self):
        return bool(self.filepath)

    def _generate_code(self, main_routine, routines):
        routines.append(main_routine)
        self.generator.write(
            routines, self.filename, True, self.include_header,
            self.include_empty)

    def wrap_code(self, routine, helpers=None):
        helpers = helpers or []
        if self.filepath:
            workdir = os.path.abspath(self.filepath)
        else:
            workdir = tempfile.mkdtemp("_sympy_compile")
        if not os.access(workdir, os.F_OK):
            os.mkdir(workdir)
        oldwork = os.getcwd()
        os.chdir(workdir)
        try:
            sys.path.append(workdir)
            self._generate_code(routine, helpers)
            self._prepare_files(routine)
            self._process_files(routine)
            mod = __import__(self.module_name)
        finally:
            sys.path.remove(workdir)
            CodeWrapper._module_counter += 1
            os.chdir(oldwork)
            if not self.filepath:
                try:
                    shutil.rmtree(workdir)
                except OSError:
                    # Could be some issues on Windows
                    pass

        return self._get_wrapped_function(mod, routine.name)

    def _process_files(self, routine):
        command = self.command
        command.extend(self.flags)
        try:
            retoutput = check_output(command, stderr=STDOUT)
        except CalledProcessError as e:
            raise CodeWrapError(
                "Error while executing command: %s. Command output is:\n%s" % (
                    " ".join(command), e.output.decode('utf-8')))
        if not self.quiet:
            print(retoutput)


class DummyWrapper(CodeWrapper):
    """Class used for testing independent of backends """

    template = """# dummy module for testing of SymPy
def %(name)s():
    return "%(expr)s"
%(name)s.args = "%(args)s"
%(name)s.returns = "%(retvals)s"
"""

    def _prepare_files(self, routine):
        return

    def _generate_code(self, routine, helpers):
        with open('%s.py' % self.module_name, 'w') as f:
            printed = ", ".join(
                [str(res.expr) for res in routine.result_variables])
            # convert OutputArguments to return value like f2py
            args = filter(lambda x: not isinstance(
                x, OutputArgument), routine.arguments)
            retvals = []
            for val in routine.result_variables:
                if isinstance(val, Result):
                    retvals.append('nameless')
                else:
                    retvals.append(val.result_var)

            print(DummyWrapper.template % {
                'name': routine.name,
                'expr': printed,
                'args': ", ".join([str(a.name) for a in args]),
                'retvals': ", ".join([str(val) for val in retvals])
            }, end="", file=f)

    def _process_files(self, routine):
        return

    @classmethod
    def _get_wrapped_function(cls, mod, name):
        return getattr(mod, name)


class CythonCodeWrapper(CodeWrapper):
    """Wrapper that uses Cython"""

    setup_template = """\
from setuptools import setup
from setuptools import Extension
from Cython.Build import cythonize
cy_opts = {cythonize_options}
{np_import}
ext_mods = [Extension(
    {ext_args},
    include_dirs={include_dirs},
    library_dirs={library_dirs},
    libraries={libraries},
    extra_compile_args={extra_compile_args},
    extra_link_args={extra_link_args}
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
"""

    _cythonize_options = {'compiler_directives':{'language_level' : "3"}}

    pyx_imports = (
        "import numpy as np\n"
        "cimport numpy as np\n\n")

    pyx_header = (
        "cdef extern from '{header_file}.h':\n"
        "    {prototype}\n\n")

    pyx_func = (
        "def {name}_c({arg_string}):\n"
        "\n"
        "{declarations}"
        "{body}")

    std_compile_flag = '-std=c99'

    def __init__(self, *args, **kwargs):
        """Instantiates a Cython code wrapper.

        The following optional parameters get passed to ``setuptools.Extension``
        for building the Python extension module. Read its documentation to
        learn more.

        Parameters
        ==========
        include_dirs : [list of strings]
            A list of directories to search for C/C++ header files (in Unix
            form for portability).
        library_dirs : [list of strings]
            A list of directories to search for C/C++ libraries at link time.
        libraries : [list of strings]
            A list of library names (not filenames or paths) to link against.
        extra_compile_args : [list of strings]
            Any extra platform- and compiler-specific information to use when
            compiling the source files in 'sources'.  For platforms and
            compilers where "command line" makes sense, this is typically a
            list of command-line arguments, but for other platforms it could be
            anything. Note that the attribute ``std_compile_flag`` will be
            appended to this list.
        extra_link_args : [list of strings]
            Any extra platform- and compiler-specific information to use when
            linking object files together to create the extension (or to create
            a new static Python interpreter). Similar interpretation as for
            'extra_compile_args'.
        cythonize_options : [dictionary]
            Keyword arguments passed on to cythonize.

        """

        self._include_dirs = kwargs.pop('include_dirs', [])
        self._library_dirs = kwargs.pop('library_dirs', [])
        self._libraries = kwargs.pop('libraries', [])
        self._extra_compile_args = kwargs.pop('extra_compile_args', [])
        self._extra_compile_args.append(self.std_compile_flag)
        self._extra_link_args = kwargs.pop('extra_link_args', [])
        self._cythonize_options = kwargs.pop('cythonize_options', self._cythonize_options)

        self._need_numpy = False

        super().__init__(*args, **kwargs)

    @property
    def command(self):
        command = [sys.executable, "setup.py", "build_ext", "--inplace"]
        return command

    def _prepare_files(self, routine, build_dir=os.curdir):
        # NOTE : build_dir is used for testing purposes.
        pyxfilename = self.module_name + '.pyx'
        codefilename = "%s.%s" % (self.filename, self.generator.code_extension)

        # pyx
        with open(os.path.join(build_dir, pyxfilename), 'w') as f:
            self.dump_pyx([routine], f, self.filename)

        # setup.py
        ext_args = [repr(self.module_name), repr([pyxfilename, codefilename])]
        if self._need_numpy:
            np_import = 'import numpy as np\n'
            self._include_dirs.append('np.get_include()')
        else:
            np_import = ''

        with open(os.path.join(build_dir, 'setup.py'), 'w') as f:
            includes = str(self._include_dirs).replace("'np.get_include()'",
                                                       'np.get_include()')
            f.write(self.setup_template.format(
                ext_args=", ".join(ext_args),
                np_import=np_import,
                include_dirs=includes,
                library_dirs=self._library_dirs,
                libraries=self._libraries,
                extra_compile_args=self._extra_compile_args,
                extra_link_args=self._extra_link_args,
                cythonize_options=self._cythonize_options
            ))

    @classmethod
    def _get_wrapped_function(cls, mod, name):
        return getattr(mod, name + '_c')

    def dump_pyx(self, routines, f, prefix):
        """Write a Cython file with Python wrappers

        This file contains all the definitions of the routines in c code and
        refers to the header file.

        Arguments
        ---------
        routines
            List of Routine instances
        f
            File-like object to write the file to
        prefix
            The filename prefix, used to refer to the proper header file.
            Only the basename of the prefix is used.
        """
        headers = []
        functions = []
        for routine in routines:
            prototype = self.generator.get_prototype(routine)

            # C Function Header Import
            headers.append(self.pyx_header.format(header_file=prefix,
                                                  prototype=prototype))

            # Partition the C function arguments into categories
            py_rets, py_args, py_loc, py_inf = self._partition_args(routine.arguments)

            # Function prototype
            name = routine.name
            arg_string = ", ".join(self._prototype_arg(arg) for arg in py_args)

            # Local Declarations
            local_decs = []
            for arg, val in py_inf.items():
                proto = self._prototype_arg(arg)
                mat, ind = [self._string_var(v) for v in val]
                local_decs.append("    cdef {} = {}.shape[{}]".format(proto, mat, ind))
            local_decs.extend(["    cdef {}".format(self._declare_arg(a)) for a in py_loc])
            declarations = "\n".join(local_decs)
            if declarations:
                declarations = declarations + "\n"

            # Function Body
            args_c = ", ".join([self._call_arg(a) for a in routine.arguments])
            rets = ", ".join([self._string_var(r.name) for r in py_rets])
            if routine.results:
                body = '    return %s(%s)' % (routine.name, args_c)
                if rets:
                    body = body + ', ' + rets
            else:
                body = '    %s(%s)\n' % (routine.name, args_c)
                body = body + '    return ' + rets

            functions.append(self.pyx_func.format(name=name, arg_string=arg_string,
                    declarations=declarations, body=body))

        # Write text to file
        if self._need_numpy:
            # Only import numpy if required
            f.write(self.pyx_imports)
        f.write('\n'.join(headers))
        f.write('\n'.join(functions))

    def _partition_args(self, args):
        """Group function arguments into categories."""
        py_args = []
        py_returns = []
        py_locals = []
        py_inferred = {}
        for arg in args:
            if isinstance(arg, OutputArgument):
                py_returns.append(arg)
                py_locals.append(arg)
            elif isinstance(arg, InOutArgument):
                py_returns.append(arg)
                py_args.append(arg)
            else:
                py_args.append(arg)
        # Find arguments that are array dimensions. These can be inferred
        # locally in the Cython code.
            if isinstance(arg, (InputArgument, InOutArgument)) and arg.dimensions:
                dims = [d[1] + 1 for d in arg.dimensions]
                sym_dims = [(i, d) for (i, d) in enumerate(dims) if
                            isinstance(d, Symbol)]
                for (i, d) in sym_dims:
                    py_inferred[d] = (arg.name, i)
        for arg in args:
            if arg.name in py_inferred:
                py_inferred[arg] = py_inferred.pop(arg.name)
        # Filter inferred arguments from py_args
        py_args = [a for a in py_args if a not in py_inferred]
        return py_returns, py_args, py_locals, py_inferred

    def _prototype_arg(self, arg):
        mat_dec = "np.ndarray[{mtype}, ndim={ndim}] {name}"
        np_types = {'double': 'np.double_t',
                    'int': 'np.int_t'}
        t = arg.get_datatype('c')
        if arg.dimensions:
            self._need_numpy = True
            ndim = len(arg.dimensions)
            mtype = np_types[t]
            return mat_dec.format(mtype=mtype, ndim=ndim, name=self._string_var(arg.name))
        else:
            return "%s %s" % (t, self._string_var(arg.name))

    def _declare_arg(self, arg):
        proto = self._prototype_arg(arg)
        if arg.dimensions:
            shape = '(' + ','.join(self._string_var(i[1] + 1) for i in arg.dimensions) + ')'
            return proto + " = np.empty({shape})".format(shape=shape)
        else:
            return proto + " = 0"

    def _call_arg(self, arg):
        if arg.dimensions:
            t = arg.get_datatype('c')
            return "<{}*> {}.data".format(t, self._string_var(arg.name))
        elif isinstance(arg, ResultBase):
            return "&{}".format(self._string_var(arg.name))
        else:
            return self._string_var(arg.name)

    def _string_var(self, var):
        printer = self.generator.printer.doprint
        return printer(var)


class F2PyCodeWrapper(CodeWrapper):
    """Wrapper that uses f2py"""

    def __init__(self, *args, **kwargs):

        ext_keys = ['include_dirs', 'library_dirs', 'libraries',
                    'extra_compile_args', 'extra_link_args']
        msg = ('The compilation option kwarg {} is not supported with the f2py '
               'backend.')

        for k in ext_keys:
            if k in kwargs.keys():
                warn(msg.format(k))
            kwargs.pop(k, None)

        super().__init__(*args, **kwargs)

    @property
    def command(self):
        filename = self.filename + '.' + self.generator.code_extension
        args = ['-c', '-m', self.module_name, filename]
        command = [sys.executable, "-c", "import numpy.f2py as f2py2e;f2py2e.main()"]+args
        return command

    def _prepare_files(self, routine):
        pass

    @classmethod
    def _get_wrapped_function(cls, mod, name):
        return getattr(mod, name)


# Here we define a lookup of backends -> tuples of languages. For now, each
# tuple is of length 1, but if a backend supports more than one language,
# the most preferable language is listed first.
_lang_lookup = {'CYTHON': ('C99', 'C89', 'C'),
                'F2PY': ('F95',),
                'NUMPY': ('C99', 'C89', 'C'),
                'DUMMY': ('F95',)}     # Dummy here just for testing


def _infer_language(backend):
    """For a given backend, return the top choice of language"""
    langs = _lang_lookup.get(backend.upper(), False)
    if not langs:
        raise ValueError("Unrecognized backend: " + backend)
    return langs[0]


def _validate_backend_language(backend, language):
    """Throws error if backend and language are incompatible"""
    langs = _lang_lookup.get(backend.upper(), False)
    if not langs:
        raise ValueError("Unrecognized backend: " + backend)
    if language.upper() not in langs:
        raise ValueError(("Backend {} and language {} are "
                          "incompatible").format(backend, language))


@cacheit
@doctest_depends_on(exe=('f2py', 'gfortran'), modules=('numpy',))
def autowrap(expr, language=None, backend='f2py', tempdir=None, args=None,
             flags=None, verbose=False, helpers=None, code_gen=None, **kwargs):
    """Generates Python callable binaries based on the math expression.

    Parameters
    ==========

    expr
        The SymPy expression that should be wrapped as a binary routine.
    language : string, optional
        If supplied, (options: 'C' or 'F95'), specifies the language of the
        generated code. If ``None`` [default], the language is inferred based
        upon the specified backend.
    backend : string, optional
        Backend used to wrap the generated code. Either 'f2py' [default],
        or 'cython'.
    tempdir : string, optional
        Path to directory for temporary files. If this argument is supplied,
        the generated code and the wrapper input files are left intact in the
        specified path.
    args : iterable, optional
        An ordered iterable of symbols. Specifies the argument sequence for the
        function.
    flags : iterable, optional
        Additional option flags that will be passed to the backend.
    verbose : bool, optional
        If True, autowrap will not mute the command line backends. This can be
        helpful for debugging.
    helpers : 3-tuple or iterable of 3-tuples, optional
        Used to define auxiliary expressions needed for the main expr. If the
        main expression needs to call a specialized function it should be
        passed in via ``helpers``. Autowrap will then make sure that the
        compiled main expression can link to the helper routine. Items should
        be 3-tuples with (<function_name>, <sympy_expression>,
        <argument_tuple>). It is mandatory to supply an argument sequence to
        helper routines.
    code_gen : CodeGen instance
        An instance of a CodeGen subclass. Overrides ``language``.
    include_dirs : [string]
        A list of directories to search for C/C++ header files (in Unix form
        for portability).
    library_dirs : [string]
        A list of directories to search for C/C++ libraries at link time.
    libraries : [string]
        A list of library names (not filenames or paths) to link against.
    extra_compile_args : [string]
        Any extra platform- and compiler-specific information to use when
        compiling the source files in 'sources'.  For platforms and compilers
        where "command line" makes sense, this is typically a list of
        command-line arguments, but for other platforms it could be anything.
    extra_link_args : [string]
        Any extra platform- and compiler-specific information to use when
        linking object files together to create the extension (or to create a
        new static Python interpreter).  Similar interpretation as for
        'extra_compile_args'.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.utilities.autowrap import autowrap
    >>> expr = ((x - y + z)**(13)).expand()
    >>> binary_func = autowrap(expr)
    >>> binary_func(1, 4, 2)
    -1.0

    """
    if language:
        if not isinstance(language, type):
            _validate_backend_language(backend, language)
    else:
        language = _infer_language(backend)

    # two cases 1) helpers is an iterable of 3-tuples and 2) helpers is a
    # 3-tuple
    if iterable(helpers) and len(helpers) != 0 and iterable(helpers[0]):
        helpers = helpers if helpers else ()
    else:
        helpers = [helpers] if helpers else ()
    args = list(args) if iterable(args, exclude=set) else args

    if code_gen is None:
        code_gen = get_code_generator(language, "autowrap")

    CodeWrapperClass = {
        'F2PY': F2PyCodeWrapper,
        'CYTHON': CythonCodeWrapper,
        'DUMMY': DummyWrapper
    }[backend.upper()]
    code_wrapper = CodeWrapperClass(code_gen, tempdir, flags if flags else (),
                                    verbose, **kwargs)

    helps = []
    for name_h, expr_h, args_h in helpers:
        helps.append(code_gen.routine(name_h, expr_h, args_h))

    for name_h, expr_h, args_h in helpers:
        if expr.has(expr_h):
            name_h = binary_function(name_h, expr_h, backend='dummy')
            expr = expr.subs(expr_h, name_h(*args_h))
    try:
        routine = code_gen.routine('autofunc', expr, args)
    except CodeGenArgumentListError as e:
        # if all missing arguments are for pure output, we simply attach them
        # at the end and try again, because the wrappers will silently convert
        # them to return values anyway.
        new_args = []
        for missing in e.missing_args:
            if not isinstance(missing, OutputArgument):
                raise
            new_args.append(missing.name)
        routine = code_gen.routine('autofunc', expr, args + new_args)

    return code_wrapper.wrap_code(routine, helpers=helps)


@doctest_depends_on(exe=('f2py', 'gfortran'), modules=('numpy',))
def binary_function(symfunc, expr, **kwargs):
    """Returns a SymPy function with expr as binary implementation

    This is a convenience function that automates the steps needed to
    autowrap the SymPy expression and attaching it to a Function object
    with implemented_function().

    Parameters
    ==========

    symfunc : SymPy Function
        The function to bind the callable to.
    expr : SymPy Expression
        The expression used to generate the function.
    kwargs : dict
        Any kwargs accepted by autowrap.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.utilities.autowrap import binary_function
    >>> expr = ((x - y)**(25)).expand()
    >>> f = binary_function('f', expr)
    >>> type(f)
    <class 'sympy.core.function.UndefinedFunction'>
    >>> 2*f(x, y)
    2*f(x, y)
    >>> f(x, y).evalf(2, subs={x: 1, y: 2})
    -1.0

    """
    binary = autowrap(expr, **kwargs)
    return implemented_function(symfunc, binary)

#################################################################
#                           UFUNCIFY                            #
#################################################################

_ufunc_top = Template("""\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include ${include_file}

static PyMethodDef ${module}Methods[] = {
        {NULL, NULL, 0, NULL}
};""")

_ufunc_outcalls = Template("*((double *)out${outnum}) = ${funcname}(${call_args});")

_ufunc_body = Template("""\
#ifdef NPY_1_19_API_VERSION
static void ${funcname}_ufunc(char **args, const npy_intp *dimensions, const npy_intp* steps, void* data)
#else
static void ${funcname}_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
#endif
{
    npy_intp i;
    npy_intp n = dimensions[0];
    ${declare_args}
    ${declare_steps}
    for (i = 0; i < n; i++) {
        ${outcalls}
        ${step_increments}
    }
}
PyUFuncGenericFunction ${funcname}_funcs[1] = {&${funcname}_ufunc};
static char ${funcname}_types[${n_types}] = ${types}
static void *${funcname}_data[1] = {NULL};""")

_ufunc_bottom = Template("""\
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
    PyModuleDef_HEAD_INIT,
    "${module}",
    NULL,
    -1,
    ${module}Methods,
    NULL,
    NULL,
    NULL,
    NULL
};

PyMODINIT_FUNC PyInit_${module}(void)
{
    PyObject *m, *d;
    ${function_creation}
    m = PyModule_Create(&moduledef);
    if (!m) {
        return NULL;
    }
    import_array();
    import_umath();
    d = PyModule_GetDict(m);
    ${ufunc_init}
    return m;
}
#else
PyMODINIT_FUNC init${module}(void)
{
    PyObject *m, *d;
    ${function_creation}
    m = Py_InitModule("${module}", ${module}Methods);
    if (m == NULL) {
        return;
    }
    import_array();
    import_umath();
    d = PyModule_GetDict(m);
    ${ufunc_init}
}
#endif\
""")

_ufunc_init_form = Template("""\
ufunc${ind} = PyUFunc_FromFuncAndData(${funcname}_funcs, ${funcname}_data, ${funcname}_types, 1, ${n_in}, ${n_out},
            PyUFunc_None, "${module}", ${docstring}, 0);
    PyDict_SetItemString(d, "${funcname}", ufunc${ind});
    Py_DECREF(ufunc${ind});""")

_ufunc_setup = Template("""\
from setuptools.extension import Extension
from setuptools import setup

from numpy import get_include

if __name__ == "__main__":
    setup(ext_modules=[
        Extension('${module}',
                  sources=['${module}.c', '${filename}.c'],
                  include_dirs=[get_include()])])
""")


class UfuncifyCodeWrapper(CodeWrapper):
    """Wrapper for Ufuncify"""

    def __init__(self, *args, **kwargs):

        ext_keys = ['include_dirs', 'library_dirs', 'libraries',
                    'extra_compile_args', 'extra_link_args']
        msg = ('The compilation option kwarg {} is not supported with the numpy'
               ' backend.')

        for k in ext_keys:
            if k in kwargs.keys():
                warn(msg.format(k))
            kwargs.pop(k, None)

        super().__init__(*args, **kwargs)

    @property
    def command(self):
        command = [sys.executable, "setup.py", "build_ext", "--inplace"]
        return command

    def wrap_code(self, routines, helpers=None):
        # This routine overrides CodeWrapper because we can't assume funcname == routines[0].name
        # Therefore we have to break the CodeWrapper private API.
        # There isn't an obvious way to extend multi-expr support to
        # the other autowrap backends, so we limit this change to ufuncify.
        helpers = helpers if helpers is not None else []
        # We just need a consistent name
        funcname = 'wrapped_' + str(id(routines) + id(helpers))

        workdir = self.filepath or tempfile.mkdtemp("_sympy_compile")
        if not os.access(workdir, os.F_OK):
            os.mkdir(workdir)
        oldwork = os.getcwd()
        os.chdir(workdir)
        try:
            sys.path.append(workdir)
            self._generate_code(routines, helpers)
            self._prepare_files(routines, funcname)
            self._process_files(routines)
            mod = __import__(self.module_name)
        finally:
            sys.path.remove(workdir)
            CodeWrapper._module_counter += 1
            os.chdir(oldwork)
            if not self.filepath:
                try:
                    shutil.rmtree(workdir)
                except OSError:
                    # Could be some issues on Windows
                    pass

        return self._get_wrapped_function(mod, funcname)

    def _generate_code(self, main_routines, helper_routines):
        all_routines = main_routines + helper_routines
        self.generator.write(
            all_routines, self.filename, True, self.include_header,
            self.include_empty)

    def _prepare_files(self, routines, funcname):

        # C
        codefilename = self.module_name + '.c'
        with open(codefilename, 'w') as f:
            self.dump_c(routines, f, self.filename, funcname=funcname)

        # setup.py
        with open('setup.py', 'w') as f:
            self.dump_setup(f)

    @classmethod
    def _get_wrapped_function(cls, mod, name):
        return getattr(mod, name)

    def dump_setup(self, f):
        setup = _ufunc_setup.substitute(module=self.module_name,
                                        filename=self.filename)
        f.write(setup)

    def dump_c(self, routines, f, prefix, funcname=None):
        """Write a C file with Python wrappers

        This file contains all the definitions of the routines in c code.

        Arguments
        ---------
        routines
            List of Routine instances
        f
            File-like object to write the file to
        prefix
            The filename prefix, used to name the imported module.
        funcname
            Name of the main function to be returned.
        """
        if funcname is None:
            if len(routines) == 1:
                funcname = routines[0].name
            else:
                msg = 'funcname must be specified for multiple output routines'
                raise ValueError(msg)
        functions = []
        function_creation = []
        ufunc_init = []
        module = self.module_name
        include_file = "\"{}.h\"".format(prefix)
        top = _ufunc_top.substitute(include_file=include_file, module=module)

        name = funcname

        # Partition the C function arguments into categories
        # Here we assume all routines accept the same arguments
        r_index = 0
        py_in, _ = self._partition_args(routines[0].arguments)
        n_in = len(py_in)
        n_out = len(routines)

        # Declare Args
        form = "char *{0}{1} = args[{2}];"
        arg_decs = [form.format('in', i, i) for i in range(n_in)]
        arg_decs.extend([form.format('out', i, i+n_in) for i in range(n_out)])
        declare_args = '\n    '.join(arg_decs)

        # Declare Steps
        form = "npy_intp {0}{1}_step = steps[{2}];"
        step_decs = [form.format('in', i, i) for i in range(n_in)]
        step_decs.extend([form.format('out', i, i+n_in) for i in range(n_out)])
        declare_steps = '\n    '.join(step_decs)

        # Call Args
        form = "*(double *)in{0}"
        call_args = ', '.join([form.format(a) for a in range(n_in)])

        # Step Increments
        form = "{0}{1} += {0}{1}_step;"
        step_incs = [form.format('in', i) for i in range(n_in)]
        step_incs.extend([form.format('out', i, i) for i in range(n_out)])
        step_increments = '\n        '.join(step_incs)

        # Types
        n_types = n_in + n_out
        types = "{" + ', '.join(["NPY_DOUBLE"]*n_types) + "};"

        # Docstring
        docstring = '"Created in SymPy with Ufuncify"'

        # Function Creation
        function_creation.append("PyObject *ufunc{};".format(r_index))

        # Ufunc initialization
        init_form = _ufunc_init_form.substitute(module=module,
                                                funcname=name,
                                                docstring=docstring,
                                                n_in=n_in, n_out=n_out,
                                                ind=r_index)
        ufunc_init.append(init_form)

        outcalls = [_ufunc_outcalls.substitute(
            outnum=i, call_args=call_args, funcname=routines[i].name) for i in
            range(n_out)]

        body = _ufunc_body.substitute(module=module, funcname=name,
                                      declare_args=declare_args,
                                      declare_steps=declare_steps,
                                      call_args=call_args,
                                      step_increments=step_increments,
                                      n_types=n_types, types=types,
                                      outcalls='\n        '.join(outcalls))
        functions.append(body)

        body = '\n\n'.join(functions)
        ufunc_init = '\n    '.join(ufunc_init)
        function_creation = '\n    '.join(function_creation)
        bottom = _ufunc_bottom.substitute(module=module,
                                          ufunc_init=ufunc_init,
                                          function_creation=function_creation)
        text = [top, body, bottom]
        f.write('\n\n'.join(text))

    def _partition_args(self, args):
        """Group function arguments into categories."""
        py_in = []
        py_out = []
        for arg in args:
            if isinstance(arg, OutputArgument):
                py_out.append(arg)
            elif isinstance(arg, InOutArgument):
                raise ValueError("Ufuncify doesn't support InOutArguments")
            else:
                py_in.append(arg)
        return py_in, py_out


@cacheit
@doctest_depends_on(exe=('f2py', 'gfortran', 'gcc'), modules=('numpy',))
def ufuncify(args, expr, language=None, backend='numpy', tempdir=None,
             flags=None, verbose=False, helpers=None, **kwargs):
    """Generates a binary function that supports broadcasting on numpy arrays.

    Parameters
    ==========

    args : iterable
        Either a Symbol or an iterable of symbols. Specifies the argument
        sequence for the function.
    expr
        A SymPy expression that defines the element wise operation.
    language : string, optional
        If supplied, (options: 'C' or 'F95'), specifies the language of the
        generated code. If ``None`` [default], the language is inferred based
        upon the specified backend.
    backend : string, optional
        Backend used to wrap the generated code. Either 'numpy' [default],
        'cython', or 'f2py'.
    tempdir : string, optional
        Path to directory for temporary files. If this argument is supplied,
        the generated code and the wrapper input files are left intact in
        the specified path.
    flags : iterable, optional
        Additional option flags that will be passed to the backend.
    verbose : bool, optional
        If True, autowrap will not mute the command line backends. This can
        be helpful for debugging.
    helpers : iterable, optional
        Used to define auxiliary expressions needed for the main expr. If
        the main expression needs to call a specialized function it should
        be put in the ``helpers`` iterable. Autowrap will then make sure
        that the compiled main expression can link to the helper routine.
        Items should be tuples with (<funtion_name>, <sympy_expression>,
        <arguments>). It is mandatory to supply an argument sequence to
        helper routines.
    kwargs : dict
        These kwargs will be passed to autowrap if the `f2py` or `cython`
        backend is used and ignored if the `numpy` backend is used.

    Notes
    =====

    The default backend ('numpy') will create actual instances of
    ``numpy.ufunc``. These support ndimensional broadcasting, and implicit type
    conversion. Use of the other backends will result in a "ufunc-like"
    function, which requires equal length 1-dimensional arrays for all
    arguments, and will not perform any type conversions.

    References
    ==========

    .. [1] https://numpy.org/doc/stable/reference/ufuncs.html

    Examples
    ========

    >>> from sympy.utilities.autowrap import ufuncify
    >>> from sympy.abc import x, y
    >>> import numpy as np
    >>> f = ufuncify((x, y), y + x**2)
    >>> type(f)
    <class 'numpy.ufunc'>
    >>> f([1, 2, 3], 2)
    array([  3.,   6.,  11.])
    >>> f(np.arange(5), 3)
    array([  3.,   4.,   7.,  12.,  19.])

    For the 'f2py' and 'cython' backends, inputs are required to be equal length
    1-dimensional arrays. The 'f2py' backend will perform type conversion, but
    the Cython backend will error if the inputs are not of the expected type.

    >>> f_fortran = ufuncify((x, y), y + x**2, backend='f2py')
    >>> f_fortran(1, 2)
    array([ 3.])
    >>> f_fortran(np.array([1, 2, 3]), np.array([1.0, 2.0, 3.0]))
    array([  2.,   6.,  12.])
    >>> f_cython = ufuncify((x, y), y + x**2, backend='Cython')
    >>> f_cython(1, 2)  # doctest: +ELLIPSIS
    Traceback (most recent call last):
      ...
    TypeError: Argument '_x' has incorrect type (expected numpy.ndarray, got int)
    >>> f_cython(np.array([1.0]), np.array([2.0]))
    array([ 3.])

    """

    if isinstance(args, Symbol):
        args = (args,)
    else:
        args = tuple(args)

    if language:
        _validate_backend_language(backend, language)
    else:
        language = _infer_language(backend)

    helpers = helpers if helpers else ()
    flags = flags if flags else ()

    if backend.upper() == 'NUMPY':
        # maxargs is set by numpy compile-time constant NPY_MAXARGS
        # If a future version of numpy modifies or removes this restriction
        # this variable should be changed or removed
        maxargs = 32
        helps = []
        for name, expr, args in helpers:
            helps.append(make_routine(name, expr, args))
        code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"), tempdir,
                                           flags, verbose)
        if not isinstance(expr, (list, tuple)):
            expr = [expr]
        if len(expr) == 0:
            raise ValueError('Expression iterable has zero length')
        if len(expr) + len(args) > maxargs:
            msg = ('Cannot create ufunc with more than {0} total arguments: '
                   'got {1} in, {2} out')
            raise ValueError(msg.format(maxargs, len(args), len(expr)))
        routines = [make_routine('autofunc{}'.format(idx), exprx, args) for
                    idx, exprx in enumerate(expr)]
        return code_wrapper.wrap_code(routines, helpers=helps)
    else:
        # Dummies are used for all added expressions to prevent name clashes
        # within the original expression.
        y = IndexedBase(Dummy('y'))
        m = Dummy('m', integer=True)
        i = Idx(Dummy('i', integer=True), m)
        f_dummy = Dummy('f')
        f = implemented_function('%s_%d' % (f_dummy.name, f_dummy.dummy_index), Lambda(args, expr))
        # For each of the args create an indexed version.
        indexed_args = [IndexedBase(Dummy(str(a))) for a in args]
        # Order the arguments (out, args, dim)
        args = [y] + indexed_args + [m]
        args_with_indices = [a[i] for a in indexed_args]
        return autowrap(Eq(y[i], f(*args_with_indices)), language, backend,
                        tempdir, args, flags, verbose, helpers, **kwargs)