File size: 168,384 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
"""
This module defines tensors with abstract index notation.

The abstract index notation has been first formalized by Penrose.

Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.

The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.

For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.

A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.

The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.

Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.

If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""

from __future__ import annotations
from typing import Any
from functools import reduce
from math import prod

from abc import abstractmethod, ABC
from collections import defaultdict
import operator
import itertools
from sympy.core.numbers import (Integer, Rational)
from sympy.combinatorics import Permutation
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
    bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.cache import clear_cache
from sympy.core.containers import Tuple, Dict
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.external.gmpy import SYMPY_INTS
from sympy.matrices import eye
from sympy.utilities.exceptions import (sympy_deprecation_warning,
                                        SymPyDeprecationWarning,
                                        ignore_warnings)
from sympy.utilities.decorator import memoize_property, deprecated
from sympy.utilities.iterables import sift


def deprecate_data():
    sympy_deprecation_warning(
        """
        The data attribute of TensorIndexType is deprecated. Use The
        replace_with_arrays() method instead.
        """,
        deprecated_since_version="1.4",
        active_deprecations_target="deprecated-tensorindextype-attrs",
        stacklevel=4,
    )

def deprecate_fun_eval():
    sympy_deprecation_warning(
        """
        The Tensor.fun_eval() method is deprecated. Use
        Tensor.substitute_indices() instead.
        """,
        deprecated_since_version="1.5",
        active_deprecations_target="deprecated-tensor-fun-eval",
        stacklevel=4,
    )


def deprecate_call():
    sympy_deprecation_warning(
        """
        Calling a tensor like Tensor(*indices) is deprecated. Use
        Tensor.substitute_indices() instead.
        """,
        deprecated_since_version="1.5",
        active_deprecations_target="deprecated-tensor-fun-eval",
        stacklevel=4,
    )


class _IndexStructure(CantSympify):
    """
    This class handles the indices (free and dummy ones). It contains the
    algorithms to manage the dummy indices replacements and contractions of
    free indices under multiplications of tensor expressions, as well as stuff
    related to canonicalization sorting, getting the permutation of the
    expression and so on. It also includes tools to get the ``TensorIndex``
    objects corresponding to the given index structure.
    """

    def __init__(self, free, dum, index_types, indices, canon_bp=False):
        self.free = free
        self.dum = dum
        self.index_types = index_types
        self.indices = indices
        self._ext_rank = len(self.free) + 2*len(self.dum)
        self.dum.sort(key=lambda x: x[0])

    @staticmethod
    def from_indices(*indices):
        """
        Create a new ``_IndexStructure`` object from a list of ``indices``.

        Explanation
        ===========

        ``indices``     ``TensorIndex`` objects, the indices. Contractions are
                        detected upon construction.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
        >>> _IndexStructure.from_indices(m0, m1, -m1, m3)
        _IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
        """

        free, dum = _IndexStructure._free_dum_from_indices(*indices)
        index_types = [i.tensor_index_type for i in indices]
        indices = _IndexStructure._replace_dummy_names(indices, free, dum)
        return _IndexStructure(free, dum, index_types, indices)

    @staticmethod
    def from_components_free_dum(components, free, dum):
        index_types = []
        for component in components:
            index_types.extend(component.index_types)
        indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
        return _IndexStructure(free, dum, index_types, indices)

    @staticmethod
    def _free_dum_from_indices(*indices):
        """
        Convert ``indices`` into ``free``, ``dum`` for single component tensor.

        Explanation
        ===========

        ``free``     list of tuples ``(index, pos, 0)``,
                     where ``pos`` is the position of index in
                     the list of indices formed by the component tensors

        ``dum``      list of tuples ``(pos_contr, pos_cov, 0, 0)``

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
            _IndexStructure
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
        >>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
        ([(m0, 0), (m3, 3)], [(1, 2)])
        """
        n = len(indices)
        if n == 1:
            return [(indices[0], 0)], []

        # find the positions of the free indices and of the dummy indices
        free = [True]*len(indices)
        index_dict = {}
        dum = []
        for i, index in enumerate(indices):
            name = index.name
            typ = index.tensor_index_type
            contr = index.is_up
            if (name, typ) in index_dict:
                # found a pair of dummy indices
                is_contr, pos = index_dict[(name, typ)]
                # check consistency and update free
                if is_contr:
                    if contr:
                        raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
                    else:
                        free[pos] = False
                        free[i] = False
                else:
                    if contr:
                        free[pos] = False
                        free[i] = False
                    else:
                        raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
                if contr:
                    dum.append((i, pos))
                else:
                    dum.append((pos, i))
            else:
                index_dict[(name, typ)] = index.is_up, i

        free = [(index, i) for i, index in enumerate(indices) if free[i]]
        free.sort()
        return free, dum

    def get_indices(self):
        """
        Get a list of indices, creating new tensor indices to complete dummy indices.
        """
        return self.indices[:]

    @staticmethod
    def generate_indices_from_free_dum_index_types(free, dum, index_types):
        indices = [None]*(len(free)+2*len(dum))
        for idx, pos in free:
            indices[pos] = idx

        generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
        for pos1, pos2 in dum:
            typ1 = index_types[pos1]
            indname = generate_dummy_name(typ1)
            indices[pos1] = TensorIndex(indname, typ1, True)
            indices[pos2] = TensorIndex(indname, typ1, False)

        return _IndexStructure._replace_dummy_names(indices, free, dum)

    @staticmethod
    def _get_generator_for_dummy_indices(free):
        cdt = defaultdict(int)
        # if the free indices have names with dummy_name, start with an
        # index higher than those for the dummy indices
        # to avoid name collisions
        for indx, ipos in free:
            if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name:
                cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1)

        def dummy_name_gen(tensor_index_type):
            nd = str(cdt[tensor_index_type])
            cdt[tensor_index_type] += 1
            return tensor_index_type.dummy_name + '_' + nd

        return dummy_name_gen

    @staticmethod
    def _replace_dummy_names(indices, free, dum):
        dum.sort(key=lambda x: x[0])
        new_indices = list(indices)
        assert len(indices) == len(free) + 2*len(dum)
        generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
        for ipos1, ipos2 in dum:
            typ1 = new_indices[ipos1].tensor_index_type
            indname = generate_dummy_name(typ1)
            new_indices[ipos1] = TensorIndex(indname, typ1, True)
            new_indices[ipos2] = TensorIndex(indname, typ1, False)
        return new_indices

    def get_free_indices(self) -> list[TensorIndex]:
        """
        Get a list of free indices.
        """
        # get sorted indices according to their position:
        free = sorted(self.free, key=lambda x: x[1])
        return [i[0] for i in free]

    def __str__(self):
        return "_IndexStructure({}, {}, {})".format(self.free, self.dum, self.index_types)

    def __repr__(self):
        return self.__str__()

    def _get_sorted_free_indices_for_canon(self):
        sorted_free = self.free[:]
        sorted_free.sort(key=lambda x: x[0])
        return sorted_free

    def _get_sorted_dum_indices_for_canon(self):
        return sorted(self.dum, key=lambda x: x[0])

    def _get_lexicographically_sorted_index_types(self):
        permutation = self.indices_canon_args()[0]
        index_types = [None]*self._ext_rank
        for i, it in enumerate(self.index_types):
            index_types[permutation(i)] = it
        return index_types

    def _get_lexicographically_sorted_indices(self):
        permutation = self.indices_canon_args()[0]
        indices = [None]*self._ext_rank
        for i, it in enumerate(self.indices):
            indices[permutation(i)] = it
        return indices

    def perm2tensor(self, g, is_canon_bp=False):
        """
        Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``.

        Explanation
        ===========

        ``g``  permutation corresponding to the tensor in the representation
        used in canonicalization

        ``is_canon_bp``   if True, then ``g`` is the permutation
        corresponding to the canonical form of the tensor
        """
        sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
        lex_index_types = self._get_lexicographically_sorted_index_types()
        lex_indices = self._get_lexicographically_sorted_indices()
        nfree = len(sorted_free)
        rank = self._ext_rank
        dum = [[None]*2 for i in range((rank - nfree)//2)]
        free = []

        index_types = [None]*rank
        indices = [None]*rank
        for i in range(rank):
            gi = g[i]
            index_types[i] = lex_index_types[gi]
            indices[i] = lex_indices[gi]
            if gi < nfree:
                ind = sorted_free[gi]
                assert index_types[i] == sorted_free[gi].tensor_index_type
                free.append((ind, i))
            else:
                j = gi - nfree
                idum, cov = divmod(j, 2)
                if cov:
                    dum[idum][1] = i
                else:
                    dum[idum][0] = i
        dum = [tuple(x) for x in dum]

        return _IndexStructure(free, dum, index_types, indices)

    def indices_canon_args(self):
        """
        Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``

        See ``canonicalize`` in ``tensor_can.py`` in combinatorics module.
        """
        # to be called after sorted_components
        from sympy.combinatorics.permutations import _af_new
        n = self._ext_rank
        g = [None]*n + [n, n+1]

        # Converts the symmetry of the metric into msym from .canonicalize()
        # method in the combinatorics module
        def metric_symmetry_to_msym(metric):
            if metric is None:
                return None
            sym = metric.symmetry
            if sym == TensorSymmetry.fully_symmetric(2):
                return 0
            if sym == TensorSymmetry.fully_symmetric(-2):
                return 1
            return None

        # ordered indices: first the free indices, ordered by types
        # then the dummy indices, ordered by types and contravariant before
        # covariant
        # g[position in tensor] = position in ordered indices
        for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
            g[ipos] = i
        pos = len(self.free)
        j = len(self.free)
        dummies = []
        prev = None
        a = []
        msym = []
        for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
            g[ipos1] = j
            g[ipos2] = j + 1
            j += 2
            typ = self.index_types[ipos1]
            if typ != prev:
                if a:
                    dummies.append(a)
                a = [pos, pos + 1]
                prev = typ
                msym.append(metric_symmetry_to_msym(typ.metric))
            else:
                a.extend([pos, pos + 1])
            pos += 2
        if a:
            dummies.append(a)

        return _af_new(g), dummies, msym


def components_canon_args(components):
    numtyp = []
    prev = None
    for t in components:
        if t == prev:
            numtyp[-1][1] += 1
        else:
            prev = t
            numtyp.append([prev, 1])
    v = []
    for h, n in numtyp:
        if h.comm in (0, 1):
            comm = h.comm
        else:
            comm = TensorManager.get_comm(h.comm, h.comm)
        v.append((h.symmetry.base, h.symmetry.generators, n, comm))
    return v


class _TensorDataLazyEvaluator(CantSympify):
    """
    EXPERIMENTAL: do not rely on this class, it may change without deprecation
    warnings in future versions of SymPy.

    Explanation
    ===========

    This object contains the logic to associate components data to a tensor
    expression. Components data are set via the ``.data`` property of tensor
    expressions, is stored inside this class as a mapping between the tensor
    expression and the ``ndarray``.

    Computations are executed lazily: whereas the tensor expressions can have
    contractions, tensor products, and additions, components data are not
    computed until they are accessed by reading the ``.data`` property
    associated to the tensor expression.
    """
    _substitutions_dict: dict[Any, Any] = {}
    _substitutions_dict_tensmul: dict[Any, Any] = {}

    def __getitem__(self, key):
        dat = self._get(key)
        if dat is None:
            return None

        from .array import NDimArray
        if not isinstance(dat, NDimArray):
            return dat

        if dat.rank() == 0:
            return dat[()]
        elif dat.rank() == 1 and len(dat) == 1:
            return dat[0]
        return dat

    def _get(self, key):
        """
        Retrieve ``data`` associated with ``key``.

        Explanation
        ===========

        This algorithm looks into ``self._substitutions_dict`` for all
        ``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
        TensorHead instance). It reconstructs the components data that the
        tensor expression should have by performing on components data the
        operations that correspond to the abstract tensor operations applied.

        Metric tensor is handled in a different manner: it is pre-computed in
        ``self._substitutions_dict_tensmul``.
        """
        if key in self._substitutions_dict:
            return self._substitutions_dict[key]

        if isinstance(key, TensorHead):
            return None

        if isinstance(key, Tensor):
            # special case to handle metrics. Metric tensors cannot be
            # constructed through contraction by the metric, their
            # components show if they are a matrix or its inverse.
            signature = tuple([i.is_up for i in key.get_indices()])
            srch = (key.component,) + signature
            if srch in self._substitutions_dict_tensmul:
                return self._substitutions_dict_tensmul[srch]
            array_list = [self.data_from_tensor(key)]
            return self.data_contract_dum(array_list, key.dum, key.ext_rank)

        if isinstance(key, TensMul):
            tensmul_args = key.args
            if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
                # special case to handle metrics. Metric tensors cannot be
                # constructed through contraction by the metric, their
                # components show if they are a matrix or its inverse.
                signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
                srch = (tensmul_args[0].components[0],) + signature
                if srch in self._substitutions_dict_tensmul:
                    return self._substitutions_dict_tensmul[srch]
            #data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
            data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
            coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
            if all(i is None for i in data_list):
                return None
            if any(i is None for i in data_list):
                raise ValueError("Mixing tensors with associated components "\
                                 "data with tensors without components data")
            data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
            return coeff*data_result

        if isinstance(key, TensAdd):
            data_list = []
            free_args_list = []
            for arg in key.args:
                if isinstance(arg, TensExpr):
                    data_list.append(arg.data)
                    free_args_list.append([x[0] for x in arg.free])
                else:
                    data_list.append(arg)
                    free_args_list.append([])
            if all(i is None for i in data_list):
                return None
            if any(i is None for i in data_list):
                raise ValueError("Mixing tensors with associated components "\
                                 "data with tensors without components data")

            sum_list = []
            from .array import permutedims
            for data, free_args in zip(data_list, free_args_list):
                if len(free_args) < 2:
                    sum_list.append(data)
                else:
                    free_args_pos = {y: x for x, y in enumerate(free_args)}
                    axes = [free_args_pos[arg] for arg in key.free_args]
                    sum_list.append(permutedims(data, axes))
            return reduce(lambda x, y: x+y, sum_list)

        return None

    @staticmethod
    def data_contract_dum(ndarray_list, dum, ext_rank):
        from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
        arrays = list(map(MutableDenseNDimArray, ndarray_list))
        prodarr = tensorproduct(*arrays)
        return tensorcontraction(prodarr, *dum)

    def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
        """
        This method is used when assigning components data to a ``TensMul``
        object, it converts components data to a fully contravariant ndarray,
        which is then stored according to the ``TensorHead`` key.
        """
        if data is None:
            return None

        return self._correct_signature_from_indices(
            data,
            tensmul.get_indices(),
            tensmul.free,
            tensmul.dum,
            True)

    def data_from_tensor(self, tensor):
        """
        This method corrects the components data to the right signature
        (covariant/contravariant) using the metric associated with each
        ``TensorIndexType``.
        """
        tensorhead = tensor.component

        if tensorhead.data is None:
            return None

        return self._correct_signature_from_indices(
            tensorhead.data,
            tensor.get_indices(),
            tensor.free,
            tensor.dum)

    def _assign_data_to_tensor_expr(self, key, data):
        if isinstance(key, TensAdd):
            raise ValueError('cannot assign data to TensAdd')
        # here it is assumed that `key` is a `TensMul` instance.
        if len(key.components) != 1:
            raise ValueError('cannot assign data to TensMul with multiple components')
        tensorhead = key.components[0]
        newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
        return tensorhead, newdata

    def _check_permutations_on_data(self, tens, data):
        from .array import permutedims
        from .array.arrayop import Flatten

        if isinstance(tens, TensorHead):
            rank = tens.rank
            generators = tens.symmetry.generators
        elif isinstance(tens, Tensor):
            rank = tens.rank
            generators = tens.components[0].symmetry.generators
        elif isinstance(tens, TensorIndexType):
            rank = tens.metric.rank
            generators = tens.metric.symmetry.generators

        # Every generator is a permutation, check that by permuting the array
        # by that permutation, the array will be the same, except for a
        # possible sign change if the permutation admits it.
        for gener in generators:
            sign_change = +1 if (gener(rank) == rank) else -1
            data_swapped = data
            last_data = data
            permute_axes = list(map(gener, range(rank)))
            # the order of a permutation is the number of times to get the
            # identity by applying that permutation.
            for i in range(gener.order()-1):
                data_swapped = permutedims(data_swapped, permute_axes)
                # if any value in the difference array is non-zero, raise an error:
                if any(Flatten(last_data - sign_change*data_swapped)):
                    raise ValueError("Component data symmetry structure error")
                last_data = data_swapped

    def __setitem__(self, key, value):
        """
        Set the components data of a tensor object/expression.

        Explanation
        ===========

        Components data are transformed to the all-contravariant form and stored
        with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
        cannot be uniquely identified, it will raise an error.
        """
        data = _TensorDataLazyEvaluator.parse_data(value)
        self._check_permutations_on_data(key, data)

        # TensorHead and TensorIndexType can be assigned data directly, while
        # TensMul must first convert data to a fully contravariant form, and
        # assign it to its corresponding TensorHead single component.
        if not isinstance(key, (TensorHead, TensorIndexType)):
            key, data = self._assign_data_to_tensor_expr(key, data)

        if isinstance(key, TensorHead):
            for dim, indextype in zip(data.shape, key.index_types):
                if indextype.data is None:
                    raise ValueError("index type {} has no components data"\
                    " associated (needed to raise/lower index)".format(indextype))
                if not indextype.dim.is_number:
                    continue
                if dim != indextype.dim:
                    raise ValueError("wrong dimension of ndarray")
        self._substitutions_dict[key] = data

    def __delitem__(self, key):
        del self._substitutions_dict[key]

    def __contains__(self, key):
        return key in self._substitutions_dict

    def add_metric_data(self, metric, data):
        """
        Assign data to the ``metric`` tensor. The metric tensor behaves in an
        anomalous way when raising and lowering indices.

        Explanation
        ===========

        A fully covariant metric is the inverse transpose of the fully
        contravariant metric (it is meant matrix inverse). If the metric is
        symmetric, the transpose is not necessary and mixed
        covariant/contravariant metrics are Kronecker deltas.
        """
        # hard assignment, data should not be added to `TensorHead` for metric:
        # the problem with `TensorHead` is that the metric is anomalous, i.e.
        # raising and lowering the index means considering the metric or its
        # inverse, this is not the case for other tensors.
        self._substitutions_dict_tensmul[metric, True, True] = data
        inverse_transpose = self.inverse_transpose_matrix(data)
        # in symmetric spaces, the transpose is the same as the original matrix,
        # the full covariant metric tensor is the inverse transpose, so this
        # code will be able to handle non-symmetric metrics.
        self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
        # now mixed cases, these are identical to the unit matrix if the metric
        # is symmetric.
        m = data.tomatrix()
        invt = inverse_transpose.tomatrix()
        self._substitutions_dict_tensmul[metric, True, False] = m * invt
        self._substitutions_dict_tensmul[metric, False, True] = invt * m

    @staticmethod
    def _flip_index_by_metric(data, metric, pos):
        from .array import tensorproduct, tensorcontraction

        mdim = metric.rank()
        ddim = data.rank()

        if pos == 0:
            data = tensorcontraction(
                tensorproduct(
                    metric,
                    data
                ),
                (1, mdim+pos)
            )
        else:
            data = tensorcontraction(
                tensorproduct(
                    data,
                    metric
                ),
                (pos, ddim)
            )
        return data

    @staticmethod
    def inverse_matrix(ndarray):
        m = ndarray.tomatrix().inv()
        return _TensorDataLazyEvaluator.parse_data(m)

    @staticmethod
    def inverse_transpose_matrix(ndarray):
        m = ndarray.tomatrix().inv().T
        return _TensorDataLazyEvaluator.parse_data(m)

    @staticmethod
    def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
        """
        Utility function to correct the values inside the components data
        ndarray according to whether indices are covariant or contravariant.

        It uses the metric matrix to lower values of covariant indices.
        """
        # change the ndarray values according covariantness/contravariantness of the indices
        # use the metric
        for i, indx in enumerate(indices):
            if not indx.is_up and not inverse:
                data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
            elif not indx.is_up and inverse:
                data = _TensorDataLazyEvaluator._flip_index_by_metric(
                    data,
                    _TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
                    i
                )
        return data

    @staticmethod
    def _sort_data_axes(old, new):
        from .array import permutedims

        new_data = old.data.copy()

        old_free = [i[0] for i in old.free]
        new_free = [i[0] for i in new.free]

        for i in range(len(new_free)):
            for j in range(i, len(old_free)):
                if old_free[j] == new_free[i]:
                    old_free[i], old_free[j] = old_free[j], old_free[i]
                    new_data = permutedims(new_data, (i, j))
                    break
        return new_data

    @staticmethod
    def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
        def sorted_compo():
            return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)

        _TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()

    @staticmethod
    def parse_data(data):
        """
        Transform ``data`` to array. The parameter ``data`` may
        contain data in various formats, e.g. nested lists, SymPy ``Matrix``,
        and so on.

        Examples
        ========

        >>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
        >>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
        [1, 3, -6, 12]

        >>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
        [[1, 2], [4, 7]]
        """
        from .array import MutableDenseNDimArray

        if not isinstance(data, MutableDenseNDimArray):
            if len(data) == 2 and hasattr(data[0], '__call__'):
                data = MutableDenseNDimArray(data[0], data[1])
            else:
                data = MutableDenseNDimArray(data)
        return data

_tensor_data_substitution_dict = _TensorDataLazyEvaluator()


class _TensorManager:
    """
    Class to manage tensor properties.

    Notes
    =====

    Tensors belong to tensor commutation groups; each group has a label
    ``comm``; there are predefined labels:

    ``0``   tensors commuting with any other tensor

    ``1``   tensors anticommuting among themselves

    ``2``   tensors not commuting, apart with those with ``comm=0``

    Other groups can be defined using ``set_comm``; tensors in those
    groups commute with those with ``comm=0``; by default they
    do not commute with any other group.
    """
    def __init__(self):
        self._comm_init()

    def _comm_init(self):
        self._comm = [{} for i in range(3)]
        for i in range(3):
            self._comm[0][i] = 0
            self._comm[i][0] = 0
        self._comm[1][1] = 1
        self._comm[2][1] = None
        self._comm[1][2] = None
        self._comm_symbols2i = {0:0, 1:1, 2:2}
        self._comm_i2symbol = {0:0, 1:1, 2:2}

    @property
    def comm(self):
        return self._comm

    def comm_symbols2i(self, i):
        """
        Get the commutation group number corresponding to ``i``.

        ``i`` can be a symbol or a number or a string.

        If ``i`` is not already defined its commutation group number
        is set.
        """
        if i not in self._comm_symbols2i:
            n = len(self._comm)
            self._comm.append({})
            self._comm[n][0] = 0
            self._comm[0][n] = 0
            self._comm_symbols2i[i] = n
            self._comm_i2symbol[n] = i
            return n
        return self._comm_symbols2i[i]

    def comm_i2symbol(self, i):
        """
        Returns the symbol corresponding to the commutation group number.
        """
        return self._comm_i2symbol[i]

    def set_comm(self, i, j, c):
        """
        Set the commutation parameter ``c`` for commutation groups ``i, j``.

        Parameters
        ==========

        i, j : symbols representing commutation groups

        c  :  group commutation number

        Notes
        =====

        ``i, j`` can be symbols, strings or numbers,
        apart from ``0, 1`` and ``2`` which are reserved respectively
        for commuting, anticommuting tensors and tensors not commuting
        with any other group apart with the commuting tensors.
        For the remaining cases, use this method to set the commutation rules;
        by default ``c=None``.

        The group commutation number ``c`` is assigned in correspondence
        to the group commutation symbols; it can be

        0        commuting

        1        anticommuting

        None     no commutation property

        Examples
        ========

        ``G`` and ``GH`` do not commute with themselves and commute with
        each other; A is commuting.

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry
        >>> Lorentz = TensorIndexType('Lorentz')
        >>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
        >>> A = TensorHead('A', [Lorentz])
        >>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
        >>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm')
        >>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
        >>> (GH(i1)*G(i0)).canon_bp()
        G(i0)*GH(i1)
        >>> (G(i1)*G(i0)).canon_bp()
        G(i1)*G(i0)
        >>> (G(i1)*A(i0)).canon_bp()
        A(i0)*G(i1)
        """
        if c not in (0, 1, None):
            raise ValueError('`c` can assume only the values 0, 1 or None')

        i = sympify(i)
        j = sympify(j)

        if i not in self._comm_symbols2i:
            n = len(self._comm)
            self._comm.append({})
            self._comm[n][0] = 0
            self._comm[0][n] = 0
            self._comm_symbols2i[i] = n
            self._comm_i2symbol[n] = i
        if j not in self._comm_symbols2i:
            n = len(self._comm)
            self._comm.append({})
            self._comm[0][n] = 0
            self._comm[n][0] = 0
            self._comm_symbols2i[j] = n
            self._comm_i2symbol[n] = j
        ni = self._comm_symbols2i[i]
        nj = self._comm_symbols2i[j]
        self._comm[ni][nj] = c
        self._comm[nj][ni] = c

        """
        Cached sympy functions (e.g. expand) may have cached the results of
        expressions involving tensors, but those results may not be valid after
        changing the commutation properties. To stay on the safe side, we clear
        the cache of all functions.
        """
        clear_cache()

    def set_comms(self, *args):
        """
        Set the commutation group numbers ``c`` for symbols ``i, j``.

        Parameters
        ==========

        args : sequence of ``(i, j, c)``
        """
        for i, j, c in args:
            self.set_comm(i, j, c)

    def get_comm(self, i, j):
        """
        Return the commutation parameter for commutation group numbers ``i, j``

        see ``_TensorManager.set_comm``
        """
        return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)

    def clear(self):
        """
        Clear the TensorManager.
        """
        self._comm_init()


TensorManager = _TensorManager()


class TensorIndexType(Basic):
    """
    A TensorIndexType is characterized by its name and its metric.

    Parameters
    ==========

    name : name of the tensor type
    dummy_name : name of the head of dummy indices
    dim : dimension, it can be a symbol or an integer or ``None``
    eps_dim : dimension of the epsilon tensor
    metric_symmetry : integer that denotes metric symmetry or ``None`` for no metric
    metric_name : string with the name of the metric tensor

    Attributes
    ==========

    ``metric`` : the metric tensor
    ``delta`` : ``Kronecker delta``
    ``epsilon`` : the ``Levi-Civita epsilon`` tensor
    ``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis.

    Notes
    =====

    The possible values of the ``metric_symmetry`` parameter are:

        ``1``   :   metric tensor is fully symmetric
        ``0``   :   metric tensor possesses no index symmetry
        ``-1``  :   metric tensor is fully antisymmetric
        ``None``:   there is no metric tensor (metric equals to ``None``)

    The metric is assumed to be symmetric by default. It can also be set
    to a custom tensor by the ``.set_metric()`` method.

    If there is a metric the metric is used to raise and lower indices.

    In the case of non-symmetric metric, the following raising and
    lowering conventions will be adopted:

    ``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``

    From these it is easy to find:

    ``g(-a, b) = delta(-a, b)``

    where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
    (see ``TensorIndex`` for the conventions on indices).
    For antisymmetric metrics there is also the following equality:

    ``g(a, -b) = -delta(a, -b)``

    If there is no metric it is not possible to raise or lower indices;
    e.g. the index of the defining representation of ``SU(N)``
    is 'covariant' and the conjugate representation is
    'contravariant'; for ``N > 2`` they are linearly independent.

    ``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
    else it can be assigned (for use in naive dimensional regularization);
    if ``eps_dim`` is not an integer ``epsilon`` is ``None``.

    Examples
    ========

    >>> from sympy.tensor.tensor import TensorIndexType
    >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
    >>> Lorentz.metric
    metric(Lorentz,Lorentz)
    """

    def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None,
                metric_symmetry=1, metric_name='metric', **kwargs):
        if 'dummy_fmt' in kwargs:
            dummy_fmt = kwargs['dummy_fmt']
            sympy_deprecation_warning(
                f"""
                The dummy_fmt keyword to TensorIndexType is deprecated. Use
                dummy_name={dummy_fmt} instead.
                """,
                deprecated_since_version="1.5",
                active_deprecations_target="deprecated-tensorindextype-dummy-fmt",
            )
            dummy_name = dummy_fmt

        if isinstance(name, str):
            name = Symbol(name)

        if dummy_name is None:
            dummy_name = str(name)[0]
        if isinstance(dummy_name, str):
            dummy_name = Symbol(dummy_name)

        if dim is None:
            dim = Symbol("dim_" + dummy_name.name)
        else:
            dim = sympify(dim)

        if eps_dim is None:
            eps_dim = dim
        else:
            eps_dim = sympify(eps_dim)

        metric_symmetry = sympify(metric_symmetry)

        if isinstance(metric_name, str):
            metric_name = Symbol(metric_name)

        if 'metric' in kwargs:
            SymPyDeprecationWarning(
                """
                The 'metric' keyword argument to TensorIndexType is
                deprecated. Use the 'metric_symmetry' keyword argument or the
                TensorIndexType.set_metric() method instead.
                """,
                deprecated_since_version="1.5",
                active_deprecations_target="deprecated-tensorindextype-metric",
            )
            metric = kwargs.get('metric')
            if metric is not None:
                if metric in (True, False, 0, 1):
                    metric_name = 'metric'
                    #metric_antisym = metric
                else:
                    metric_name = metric.name
                    #metric_antisym = metric.antisym

                if metric:
                    metric_symmetry = -1
                else:
                    metric_symmetry = 1

        obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim,
                            metric_symmetry, metric_name)

        obj._autogenerated = []
        return obj

    @property
    def name(self):
        return self.args[0].name

    @property
    def dummy_name(self):
        return self.args[1].name

    @property
    def dim(self):
        return self.args[2]

    @property
    def eps_dim(self):
        return self.args[3]

    @memoize_property
    def metric(self):
        metric_symmetry = self.args[4]
        metric_name = self.args[5]
        if metric_symmetry is None:
            return None

        if metric_symmetry == 0:
            symmetry = TensorSymmetry.no_symmetry(2)
        elif metric_symmetry == 1:
            symmetry = TensorSymmetry.fully_symmetric(2)
        elif metric_symmetry == -1:
            symmetry = TensorSymmetry.fully_symmetric(-2)

        return TensorHead(metric_name, [self]*2, symmetry)

    @memoize_property
    def delta(self):
        return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2))

    @memoize_property
    def epsilon(self):
        if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)):
            return None
        symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim)
        return TensorHead('Eps', [self]*self.eps_dim, symmetry)

    def set_metric(self, tensor):
        self._metric = tensor

    def __lt__(self, other):
        return self.name < other.name

    def __str__(self):
        return self.name

    __repr__ = __str__

    # Everything below this line is deprecated

    @property
    def data(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return _tensor_data_substitution_dict[self]

    @data.setter
    def data(self, data):
        deprecate_data()
        # This assignment is a bit controversial, should metric components be assigned
        # to the metric only or also to the TensorIndexType object? The advantage here
        # is the ability to assign a 1D array and transform it to a 2D diagonal array.
        from .array import MutableDenseNDimArray

        data = _TensorDataLazyEvaluator.parse_data(data)
        if data.rank() > 2:
            raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
        if data.rank() == 1:
            if self.dim.is_number:
                nda_dim = data.shape[0]
                if nda_dim != self.dim:
                    raise ValueError("Dimension mismatch")

            dim = data.shape[0]
            newndarray = MutableDenseNDimArray.zeros(dim, dim)
            for i, val in enumerate(data):
                newndarray[i, i] = val
            data = newndarray
        dim1, dim2 = data.shape
        if dim1 != dim2:
            raise ValueError("Non-square matrix tensor.")
        if self.dim.is_number:
            if self.dim != dim1:
                raise ValueError("Dimension mismatch")
        _tensor_data_substitution_dict[self] = data
        _tensor_data_substitution_dict.add_metric_data(self.metric, data)
        with ignore_warnings(SymPyDeprecationWarning):
            delta = self.get_kronecker_delta()
        i1 = TensorIndex('i1', self)
        i2 = TensorIndex('i2', self)
        with ignore_warnings(SymPyDeprecationWarning):
            delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))

    @data.deleter
    def data(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            if self in _tensor_data_substitution_dict:
                del _tensor_data_substitution_dict[self]
            if self.metric in _tensor_data_substitution_dict:
                del _tensor_data_substitution_dict[self.metric]

    @deprecated(
        """
        The TensorIndexType.get_kronecker_delta() method is deprecated. Use
        the TensorIndexType.delta attribute instead.
        """,
        deprecated_since_version="1.5",
        active_deprecations_target="deprecated-tensorindextype-methods",
    )
    def get_kronecker_delta(self):
        sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
        delta = TensorHead('KD', [self]*2, sym2)
        return delta

    @deprecated(
        """
        The TensorIndexType.get_epsilon() method is deprecated. Use
        the TensorIndexType.epsilon attribute instead.
        """,
        deprecated_since_version="1.5",
        active_deprecations_target="deprecated-tensorindextype-methods",
    )
    def get_epsilon(self):
        if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
            return None
        sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
        epsilon = TensorHead('Eps', [self]*self._eps_dim, sym)
        return epsilon

    def _components_data_full_destroy(self):
        """
        EXPERIMENTAL: do not rely on this API method.

        This destroys components data associated to the ``TensorIndexType``, if
        any, specifically:

        * metric tensor data
        * Kronecker tensor data
        """
        if self in _tensor_data_substitution_dict:
            del _tensor_data_substitution_dict[self]

        def delete_tensmul_data(key):
            if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
                del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]

        # delete metric data:
        delete_tensmul_data((self.metric, True, True))
        delete_tensmul_data((self.metric, True, False))
        delete_tensmul_data((self.metric, False, True))
        delete_tensmul_data((self.metric, False, False))

        # delete delta tensor data:
        delta = self.get_kronecker_delta()
        if delta in _tensor_data_substitution_dict:
            del _tensor_data_substitution_dict[delta]


class TensorIndex(Basic):
    """
    Represents a tensor index

    Parameters
    ==========

    name : name of the index, or ``True`` if you want it to be automatically assigned
    tensor_index_type : ``TensorIndexType`` of the index
    is_up :  flag for contravariant index (is_up=True by default)

    Attributes
    ==========

    ``name``
    ``tensor_index_type``
    ``is_up``

    Notes
    =====

    Tensor indices are contracted with the Einstein summation convention.

    An index can be in contravariant or in covariant form; in the latter
    case it is represented prepending a ``-`` to the index name. Adding
    ``-`` to a covariant (is_up=False) index makes it contravariant.

    Dummy indices have a name with head given by
    ``tensor_inde_type.dummy_name`` with underscore and a number.

    Similar to ``symbols`` multiple contravariant indices can be created
    at once using ``tensor_indices(s, typ)``, where ``s`` is a string
    of names.


    Examples
    ========

    >>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
    >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
    >>> mu = TensorIndex('mu', Lorentz, is_up=False)
    >>> nu, rho = tensor_indices('nu, rho', Lorentz)
    >>> A = TensorHead('A', [Lorentz, Lorentz])
    >>> A(mu, nu)
    A(-mu, nu)
    >>> A(-mu, -rho)
    A(mu, -rho)
    >>> A(mu, -mu)
    A(-L_0, L_0)
    """
    def __new__(cls, name, tensor_index_type, is_up=True):
        if isinstance(name, str):
            name_symbol = Symbol(name)
        elif isinstance(name, Symbol):
            name_symbol = name
        elif name is True:
            name = "_i{}".format(len(tensor_index_type._autogenerated))
            name_symbol = Symbol(name)
            tensor_index_type._autogenerated.append(name_symbol)
        else:
            raise ValueError("invalid name")

        is_up = sympify(is_up)
        return Basic.__new__(cls, name_symbol, tensor_index_type, is_up)

    @property
    def name(self):
        return self.args[0].name

    @property
    def tensor_index_type(self):
        return self.args[1]

    @property
    def is_up(self):
        return self.args[2]

    def _print(self):
        s = self.name
        if not self.is_up:
            s = '-%s' % s
        return s

    def __lt__(self, other):
        return ((self.tensor_index_type, self.name) <
                (other.tensor_index_type, other.name))

    def __neg__(self):
        t1 = TensorIndex(self.name, self.tensor_index_type,
                (not self.is_up))
        return t1


def tensor_indices(s, typ):
    """
    Returns list of tensor indices given their names and their types.

    Parameters
    ==========

    s : string of comma separated names of indices

    typ : ``TensorIndexType`` of the indices

    Examples
    ========

    >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
    >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
    >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
    """
    if isinstance(s, str):
        a = [x.name for x in symbols(s, seq=True)]
    else:
        raise ValueError('expecting a string')

    tilist = [TensorIndex(i, typ) for i in a]
    if len(tilist) == 1:
        return tilist[0]
    return tilist


class TensorSymmetry(Basic):
    """
    Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric
    index permutation). For the relevant terminology see ``tensor_can.py``
    section of the combinatorics module.

    Parameters
    ==========

    bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor

    Attributes
    ==========

    ``base`` : base of the BSGS
    ``generators`` : generators of the BSGS
    ``rank`` : rank of the tensor

    Notes
    =====

    A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
    Multiterm symmetries, like the cyclic symmetry of the Riemann tensor
    (i.e., Bianchi identity), are not covered. See combinatorics module for
    information on how to generate BSGS for a general index permutation group.
    Simple symmetries can be generated using built-in methods.

    See Also
    ========

    sympy.combinatorics.tensor_can.get_symmetric_group_sgs

    Examples
    ========

    Define a symmetric tensor of rank 2

    >>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
    >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
    >>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
    >>> T = TensorHead('T', [Lorentz]*2, sym)

    Note, that the same can also be done using built-in TensorSymmetry methods

    >>> sym2 = TensorSymmetry.fully_symmetric(2)
    >>> sym == sym2
    True
    """
    def __new__(cls, *args, **kw_args):
        if len(args) == 1:
            base, generators = args[0]
        elif len(args) == 2:
            base, generators = args
        else:
            raise TypeError("bsgs required, either two separate parameters or one tuple")

        if not isinstance(base, Tuple):
            base = Tuple(*base)
        if not isinstance(generators, Tuple):
            generators = Tuple(*generators)

        return Basic.__new__(cls, base, generators, **kw_args)

    @property
    def base(self):
        return self.args[0]

    @property
    def generators(self):
        return self.args[1]

    @property
    def rank(self):
        return self.generators[0].size - 2

    @classmethod
    def fully_symmetric(cls, rank):
        """
        Returns a fully symmetric (antisymmetric if ``rank``<0)
        TensorSymmetry object for ``abs(rank)`` indices.
        """
        if rank > 0:
            bsgs = get_symmetric_group_sgs(rank, False)
        elif rank < 0:
            bsgs = get_symmetric_group_sgs(-rank, True)
        elif rank == 0:
            bsgs = ([], [Permutation(1)])
        return TensorSymmetry(bsgs)

    @classmethod
    def direct_product(cls, *args):
        """
        Returns a TensorSymmetry object that is being a direct product of
        fully (anti-)symmetric index permutation groups.

        Notes
        =====

        Some examples for different values of ``(*args)``:
        ``(1)``         vector, equivalent to ``TensorSymmetry.fully_symmetric(1)``
        ``(2)``         tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)``
        ``(-2)``        tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)``
        ``(2, -2)``     tensor with the first 2 indices commuting and the last 2 anticommuting
        ``(1, 1, 1)``   tensor with 3 indices without any symmetry
        """
        base, sgs = [], [Permutation(1)]
        for arg in args:
            if arg > 0:
                bsgs2 = get_symmetric_group_sgs(arg, False)
            elif arg < 0:
                bsgs2 = get_symmetric_group_sgs(-arg, True)
            else:
                continue
            base, sgs = bsgs_direct_product(base, sgs, *bsgs2)

        return TensorSymmetry(base, sgs)

    @classmethod
    def riemann(cls):
        """
        Returns a monotorem symmetry of the Riemann tensor
        """
        return TensorSymmetry(riemann_bsgs)

    @classmethod
    def no_symmetry(cls, rank):
        """
        TensorSymmetry object for ``rank`` indices with no symmetry
        """
        return TensorSymmetry([], [Permutation(rank+1)])


@deprecated(
    """
    The tensorsymmetry() function is deprecated. Use the TensorSymmetry
    constructor instead.
    """,
    deprecated_since_version="1.5",
    active_deprecations_target="deprecated-tensorsymmetry",
)
def tensorsymmetry(*args):
    """
    Returns a ``TensorSymmetry`` object. This method is deprecated, use
    ``TensorSymmetry.direct_product()`` or ``.riemann()`` instead.

    Explanation
    ===========

    One can represent a tensor with any monoterm slot symmetry group
    using a BSGS.

    ``args`` can be a BSGS
    ``args[0]``    base
    ``args[1]``    sgs

    Usually tensors are in (direct products of) representations
    of the symmetric group;
    ``args`` can be a list of lists representing the shapes of Young tableaux

    Notes
    =====

    For instance:
    ``[[1]]``       vector
    ``[[1]*n]``     symmetric tensor of rank ``n``
    ``[[n]]``       antisymmetric tensor of rank ``n``
    ``[[2, 2]]``    monoterm slot symmetry of the Riemann tensor
    ``[[1],[1]]``   vector*vector
    ``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector

    Notice that with the shape ``[2, 2]`` we associate only the monoterm
    symmetries of the Riemann tensor; this is an abuse of notation,
    since the shape ``[2, 2]`` corresponds usually to the irreducible
    representation characterized by the monoterm symmetries and by the
    cyclic symmetry.
    """
    from sympy.combinatorics import Permutation

    def tableau2bsgs(a):
        if len(a) == 1:
            # antisymmetric vector
            n = a[0]
            bsgs = get_symmetric_group_sgs(n, 1)
        else:
            if all(x == 1 for x in a):
                # symmetric vector
                n = len(a)
                bsgs = get_symmetric_group_sgs(n)
            elif a == [2, 2]:
                bsgs = riemann_bsgs
            else:
                raise NotImplementedError
        return bsgs

    if not args:
        return TensorSymmetry(Tuple(), Tuple(Permutation(1)))

    if len(args) == 2 and isinstance(args[1][0], Permutation):
        return TensorSymmetry(args)
    base, sgs = tableau2bsgs(args[0])
    for a in args[1:]:
        basex, sgsx = tableau2bsgs(a)
        base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
    return TensorSymmetry(Tuple(base, sgs))

@deprecated(
    "TensorType is deprecated. Use tensor_heads() instead.",
    deprecated_since_version="1.5",
    active_deprecations_target="deprecated-tensortype",
)
class TensorType(Basic):
    """
    Class of tensor types. Deprecated, use tensor_heads() instead.

    Parameters
    ==========

    index_types : list of ``TensorIndexType`` of the tensor indices
    symmetry : ``TensorSymmetry`` of the tensor

    Attributes
    ==========

    ``index_types``
    ``symmetry``
    ``types`` : list of ``TensorIndexType`` without repetitions
    """
    is_commutative = False

    def __new__(cls, index_types, symmetry, **kw_args):
        assert symmetry.rank == len(index_types)
        obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
        return obj

    @property
    def index_types(self):
        return self.args[0]

    @property
    def symmetry(self):
        return self.args[1]

    @property
    def types(self):
        return sorted(set(self.index_types), key=lambda x: x.name)

    def __str__(self):
        return 'TensorType(%s)' % ([str(x) for x in self.index_types])

    def __call__(self, s, comm=0):
        """
        Return a TensorHead object or a list of TensorHead objects.

        Parameters
        ==========

        s : name or string of names.

        comm : Commutation group.

        see ``_TensorManager.set_comm``
        """
        if isinstance(s, str):
            names = [x.name for x in symbols(s, seq=True)]
        else:
            raise ValueError('expecting a string')
        if len(names) == 1:
            return TensorHead(names[0], self.index_types, self.symmetry, comm)
        else:
            return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names]


@deprecated(
    """
    The tensorhead() function is deprecated. Use tensor_heads() instead.
    """,
    deprecated_since_version="1.5",
    active_deprecations_target="deprecated-tensorhead",
)
def tensorhead(name, typ, sym=None, comm=0):
    """
    Function generating tensorhead(s). This method is deprecated,
    use TensorHead constructor or tensor_heads() instead.

    Parameters
    ==========

    name : name or sequence of names (as in ``symbols``)

    typ :  index types

    sym :  same as ``*args`` in ``tensorsymmetry``

    comm : commutation group number
    see ``_TensorManager.set_comm``
    """
    if sym is None:
        sym = [[1] for i in range(len(typ))]
    with ignore_warnings(SymPyDeprecationWarning):
        sym = tensorsymmetry(*sym)
    return TensorHead(name, typ, sym, comm)


class TensorHead(Basic):
    """
    Tensor head of the tensor.

    Parameters
    ==========

    name : name of the tensor
    index_types : list of TensorIndexType
    symmetry : TensorSymmetry of the tensor
    comm : commutation group number

    Attributes
    ==========

    ``name``
    ``index_types``
    ``rank`` : total number of indices
    ``symmetry``
    ``comm`` : commutation group

    Notes
    =====

    Similar to ``symbols`` multiple TensorHeads can be created using
    ``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s``
    is the string of names and ``sym`` is the monoterm tensor symmetry
    (see ``tensorsymmetry``).

    A ``TensorHead`` belongs to a commutation group, defined by a
    symbol on number ``comm`` (see ``_TensorManager.set_comm``);
    tensors in a commutation group have the same commutation properties;
    by default ``comm`` is ``0``, the group of the commuting tensors.

    Examples
    ========

    Define a fully antisymmetric tensor of rank 2:

    >>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
    >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
    >>> asym2 = TensorSymmetry.fully_symmetric(-2)
    >>> A = TensorHead('A', [Lorentz, Lorentz], asym2)

    Examples with ndarray values, the components data assigned to the
    ``TensorHead`` object are assumed to be in a fully-contravariant
    representation. In case it is necessary to assign components data which
    represents the values of a non-fully covariant tensor, see the other
    examples.

    >>> from sympy.tensor.tensor import tensor_indices
    >>> from sympy import diag
    >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
    >>> i0, i1 = tensor_indices('i0:2', Lorentz)

    Specify a replacement dictionary to keep track of the arrays to use for
    replacements in the tensorial expression. The ``TensorIndexType`` is
    associated to the metric used for contractions (in fully covariant form):

    >>> repl = {Lorentz: diag(1, -1, -1, -1)}

    Let's see some examples of working with components with the electromagnetic
    tensor:

    >>> from sympy import symbols
    >>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
    >>> c = symbols('c', positive=True)

    Let's define `F`, an antisymmetric tensor:

    >>> F = TensorHead('F', [Lorentz, Lorentz], asym2)

    Let's update the dictionary to contain the matrix to use in the
    replacements:

    >>> repl.update({F(-i0, -i1): [
    ... [0, Ex/c, Ey/c, Ez/c],
    ... [-Ex/c, 0, -Bz, By],
    ... [-Ey/c, Bz, 0, -Bx],
    ... [-Ez/c, -By, Bx, 0]]})

    Now it is possible to retrieve the contravariant form of the Electromagnetic
    tensor:

    >>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
    [[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]

    and the mixed contravariant-covariant form:

    >>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
    [[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]

    Energy-momentum of a particle may be represented as:

    >>> from sympy import symbols
    >>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))
    >>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
    >>> repl.update({P(i0): [E, px, py, pz]})

    The contravariant and covariant components are, respectively:

    >>> P(i0).replace_with_arrays(repl, [i0])
    [E, p_x, p_y, p_z]
    >>> P(-i0).replace_with_arrays(repl, [-i0])
    [E, -p_x, -p_y, -p_z]

    The contraction of a 1-index tensor by itself:

    >>> expr = P(i0)*P(-i0)
    >>> expr.replace_with_arrays(repl, [])
    E**2 - p_x**2 - p_y**2 - p_z**2
    """
    is_commutative = False

    def __new__(cls, name, index_types, symmetry=None, comm=0):
        if isinstance(name, str):
            name_symbol = Symbol(name)
        elif isinstance(name, Symbol):
            name_symbol = name
        else:
            raise ValueError("invalid name")

        if symmetry is None:
            symmetry = TensorSymmetry.no_symmetry(len(index_types))
        else:
            assert symmetry.rank == len(index_types)

        obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry, sympify(comm))
        return obj

    @property
    def name(self):
        return self.args[0].name

    @property
    def index_types(self):
        return list(self.args[1])

    @property
    def symmetry(self):
        return self.args[2]

    @property
    def comm(self):
        return TensorManager.comm_symbols2i(self.args[3])

    @property
    def rank(self):
        return len(self.index_types)

    def __lt__(self, other):
        return (self.name, self.index_types) < (other.name, other.index_types)

    def commutes_with(self, other):
        """
        Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.

        Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
        """
        r = TensorManager.get_comm(self.comm, other.comm)
        return r

    def _print(self):
        return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))

    def __call__(self, *indices, **kw_args):
        """
        Returns a tensor with indices.

        Explanation
        ===========

        There is a special behavior in case of indices denoted by ``True``,
        they are considered auto-matrix indices, their slots are automatically
        filled, and confer to the tensor the behavior of a matrix or vector
        upon multiplication with another tensor containing auto-matrix indices
        of the same ``TensorIndexType``. This means indices get summed over the
        same way as in matrix multiplication. For matrix behavior, define two
        auto-matrix indices, for vector behavior define just one.

        Indices can also be strings, in which case the attribute
        ``index_types`` is used to convert them to proper ``TensorIndex``.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> a, b = tensor_indices('a,b', Lorentz)
        >>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
        >>> t = A(a, -b)
        >>> t
        A(a, -b)

        """

        updated_indices = []
        for idx, typ in zip(indices, self.index_types):
            if isinstance(idx, str):
                idx = idx.strip().replace(" ", "")
                if idx.startswith('-'):
                    updated_indices.append(TensorIndex(idx[1:], typ,
                                           is_up=False))
                else:
                    updated_indices.append(TensorIndex(idx, typ))
            else:
                updated_indices.append(idx)

        updated_indices += indices[len(updated_indices):]

        tensor = Tensor(self, updated_indices, **kw_args)
        return tensor.doit()

    # Everything below this line is deprecated

    def __pow__(self, other):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            if self.data is None:
                raise ValueError("No power on abstract tensors.")
            from .array import tensorproduct, tensorcontraction
            metrics = [_.data for _ in self.index_types]

            marray = self.data
            marraydim = marray.rank()
            for metric in metrics:
                marray = tensorproduct(marray, metric, marray)
                marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))

            return marray ** (other * S.Half)

    @property
    def data(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return _tensor_data_substitution_dict[self]

    @data.setter
    def data(self, data):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            _tensor_data_substitution_dict[self] = data

    @data.deleter
    def data(self):
        deprecate_data()
        if self in _tensor_data_substitution_dict:
            del _tensor_data_substitution_dict[self]

    def __iter__(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return self.data.__iter__()

    def _components_data_full_destroy(self):
        """
        EXPERIMENTAL: do not rely on this API method.

        Destroy components data associated to the ``TensorHead`` object, this
        checks for attached components data, and destroys components data too.
        """
        # do not garbage collect Kronecker tensor (it should be done by
        # ``TensorIndexType`` garbage collection)
        deprecate_data()
        if self.name == "KD":
            return

        # the data attached to a tensor must be deleted only by the TensorHead
        # destructor. If the TensorHead is deleted, it means that there are no
        # more instances of that tensor anywhere.
        if self in _tensor_data_substitution_dict:
            del _tensor_data_substitution_dict[self]


def tensor_heads(s, index_types, symmetry=None, comm=0):
    """
    Returns a sequence of TensorHeads from a string `s`
    """
    if isinstance(s, str):
        names = [x.name for x in symbols(s, seq=True)]
    else:
        raise ValueError('expecting a string')

    thlist = [TensorHead(name, index_types, symmetry, comm) for name in names]
    if len(thlist) == 1:
        return thlist[0]
    return thlist


class TensExpr(Expr, ABC):
    """
    Abstract base class for tensor expressions

    Notes
    =====

    A tensor expression is an expression formed by tensors;
    currently the sums of tensors are distributed.

    A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.

    ``TensMul`` objects are formed by products of component tensors,
    and include a coefficient, which is a SymPy expression.


    In the internal representation contracted indices are represented
    by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
    of the component tensor with contravariant index, ``ipos1`` is the
    slot which the index occupies in that component tensor.

    Contracted indices are therefore nameless in the internal representation.
    """

    _op_priority = 12.0
    is_commutative = False

    def __neg__(self):
        return self*S.NegativeOne

    def __abs__(self):
        raise NotImplementedError

    def __add__(self, other):
        return TensAdd(self, other).doit()

    def __radd__(self, other):
        return TensAdd(other, self).doit()

    def __sub__(self, other):
        return TensAdd(self, -other).doit()

    def __rsub__(self, other):
        return TensAdd(other, -self).doit()

    def __mul__(self, other):
        """
        Multiply two tensors using Einstein summation convention.

        Explanation
        ===========

        If the two tensors have an index in common, one contravariant
        and the other covariant, in their product the indices are summed

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
        >>> g = Lorentz.metric
        >>> p, q = tensor_heads('p,q', [Lorentz])
        >>> t1 = p(m0)
        >>> t2 = q(-m0)
        >>> t1*t2
        p(L_0)*q(-L_0)
        """
        return TensMul(self, other).doit()

    def __rmul__(self, other):
        return TensMul(other, self).doit()

    def __truediv__(self, other):
        other = _sympify(other)
        if isinstance(other, TensExpr):
            raise ValueError('cannot divide by a tensor')
        return TensMul(self, S.One/other).doit()

    def __rtruediv__(self, other):
        raise ValueError('cannot divide by a tensor')

    def __pow__(self, other):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            if self.data is None:
                raise ValueError("No power without ndarray data.")
            from .array import tensorproduct, tensorcontraction
            free = self.free
            marray = self.data
            mdim = marray.rank()
            for metric in free:
                marray = tensorcontraction(
                    tensorproduct(
                    marray,
                    metric[0].tensor_index_type.data,
                    marray),
                    (0, mdim), (mdim+1, mdim+2)
                )
            return marray ** (other * S.Half)

    def __rpow__(self, other):
        raise NotImplementedError

    @property
    @abstractmethod
    def nocoeff(self):
        raise NotImplementedError("abstract method")

    @property
    @abstractmethod
    def coeff(self):
        raise NotImplementedError("abstract method")

    @abstractmethod
    def get_indices(self):
        raise NotImplementedError("abstract method")

    @abstractmethod
    def get_free_indices(self) -> list[TensorIndex]:
        raise NotImplementedError("abstract method")

    @abstractmethod
    def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
        raise NotImplementedError("abstract method")

    def fun_eval(self, *index_tuples):
        deprecate_fun_eval()
        return self.substitute_indices(*index_tuples)

    def get_matrix(self):
        """
        DEPRECATED: do not use.

        Returns ndarray components data as a matrix, if components data are
        available and ndarray dimension does not exceed 2.
        """
        from sympy.matrices.dense import Matrix
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            if 0 < self.rank <= 2:
                rows = self.data.shape[0]
                columns = self.data.shape[1] if self.rank == 2 else 1
                if self.rank == 2:
                    mat_list = [] * rows
                    for i in range(rows):
                        mat_list.append([])
                        for j in range(columns):
                            mat_list[i].append(self[i, j])
                else:
                    mat_list = [None] * rows
                    for i in range(rows):
                        mat_list[i] = self[i]
                return Matrix(mat_list)
            else:
                raise NotImplementedError(
                    "missing multidimensional reduction to matrix.")

    @staticmethod
    def _get_indices_permutation(indices1, indices2):
        return [indices1.index(i) for i in indices2]

    def expand(self, **hints):
        return _expand(self, **hints).doit()

    def _expand(self, **kwargs):
        return self

    def _get_free_indices_set(self):
        indset = set()
        for arg in self.args:
            if isinstance(arg, TensExpr):
                indset.update(arg._get_free_indices_set())
        return indset

    def _get_dummy_indices_set(self):
        indset = set()
        for arg in self.args:
            if isinstance(arg, TensExpr):
                indset.update(arg._get_dummy_indices_set())
        return indset

    def _get_indices_set(self):
        indset = set()
        for arg in self.args:
            if isinstance(arg, TensExpr):
                indset.update(arg._get_indices_set())
        return indset

    @property
    def _iterate_dummy_indices(self):
        dummy_set = self._get_dummy_indices_set()

        def recursor(expr, pos):
            if isinstance(expr, TensorIndex):
                if expr in dummy_set:
                    yield (expr, pos)
            elif isinstance(expr, (Tuple, TensExpr)):
                for p, arg in enumerate(expr.args):
                    yield from recursor(arg, pos+(p,))

        return recursor(self, ())

    @property
    def _iterate_free_indices(self):
        free_set = self._get_free_indices_set()

        def recursor(expr, pos):
            if isinstance(expr, TensorIndex):
                if expr in free_set:
                    yield (expr, pos)
            elif isinstance(expr, (Tuple, TensExpr)):
                for p, arg in enumerate(expr.args):
                    yield from recursor(arg, pos+(p,))

        return recursor(self, ())

    @property
    def _iterate_indices(self):
        def recursor(expr, pos):
            if isinstance(expr, TensorIndex):
                yield (expr, pos)
            elif isinstance(expr, (Tuple, TensExpr)):
                for p, arg in enumerate(expr.args):
                    yield from recursor(arg, pos+(p,))

        return recursor(self, ())

    @staticmethod
    def _contract_and_permute_with_metric(metric, array, pos, dim):
        # TODO: add possibility of metric after (spinors)
        from .array import tensorcontraction, tensorproduct, permutedims

        array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
        permu = list(range(dim))
        permu[0], permu[pos] = permu[pos], permu[0]
        return permutedims(array, permu)

    @staticmethod
    def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
        from .array import permutedims

        index_types1 = [i.tensor_index_type for i in free_ind1]

        # Check if variance of indices needs to be fixed:
        pos2up = []
        pos2down = []
        free2remaining = free_ind2[:]
        for pos1, index1 in enumerate(free_ind1):
            if index1 in free2remaining:
                pos2 = free2remaining.index(index1)
                free2remaining[pos2] = None
                continue
            if -index1 in free2remaining:
                pos2 = free2remaining.index(-index1)
                free2remaining[pos2] = None
                free_ind2[pos2] = index1
                if index1.is_up:
                    pos2up.append(pos2)
                else:
                    pos2down.append(pos2)
            else:
                index2 = free2remaining[pos1]
                if index2 is None:
                    raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
                free2remaining[pos1] = None
                free_ind2[pos1] = index1
                if index1.is_up ^ index2.is_up:
                    if index1.is_up:
                        pos2up.append(pos1)
                    else:
                        pos2down.append(pos1)

        if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
            raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))

        # Raise indices:
        for pos in pos2up:
            index_type_pos = index_types1[pos]
            if index_type_pos not in replacement_dict:
                raise ValueError("No metric provided to lower index")
            metric = replacement_dict[index_type_pos]
            metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
            array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1))
        # Lower indices:
        for pos in pos2down:
            index_type_pos = index_types1[pos]
            if index_type_pos not in replacement_dict:
                raise ValueError("No metric provided to lower index")
            metric = replacement_dict[index_type_pos]
            array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1))

        if free_ind1:
            permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
            array = permutedims(array, permutation)

        if hasattr(array, "rank") and array.rank() == 0:
            array = array[()]

        return free_ind2, array

    def replace_with_arrays(self, replacement_dict, indices=None):
        """
        Replace the tensorial expressions with arrays. The final array will
        correspond to the N-dimensional array with indices arranged according
        to ``indices``.

        Parameters
        ==========

        replacement_dict
            dictionary containing the replacement rules for tensors.
        indices
            the index order with respect to which the array is read. The
            original index order will be used if no value is passed.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
        >>> from sympy.tensor.tensor import TensorHead
        >>> from sympy import symbols, diag

        >>> L = TensorIndexType("L")
        >>> i, j = tensor_indices("i j", L)
        >>> A = TensorHead("A", [L])
        >>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
        [1, 2]

        Since 'indices' is optional, we can also call replace_with_arrays by
        this way if no specific index order is needed:

        >>> A(i).replace_with_arrays({A(i): [1, 2]})
        [1, 2]

        >>> expr = A(i)*A(j)
        >>> expr.replace_with_arrays({A(i): [1, 2]})
        [[1, 2], [2, 4]]

        For contractions, specify the metric of the ``TensorIndexType``, which
        in this case is ``L``, in its covariant form:

        >>> expr = A(i)*A(-i)
        >>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)})
        -3

        Symmetrization of an array:

        >>> H = TensorHead("H", [L, L])
        >>> a, b, c, d = symbols("a b c d")
        >>> expr = H(i, j)/2 + H(j, i)/2
        >>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
        [[a, b/2 + c/2], [b/2 + c/2, d]]

        Anti-symmetrization of an array:

        >>> expr = H(i, j)/2 - H(j, i)/2
        >>> repl = {H(i, j): [[a, b], [c, d]]}
        >>> expr.replace_with_arrays(repl)
        [[0, b/2 - c/2], [-b/2 + c/2, 0]]

        The same expression can be read as the transpose by inverting ``i`` and
        ``j``:

        >>> expr.replace_with_arrays(repl, [j, i])
        [[0, -b/2 + c/2], [b/2 - c/2, 0]]
        """
        from .array import Array

        indices = indices or []
        remap = {k.args[0] if k.is_up else -k.args[0]: k for k in self.get_free_indices()}
        for i, index in enumerate(indices):
            if isinstance(index, (Symbol, Mul)):
                if index in remap:
                    indices[i] = remap[index]
                else:
                    indices[i] = -remap[-index]

        replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}

        # Check dimensions of replaced arrays:
        for tensor, array in replacement_dict.items():
            if isinstance(tensor, TensorIndexType):
                expected_shape = [tensor.dim for i in range(2)]
            else:
                expected_shape = [index_type.dim for index_type in tensor.index_types]
            if len(expected_shape) != array.rank() or (not all(dim1 == dim2 if
                dim1.is_number else True for dim1, dim2 in zip(expected_shape,
                array.shape))):
                raise ValueError("shapes for tensor %s expected to be %s, "\
                    "replacement array shape is %s" % (tensor, expected_shape,
                    array.shape))

        ret_indices, array = self._extract_data(replacement_dict)

        last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
        return array

    def _check_add_Sum(self, expr, index_symbols):
        from sympy.concrete.summations import Sum
        indices = self.get_indices()
        dum = self.dum
        sum_indices = [ (index_symbols[i], 0,
            indices[i].tensor_index_type.dim-1) for i, j in dum]
        if sum_indices:
            expr = Sum(expr, *sum_indices)
        return expr

    def _expand_partial_derivative(self):
        # simply delegate the _expand_partial_derivative() to
        # its arguments to expand a possibly found PartialDerivative
        return self.func(*[
                    a._expand_partial_derivative()
                    if isinstance(a, TensExpr) else a
                    for a in self.args])


class TensAdd(TensExpr, AssocOp):
    """
    Sum of tensors.

    Parameters
    ==========

    free_args : list of the free indices

    Attributes
    ==========

    ``args`` : tuple of addends
    ``rank`` : rank of the tensor
    ``free_args`` : list of the free indices in sorted order

    Examples
    ========

    >>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
    >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
    >>> a, b = tensor_indices('a,b', Lorentz)
    >>> p, q = tensor_heads('p,q', [Lorentz])
    >>> t = p(a) + q(a); t
    p(a) + q(a)

    Examples with components data added to the tensor expression:

    >>> from sympy import symbols, diag
    >>> x, y, z, t = symbols("x y z t")
    >>> repl = {}
    >>> repl[Lorentz] = diag(1, -1, -1, -1)
    >>> repl[p(a)] = [1, 2, 3, 4]
    >>> repl[q(a)] = [x, y, z, t]

    The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58

    >>> expr = p(a) + q(a)
    >>> expr.replace_with_arrays(repl, [a])
    [x + 1, y + 2, z + 3, t + 4]
    """

    def __new__(cls, *args, **kw_args):
        args = [_sympify(x) for x in args if x]
        args = TensAdd._tensAdd_flatten(args)
        args.sort(key=default_sort_key)
        if not args:
            return S.Zero
        if len(args) == 1:
            return args[0]

        return Basic.__new__(cls, *args, **kw_args)

    @property
    def coeff(self):
        return S.One

    @property
    def nocoeff(self):
        return self

    def get_free_indices(self) -> list[TensorIndex]:
        return self.free_indices

    def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
        newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]
        return self.func(*newargs)

    @memoize_property
    def rank(self):
        if isinstance(self.args[0], TensExpr):
            return self.args[0].rank
        else:
            return 0

    @memoize_property
    def free_args(self):
        if isinstance(self.args[0], TensExpr):
            return self.args[0].free_args
        else:
            return []

    @memoize_property
    def free_indices(self):
        if isinstance(self.args[0], TensExpr):
            return self.args[0].get_free_indices()
        else:
            return set()

    def doit(self, **hints):
        deep = hints.get('deep', True)
        if deep:
            args = [arg.doit(**hints) for arg in self.args]
        else:
            args = self.args

        # if any of the args are zero (after doit), drop them. Otherwise, _tensAdd_check will complain about non-matching indices, even though the TensAdd is correctly formed.
        args = [arg for arg in args if arg != S.Zero]

        if len(args) == 0:
            return S.Zero
        elif len(args) == 1:
            return args[0]

        # now check that all addends have the same indices:
        TensAdd._tensAdd_check(args)

        # Collect terms appearing more than once, differing by their coefficients:
        args = TensAdd._tensAdd_collect_terms(args)

        # collect canonicalized terms
        def sort_key(t):
            if not isinstance(t, TensExpr):
                return [], [], []
            if hasattr(t, "_index_structure") and hasattr(t, "components"):
                x = get_index_structure(t)
                return t.components, x.free, x.dum
            return [], [], []
        args.sort(key=sort_key)

        if not args:
            return S.Zero
        # it there is only a component tensor return it
        if len(args) == 1:
            return args[0]

        obj = self.func(*args)
        return obj

    @staticmethod
    def _tensAdd_flatten(args):
        # flatten TensAdd, coerce terms which are not tensors to tensors
        a = []
        for x in args:
            if isinstance(x, (Add, TensAdd)):
                a.extend(list(x.args))
            else:
                a.append(x)
        args = [x for x in a if x.coeff]
        return args

    @staticmethod
    def _tensAdd_check(args):
        # check that all addends have the same free indices

        def get_indices_set(x: Expr) -> set[TensorIndex]:
            if isinstance(x, TensExpr):
                return set(x.get_free_indices())
            return set()

        indices0 = get_indices_set(args[0])
        list_indices = [get_indices_set(arg) for arg in args[1:]]
        if not all(x == indices0 for x in list_indices):
            raise ValueError('all tensors must have the same indices')

    @staticmethod
    def _tensAdd_collect_terms(args):
        # collect TensMul terms differing at most by their coefficient
        terms_dict = defaultdict(list)
        scalars = S.Zero
        if isinstance(args[0], TensExpr):
            free_indices = set(args[0].get_free_indices())
        else:
            free_indices = set()

        for arg in args:
            if not isinstance(arg, TensExpr):
                if free_indices != set():
                    raise ValueError("wrong valence")
                scalars += arg
                continue
            if free_indices != set(arg.get_free_indices()):
                raise ValueError("wrong valence")
            # TODO: what is the part which is not a coeff?
            # needs an implementation similar to .as_coeff_Mul()
            terms_dict[arg.nocoeff].append(arg.coeff)

        new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
        if isinstance(scalars, Add):
            new_args = list(scalars.args) + new_args
        elif scalars != 0:
            new_args = [scalars] + new_args
        return new_args

    def get_indices(self):
        indices = []
        for arg in self.args:
            indices.extend([i for i in get_indices(arg) if i not in indices])
        return indices

    def _expand(self, **hints):
        return TensAdd(*[_expand(i, **hints) for i in self.args])

    def __call__(self, *indices):
        deprecate_call()
        free_args = self.free_args
        indices = list(indices)
        if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
            raise ValueError('incompatible types')
        if indices == free_args:
            return self
        index_tuples = list(zip(free_args, indices))
        a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args]
        res = TensAdd(*a).doit()
        return res

    def canon_bp(self):
        """
        Canonicalize using the Butler-Portugal algorithm for canonicalization
        under monoterm symmetries.
        """
        expr = self.expand()
        args = [canon_bp(x) for x in expr.args]
        res = TensAdd(*args).doit()
        return res

    def equals(self, other):
        other = _sympify(other)
        if isinstance(other, TensMul) and other.coeff == 0:
            return all(x.coeff == 0 for x in self.args)
        if isinstance(other, TensExpr):
            if self.rank != other.rank:
                return False
        if isinstance(other, TensAdd):
            if set(self.args) != set(other.args):
                return False
            else:
                return True
        t = self - other
        if not isinstance(t, TensExpr):
            return t == 0
        else:
            if isinstance(t, TensMul):
                return t.coeff == 0
            else:
                return all(x.coeff == 0 for x in t.args)

    def __getitem__(self, item):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return self.data[item]

    def contract_delta(self, delta):
        args = [x.contract_delta(delta) for x in self.args]
        t = TensAdd(*args).doit()
        return canon_bp(t)

    def contract_metric(self, g):
        """
        Raise or lower indices with the metric ``g``.

        Parameters
        ==========

        g :  metric

        contract_all : if True, eliminate all ``g`` which are contracted

        Notes
        =====

        see the ``TensorIndexType`` docstring for the contraction conventions
        """

        args = [contract_metric(x, g) for x in self.args]
        t = TensAdd(*args).doit()
        return canon_bp(t)

    def substitute_indices(self, *index_tuples):
        new_args = []
        for arg in self.args:
            if isinstance(arg, TensExpr):
                arg = arg.substitute_indices(*index_tuples)
            new_args.append(arg)
        return TensAdd(*new_args).doit()

    def _print(self):
        a = []
        args = self.args
        for x in args:
            a.append(str(x))
        s = ' + '.join(a)
        s = s.replace('+ -', '- ')
        return s

    def _extract_data(self, replacement_dict):
        from sympy.tensor.array import Array, permutedims
        args_indices, arrays = zip(*[
            arg._extract_data(replacement_dict) if
            isinstance(arg, TensExpr) else ([], arg) for arg in self.args
        ])
        arrays = [Array(i) for i in arrays]
        ref_indices = args_indices[0]
        for i in range(1, len(args_indices)):
            indices = args_indices[i]
            array = arrays[i]
            permutation = TensMul._get_indices_permutation(indices, ref_indices)
            arrays[i] = permutedims(array, permutation)
        return ref_indices, sum(arrays, Array.zeros(*array.shape))

    @property
    def data(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return _tensor_data_substitution_dict[self.expand()]

    @data.setter
    def data(self, data):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            _tensor_data_substitution_dict[self] = data

    @data.deleter
    def data(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            if self in _tensor_data_substitution_dict:
                del _tensor_data_substitution_dict[self]

    def __iter__(self):
        deprecate_data()
        if not self.data:
            raise ValueError("No iteration on abstract tensors")
        return self.data.flatten().__iter__()

    def _eval_rewrite_as_Indexed(self, *args, **kwargs):
        return Add.fromiter(args)

    def _eval_partial_derivative(self, s):
        # Evaluation like Add
        list_addends = []
        for a in self.args:
            if isinstance(a, TensExpr):
                list_addends.append(a._eval_partial_derivative(s))
            # do not call diff if s is no symbol
            elif s._diff_wrt:
                list_addends.append(a._eval_derivative(s))

        return self.func(*list_addends)


class Tensor(TensExpr):
    """
    Base tensor class, i.e. this represents a tensor, the single unit to be
    put into an expression.

    Explanation
    ===========

    This object is usually created from a ``TensorHead``, by attaching indices
    to it. Indices preceded by a minus sign are considered contravariant,
    otherwise covariant.

    Examples
    ========

    >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
    >>> Lorentz = TensorIndexType("Lorentz", dummy_name="L")
    >>> mu, nu = tensor_indices('mu nu', Lorentz)
    >>> A = TensorHead("A", [Lorentz, Lorentz])
    >>> A(mu, -nu)
    A(mu, -nu)
    >>> A(mu, -mu)
    A(L_0, -L_0)

    It is also possible to use symbols instead of inidices (appropriate indices
    are then generated automatically).

    >>> from sympy import Symbol
    >>> x = Symbol('x')
    >>> A(x, mu)
    A(x, mu)
    >>> A(x, -x)
    A(L_0, -L_0)

    """

    is_commutative = False

    _index_structure = None  # type: _IndexStructure
    args: tuple[TensorHead, Tuple]

    def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args):
        indices = cls._parse_indices(tensor_head, indices)
        obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
        obj._index_structure = _IndexStructure.from_indices(*indices)
        obj._free = obj._index_structure.free[:]
        obj._dum = obj._index_structure.dum[:]
        obj._ext_rank = obj._index_structure._ext_rank
        obj._coeff = S.One
        obj._nocoeff = obj
        obj._component = tensor_head
        obj._components = [tensor_head]
        if tensor_head.rank != len(indices):
            raise ValueError("wrong number of indices")
        obj.is_canon_bp = is_canon_bp
        obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
        return obj

    @property
    def free(self):
        return self._free

    @property
    def dum(self):
        return self._dum

    @property
    def ext_rank(self):
        return self._ext_rank

    @property
    def coeff(self):
        return self._coeff

    @property
    def nocoeff(self):
        return self._nocoeff

    @property
    def component(self):
        return self._component

    @property
    def components(self):
        return self._components

    @property
    def head(self):
        return self.args[0]

    @property
    def indices(self):
        return self.args[1]

    @property
    def free_indices(self):
        return set(self._index_structure.get_free_indices())

    @property
    def index_types(self):
        return self.head.index_types

    @property
    def rank(self):
        return len(self.free_indices)

    @staticmethod
    def _build_index_map(indices, index_structure):
        index_map = {}
        for idx in indices:
            index_map[idx] = (indices.index(idx),)
        return index_map

    def doit(self, **hints):
        args, indices, free, dum = TensMul._tensMul_contract_indices([self])
        return args[0]

    @staticmethod
    def _parse_indices(tensor_head, indices):
        if not isinstance(indices, (tuple, list, Tuple)):
            raise TypeError("indices should be an array, got %s" % type(indices))
        indices = list(indices)
        for i, index in enumerate(indices):
            if isinstance(index, Symbol):
                indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
            elif isinstance(index, Mul):
                c, e = index.as_coeff_Mul()
                if c == -1 and isinstance(e, Symbol):
                    indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
                else:
                    raise ValueError("index not understood: %s" % index)
            elif not isinstance(index, TensorIndex):
                raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
        return indices

    def _set_new_index_structure(self, im, is_canon_bp=False):
        indices = im.get_indices()
        return self._set_indices(*indices, is_canon_bp=is_canon_bp)

    def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
        if len(indices) != self.ext_rank:
            raise ValueError("indices length mismatch")
        return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit()

    def _get_free_indices_set(self):
        return {i[0] for i in self._index_structure.free}

    def _get_dummy_indices_set(self):
        dummy_pos = set(itertools.chain(*self._index_structure.dum))
        return {idx for i, idx in enumerate(self.args[1]) if i in dummy_pos}

    def _get_indices_set(self):
        return set(self.args[1].args)

    @property
    def free_in_args(self):
        return [(ind, pos, 0) for ind, pos in self.free]

    @property
    def dum_in_args(self):
        return [(p1, p2, 0, 0) for p1, p2 in self.dum]

    @property
    def free_args(self):
        return sorted([x[0] for x in self.free])

    def commutes_with(self, other):
        """
        :param other:
        :return:
            0  commute
            1  anticommute
            None  neither commute nor anticommute
        """
        if not isinstance(other, TensExpr):
            return 0
        elif isinstance(other, Tensor):
            return self.component.commutes_with(other.component)
        return NotImplementedError

    def perm2tensor(self, g, is_canon_bp=False):
        """
        Returns the tensor corresponding to the permutation ``g``.

        For further details, see the method in ``TIDS`` with the same name.
        """
        return perm2tensor(self, g, is_canon_bp)

    def canon_bp(self):
        if self.is_canon_bp:
            return self
        expr = self.expand()
        g, dummies, msym = expr._index_structure.indices_canon_args()
        v = components_canon_args([expr.component])
        can = canonicalize(g, dummies, msym, *v)
        if can == 0:
            return S.Zero
        tensor = self.perm2tensor(can, True)
        return tensor

    def split(self):
        return [self]

    def _expand(self, **kwargs):
        return self

    def sorted_components(self):
        return self

    def get_indices(self) -> list[TensorIndex]:
        """
        Get a list of indices, corresponding to those of the tensor.
        """
        return list(self.args[1])

    def get_free_indices(self) -> list[TensorIndex]:
        """
        Get a list of free indices, corresponding to those of the tensor.
        """
        return self._index_structure.get_free_indices()

    def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
        # TODO: this could be optimized by only swapping the indices
        # instead of visiting the whole expression tree:
        return self.xreplace(repl)

    def as_base_exp(self):
        return self, S.One

    def substitute_indices(self, *index_tuples):
        """
        Return a tensor with free indices substituted according to ``index_tuples``.

        ``index_types`` list of tuples ``(old_index, new_index)``.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
        >>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
        >>> t = A(i, k)*B(-k, -j); t
        A(i, L_0)*B(-L_0, -j)
        >>> t.substitute_indices((i, k),(-j, l))
        A(k, L_0)*B(-L_0, l)
        """
        indices = []
        for index in self.indices:
            for ind_old, ind_new in index_tuples:
                if (index.name == ind_old.name and index.tensor_index_type ==
                                                   ind_old.tensor_index_type):
                    if index.is_up == ind_old.is_up:
                        indices.append(ind_new)
                    else:
                        indices.append(-ind_new)
                    break
            else:
                indices.append(index)
        return self.head(*indices)

    def _get_symmetrized_forms(self):
        """
        Return a list giving all possible permutations of self that are allowed by its symmetries.
        """
        comp = self.component
        gens = comp.symmetry.generators
        rank = comp.rank

        old_perms = None
        new_perms = {self}
        while new_perms != old_perms:
            old_perms = new_perms.copy()
            for tens in old_perms:
                for gen in gens:
                    inds = tens.get_indices()
                    per = [gen.apply(i) for i in range(0,rank)]
                    sign = (-1)**(gen.apply(rank) - rank)
                    ind_map = dict(zip(inds, [inds[i] for i in per]))
                    new_perms.add( sign * tens._replace_indices(ind_map) )

        return new_perms

    def matches(self, expr, repl_dict=None, old=False):
        expr = sympify(expr)

        if repl_dict is None:
            repl_dict = {}
        else:
            repl_dict = repl_dict.copy()

        #simple checks
        if self == expr:
            return repl_dict
        if not isinstance(expr, Tensor):
            return None
        if self.head != expr.head:
            return None

        #Now consider all index symmetries of expr, and see if any of them allow a match.
        for new_expr in expr._get_symmetrized_forms():
            m = self._matches(new_expr, repl_dict, old=old)
            if m is not None:
                repl_dict.update(m)
                return repl_dict

        return None

    def _matches(self, expr, repl_dict=None, old=False):
        """
        This does not account for index symmetries of expr
        """
        expr = sympify(expr)

        if repl_dict is None:
            repl_dict = {}
        else:
            repl_dict = repl_dict.copy()

        #simple checks
        if self == expr:
            return repl_dict
        if not isinstance(expr, Tensor):
            return None
        if self.head != expr.head:
            return None

        s_indices = self.get_indices()
        e_indices = expr.get_indices()

        if len(s_indices) != len(e_indices):
            return None

        for i in range(len(s_indices)):
            s_ind = s_indices[i]
            m = s_ind.matches(e_indices[i])
            if m is None:
                return None
            elif -s_ind in repl_dict.keys() and -repl_dict[-s_ind] != m[s_ind]:
                return None
            else:
                repl_dict.update(m)

        return repl_dict

    def __call__(self, *indices):
        deprecate_call()
        free_args = self.free_args
        indices = list(indices)
        if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
            raise ValueError('incompatible types')
        if indices == free_args:
            return self
        t = self.substitute_indices(*list(zip(free_args, indices)))

        # object is rebuilt in order to make sure that all contracted indices
        # get recognized as dummies, but only if there are contracted indices.
        if len({i if i.is_up else -i for i in indices}) != len(indices):
            return t.func(*t.args)
        return t

    # TODO: put this into TensExpr?
    def __iter__(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return self.data.__iter__()

    # TODO: put this into TensExpr?
    def __getitem__(self, item):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return self.data[item]

    def _extract_data(self, replacement_dict):
        from .array import Array
        for k, v in replacement_dict.items():
            if isinstance(k, Tensor) and k.args[0] == self.args[0]:
                other = k
                array = v
                break
        else:
            raise ValueError("%s not found in %s" % (self, replacement_dict))

        # TODO: inefficient, this should be done at root level only:
        replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
        array = Array(array)

        dum1 = self.dum
        dum2 = other.dum

        if len(dum2) > 0:
            for pair in dum2:
                # allow `dum2` if the contained values are also in `dum1`.
                if pair not in dum1:
                    raise NotImplementedError("%s with contractions is not implemented" % other)
            # Remove elements in `dum2` from `dum1`:
            dum1 = [pair for pair in dum1 if pair not in dum2]
        if len(dum1) > 0:
            indices1 = self.get_indices()
            indices2 = other.get_indices()
            repl = {}
            for p1, p2 in dum1:
                repl[indices2[p2]] = -indices2[p1]
                for pos in (p1, p2):
                    if indices1[pos].is_up ^ indices2[pos].is_up:
                        metric = replacement_dict[indices1[pos].tensor_index_type]
                        if indices1[pos].is_up:
                            metric = _TensorDataLazyEvaluator.inverse_matrix(metric)
                        array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2))
            other = other.xreplace(repl).doit()
            array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))

        free_ind1 = self.get_free_indices()
        free_ind2 = other.get_free_indices()

        return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)

    @property
    def data(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return _tensor_data_substitution_dict[self]

    @data.setter
    def data(self, data):
        deprecate_data()
        # TODO: check data compatibility with properties of tensor.
        with ignore_warnings(SymPyDeprecationWarning):
            _tensor_data_substitution_dict[self] = data

    @data.deleter
    def data(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            if self in _tensor_data_substitution_dict:
                del _tensor_data_substitution_dict[self]
            if self.metric in _tensor_data_substitution_dict:
                del _tensor_data_substitution_dict[self.metric]

    def _print(self):
        indices = [str(ind) for ind in self.indices]
        component = self.component
        if component.rank > 0:
            return ('%s(%s)' % (component.name, ', '.join(indices)))
        else:
            return ('%s' % component.name)

    def equals(self, other):
        if other == 0:
            return self.coeff == 0
        other = _sympify(other)
        if not isinstance(other, TensExpr):
            assert not self.components
            return S.One == other

        def _get_compar_comp(self):
            t = self.canon_bp()
            r = (t.coeff, tuple(t.components), \
                    tuple(sorted(t.free)), tuple(sorted(t.dum)))
            return r

        return _get_compar_comp(self) == _get_compar_comp(other)

    def contract_metric(self, g):
        # if metric is not the same, ignore this step:
        if self.component != g:
            return self
        # in case there are free components, do not perform anything:
        if len(self.free) != 0:
            return self

        #antisym = g.index_types[0].metric_antisym
        if g.symmetry == TensorSymmetry.fully_symmetric(-2):
            antisym = 1
        elif g.symmetry == TensorSymmetry.fully_symmetric(2):
            antisym = 0
        elif g.symmetry == TensorSymmetry.no_symmetry(2):
            antisym = None
        else:
            raise NotImplementedError
        sign = S.One
        typ = g.index_types[0]

        if not antisym:
            # g(i, -i)
            sign = sign*typ.dim
        else:
            # g(i, -i)
            sign = sign*typ.dim

            dp0, dp1 = self.dum[0]
            if dp0 < dp1:
                # g(i, -i) = -D with antisymmetric metric
                sign = -sign

        return sign

    def contract_delta(self, metric):
        return self.contract_metric(metric)

    def _eval_rewrite_as_Indexed(self, tens, indices, **kwargs):
        from sympy.tensor.indexed import Indexed
        # TODO: replace .args[0] with .name:
        index_symbols = [i.args[0] for i in self.get_indices()]
        expr = Indexed(tens.args[0], *index_symbols)
        return self._check_add_Sum(expr, index_symbols)

    def _eval_partial_derivative(self, s):  # type: (Tensor) -> Expr

        if not isinstance(s, Tensor):
            return S.Zero
        else:

            # @a_i/@a_k = delta_i^k
            # @a_i/@a^k = g_ij delta^j_k
            # @a^i/@a^k = delta^i_k
            # @a^i/@a_k = g^ij delta_j^k
            # TODO: if there is no metric present, the derivative should be zero?

            if self.head != s.head:
                return S.Zero

            # if heads are the same, provide delta and/or metric products
            # for every free index pair in the appropriate tensor
            # assumed that the free indices are in proper order
            # A contravariante index in the derivative becomes covariant
            # after performing the derivative and vice versa

            kronecker_delta_list = [1]

            # not guarantee a correct index order

            for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())):
                if iself.tensor_index_type != iother.tensor_index_type:
                    raise ValueError("index types not compatible")
                else:
                    tensor_index_type = iself.tensor_index_type
                    tensor_metric = tensor_index_type.metric
                    dummy = TensorIndex("d_" + str(count), tensor_index_type,
                                        is_up=iself.is_up)
                    if iself.is_up == iother.is_up:
                        kroneckerdelta = tensor_index_type.delta(iself, -iother)
                    else:
                        kroneckerdelta = (
                            TensMul(tensor_metric(iself, dummy),
                                    tensor_index_type.delta(-dummy, -iother))
                        )
                    kronecker_delta_list.append(kroneckerdelta)
            return TensMul.fromiter(kronecker_delta_list).doit()
            # doit necessary to rename dummy indices accordingly


class TensMul(TensExpr, AssocOp):
    """
    Product of tensors.

    Parameters
    ==========

    coeff : SymPy coefficient of the tensor
    args

    Attributes
    ==========

    ``components`` : list of ``TensorHead`` of the component tensors
    ``types`` : list of nonrepeated ``TensorIndexType``
    ``free`` : list of ``(ind, ipos, icomp)``, see Notes
    ``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
    ``ext_rank`` : rank of the tensor counting the dummy indices
    ``rank`` : rank of the tensor
    ``coeff`` : SymPy coefficient of the tensor
    ``free_args`` : list of the free indices in sorted order
    ``is_canon_bp`` : ``True`` if the tensor in in canonical form

    Notes
    =====

    ``args[0]``   list of ``TensorHead`` of the component tensors.

    ``args[1]``   list of ``(ind, ipos, icomp)``
    where ``ind`` is a free index, ``ipos`` is the slot position
    of ``ind`` in the ``icomp``-th component tensor.

    ``args[2]`` list of tuples representing dummy indices.
    ``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
    dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
    component tensor; the corresponding covariant index is
    in the ``ipos2`` slot position in the ``icomp2``-th component tensor.

    """
    identity = S.One

    _index_structure = None  # type: _IndexStructure

    def __new__(cls, *args, **kw_args):
        is_canon_bp = kw_args.get('is_canon_bp', False)
        args = list(map(_sympify, args))

        """
        If the internal dummy indices in one arg conflict with the free indices
        of the remaining args, we need to rename those internal dummy indices.
        """
        free = [get_free_indices(arg) for arg in args]
        free = set(itertools.chain(*free)) #flatten free
        newargs = []
        for arg in args:
            dum_this = set(get_dummy_indices(arg))
            dum_other = [get_dummy_indices(a) for a in newargs]
            dum_other = set(itertools.chain(*dum_other)) #flatten dum_other
            free_this = set(get_free_indices(arg))
            if len(dum_this.intersection(free)) > 0:
                exclude = free_this.union(free, dum_other)
                newarg = TensMul._dedupe_indices(arg, exclude)
            else:
                newarg = arg
            newargs.append(newarg)

        args = newargs

        # Flatten:
        args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]

        args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)

        # Data for indices:
        index_types = [i.tensor_index_type for i in indices]
        index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)

        obj = TensExpr.__new__(cls, *args)
        obj._indices = indices
        obj._index_types = index_types[:]
        obj._index_structure = index_structure
        obj._free = index_structure.free[:]
        obj._dum = index_structure.dum[:]
        obj._free_indices = {x[0] for x in obj.free}
        obj._rank = len(obj.free)
        obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
        obj._coeff = S.One
        obj._is_canon_bp = is_canon_bp
        return obj

    index_types = property(lambda self: self._index_types)
    free = property(lambda self: self._free)
    dum = property(lambda self: self._dum)
    free_indices = property(lambda self: self._free_indices)
    rank = property(lambda self: self._rank)
    ext_rank = property(lambda self: self._ext_rank)

    @staticmethod
    def _indices_to_free_dum(args_indices):
        free2pos1 = {}
        free2pos2 = {}
        dummy_data = []
        indices = []

        # Notation for positions (to better understand the code):
        # `pos1`: position in the `args`.
        # `pos2`: position in the indices.

        # Example:
        # A(i, j)*B(k, m, n)*C(p)
        # `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
        # `pos2` of `n` is 4 because it's the fifth overall index.

        # Counter for the index position wrt the whole expression:
        pos2 = 0

        for pos1, arg_indices in enumerate(args_indices):

            for index in arg_indices:
                if not isinstance(index, TensorIndex):
                    raise TypeError("expected TensorIndex")
                if -index in free2pos1:
                    # Dummy index detected:
                    other_pos1 = free2pos1.pop(-index)
                    other_pos2 = free2pos2.pop(-index)
                    if index.is_up:
                        dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
                    else:
                        dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
                    indices.append(index)
                elif index in free2pos1:
                    raise ValueError("Repeated index: %s" % index)
                else:
                    free2pos1[index] = pos1
                    free2pos2[index] = pos2
                    indices.append(index)
                pos2 += 1

        free = list(free2pos2.items())
        free_names = [i.name for i in free2pos2.keys()]

        dummy_data.sort(key=lambda x: x[3])
        return indices, free, free_names, dummy_data

    @staticmethod
    def _dummy_data_to_dum(dummy_data):
        return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]

    @staticmethod
    def _tensMul_contract_indices(args, replace_indices=True):
        replacements = [{} for _ in args]

        #_index_order = all(_has_index_order(arg) for arg in args)

        args_indices = [get_indices(arg) for arg in args]
        indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)

        cdt = defaultdict(int)

        def dummy_name_gen(tensor_index_type):
            nd = str(cdt[tensor_index_type])
            cdt[tensor_index_type] += 1
            return tensor_index_type.dummy_name + '_' + nd

        if replace_indices:
            for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
                index_type = old_index.tensor_index_type
                while True:
                    dummy_name = dummy_name_gen(index_type)
                    if dummy_name not in free_names:
                        break
                dummy = TensorIndex(dummy_name, index_type, True)
                replacements[pos1cov][old_index] = dummy
                replacements[pos1contra][-old_index] = -dummy
                indices[pos2cov] = dummy
                indices[pos2contra] = -dummy
            args = [
                arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg
                for arg, repl in zip(args, replacements)]

        dum = TensMul._dummy_data_to_dum(dummy_data)
        return args, indices, free, dum

    @staticmethod
    def _get_components_from_args(args):
        """
        Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
        by one another.
        """
        components = []
        for arg in args:
            if not isinstance(arg, TensExpr):
                continue
            if isinstance(arg, TensAdd):
                continue
            components.extend(arg.components)
        return components

    @staticmethod
    def _rebuild_tensors_list(args, index_structure):
        indices = index_structure.get_indices()
        #tensors = [None for i in components]  # pre-allocate list
        ind_pos = 0
        for i, arg in enumerate(args):
            if not isinstance(arg, TensExpr):
                continue
            prev_pos = ind_pos
            ind_pos += arg.ext_rank
            args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])

    def doit(self, **hints):
        is_canon_bp = self._is_canon_bp
        deep = hints.get('deep', True)
        if deep:
            args = [arg.doit(**hints) for arg in self.args]

            """
            There may now be conflicts between dummy indices of different args
            (each arg's doit method does not have any information about which
            dummy indices are already used in the other args), so we
            deduplicate them.
            """
            rule = dict(zip(self.args, args))
            rule = self._dedupe_indices_in_rule(rule)
            args = [rule[a] for a in self.args]

        else:
            args = self.args

        args = [arg for arg in args if arg != self.identity]

        # Extract non-tensor coefficients:
        coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
        args = [arg for arg in args if isinstance(arg, TensExpr)]

        if len(args) == 0:
            return coeff

        if coeff != self.identity:
            args = [coeff] + args
        if coeff == 0:
            return S.Zero

        if len(args) == 1:
            return args[0]

        args, indices, free, dum = TensMul._tensMul_contract_indices(args)

        # Data for indices:
        index_types = [i.tensor_index_type for i in indices]
        index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)

        obj = self.func(*args)
        obj._index_types = index_types
        obj._index_structure = index_structure
        obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
        obj._coeff = coeff
        obj._is_canon_bp = is_canon_bp
        return obj

    # TODO: this method should be private
    # TODO: should this method be renamed _from_components_free_dum ?
    @staticmethod
    def from_data(coeff, components, free, dum, **kw_args):
        return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()

    @staticmethod
    def _get_tensors_from_components_free_dum(components, free, dum):
        """
        Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
        """
        index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
        indices = index_structure.get_indices()
        tensors = [None for i in components]  # pre-allocate list

        # distribute indices on components to build a list of tensors:
        ind_pos = 0
        for i, component in enumerate(components):
            prev_pos = ind_pos
            ind_pos += component.rank
            tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
        return tensors

    def _get_free_indices_set(self):
        return {i[0] for i in self.free}

    def _get_dummy_indices_set(self):
        dummy_pos = set(itertools.chain(*self.dum))
        return {idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos}

    def _get_position_offset_for_indices(self):
        arg_offset = [None for i in range(self.ext_rank)]
        counter = 0
        for arg in self.args:
            if not isinstance(arg, TensExpr):
                continue
            for j in range(arg.ext_rank):
                arg_offset[j + counter] = counter
            counter += arg.ext_rank
        return arg_offset

    @property
    def free_args(self):
        return sorted([x[0] for x in self.free])

    @property
    def components(self):
        return self._get_components_from_args(self.args)

    @property
    def free_in_args(self):
        arg_offset = self._get_position_offset_for_indices()
        argpos = self._get_indices_to_args_pos()
        return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]

    @property
    def coeff(self):
        # return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)])
        return self._coeff

    @property
    def nocoeff(self):
        return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()

    @property
    def dum_in_args(self):
        arg_offset = self._get_position_offset_for_indices()
        argpos = self._get_indices_to_args_pos()
        return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]

    def equals(self, other):
        if other == 0:
            return self.coeff == 0
        other = _sympify(other)
        if not isinstance(other, TensExpr):
            assert not self.components
            return self.coeff == other

        return self.canon_bp() == other.canon_bp()

    def get_indices(self):
        """
        Returns the list of indices of the tensor.

        Explanation
        ===========

        The indices are listed in the order in which they appear in the
        component tensors.
        The dummy indices are given a name which does not collide with
        the names of the free indices.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
        >>> g = Lorentz.metric
        >>> p, q = tensor_heads('p,q', [Lorentz])
        >>> t = p(m1)*g(m0,m2)
        >>> t.get_indices()
        [m1, m0, m2]
        >>> t2 = p(m1)*g(-m1, m2)
        >>> t2.get_indices()
        [L_0, -L_0, m2]
        """
        return self._indices

    def get_free_indices(self) -> list[TensorIndex]:
        """
        Returns the list of free indices of the tensor.

        Explanation
        ===========

        The indices are listed in the order in which they appear in the
        component tensors.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
        >>> g = Lorentz.metric
        >>> p, q = tensor_heads('p,q', [Lorentz])
        >>> t = p(m1)*g(m0,m2)
        >>> t.get_free_indices()
        [m1, m0, m2]
        >>> t2 = p(m1)*g(-m1, m2)
        >>> t2.get_free_indices()
        [m2]
        """
        return self._index_structure.get_free_indices()

    def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
        return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args])

    def split(self):
        """
        Returns a list of tensors, whose product is ``self``.

        Explanation
        ===========

        Dummy indices contracted among different tensor components
        become free indices with the same name as the one used to
        represent the dummy indices.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
        >>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
        >>> t = A(a,b)*B(-b,c)
        >>> t
        A(a, L_0)*B(-L_0, c)
        >>> t.split()
        [A(a, L_0), B(-L_0, c)]
        """
        if self.args == ():
            return [self]
        splitp = []
        res = 1
        for arg in self.args:
            if isinstance(arg, Tensor):
                splitp.append(res*arg)
                res = 1
            else:
                res *= arg
        return splitp

    def _expand(self, **hints):
        # TODO: temporary solution, in the future this should be linked to
        # `Expr.expand`.
        args = [_expand(arg, **hints) for arg in self.args]
        args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
        return TensAdd(*[
            TensMul(*i) for i in itertools.product(*args1)]
        )

    def __neg__(self):
        return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()

    def __getitem__(self, item):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            return self.data[item]

    def _get_args_for_traditional_printer(self):
        args = list(self.args)
        if self.coeff.could_extract_minus_sign():
            # expressions like "-A(a)"
            sign = "-"
            if args[0] == S.NegativeOne:
                args = args[1:]
            else:
                args[0] = -args[0]
        else:
            sign = ""
        return sign, args

    def _sort_args_for_sorted_components(self):
        """
        Returns the ``args`` sorted according to the components commutation
        properties.

        Explanation
        ===========

        The sorting is done taking into account the commutation group
        of the component tensors.
        """
        cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
        sign = 1
        n = len(cv) - 1
        for i in range(n):
            for j in range(n, i, -1):
                c = cv[j-1].commutes_with(cv[j])
                # if `c` is `None`, it does neither commute nor anticommute, skip:
                if c not in (0, 1):
                    continue
                typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name)
                typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name)
                if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name):
                    cv[j-1], cv[j] = cv[j], cv[j-1]
                    # if `c` is 1, the anticommute, so change sign:
                    if c:
                        sign = -sign

        coeff = sign * self.coeff
        if coeff != 1:
            return [coeff] + cv
        return cv

    def sorted_components(self):
        """
        Returns a tensor product with sorted components.
        """
        return TensMul(*self._sort_args_for_sorted_components()).doit()

    def perm2tensor(self, g, is_canon_bp=False):
        """
        Returns the tensor corresponding to the permutation ``g``

        For further details, see the method in ``TIDS`` with the same name.
        """
        return perm2tensor(self, g, is_canon_bp=is_canon_bp)

    def canon_bp(self):
        """
        Canonicalize using the Butler-Portugal algorithm for canonicalization
        under monoterm symmetries.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
        >>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
        >>> t = A(m0,-m1)*A(m1,-m0)
        >>> t.canon_bp()
        -A(L_0, L_1)*A(-L_0, -L_1)
        >>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
        >>> t.canon_bp()
        0
        """
        if self._is_canon_bp:
            return self
        expr = self.expand()
        if isinstance(expr, TensAdd):
            return expr.canon_bp()
        if not expr.components:
            return expr
        t = expr.sorted_components()
        g, dummies, msym = t._index_structure.indices_canon_args()
        v = components_canon_args(t.components)
        can = canonicalize(g, dummies, msym, *v)
        if can == 0:
            return S.Zero
        tmul = t.perm2tensor(can, True)
        return tmul

    def contract_delta(self, delta):
        t = self.contract_metric(delta)
        return t

    def _get_indices_to_args_pos(self):
        """
        Get a dict mapping the index position to TensMul's argument number.
        """
        pos_map = {}
        pos_counter = 0
        for arg_i, arg in enumerate(self.args):
            if not isinstance(arg, TensExpr):
                continue
            assert isinstance(arg, Tensor)
            for i in range(arg.ext_rank):
                pos_map[pos_counter] = arg_i
                pos_counter += 1
        return pos_map

    def contract_metric(self, g):
        """
        Raise or lower indices with the metric ``g``.

        Parameters
        ==========

        g : metric

        Notes
        =====

        See the ``TensorIndexType`` docstring for the contraction conventions.

        Examples
        ========

        >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
        >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
        >>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
        >>> g = Lorentz.metric
        >>> p, q = tensor_heads('p,q', [Lorentz])
        >>> t = p(m0)*q(m1)*g(-m0, -m1)
        >>> t.canon_bp()
        metric(L_0, L_1)*p(-L_0)*q(-L_1)
        >>> t.contract_metric(g).canon_bp()
        p(L_0)*q(-L_0)
        """
        expr = self.expand()
        if self != expr:
            expr = canon_bp(expr)
            return contract_metric(expr, g)
        pos_map = self._get_indices_to_args_pos()
        args = list(self.args)

        #antisym = g.index_types[0].metric_antisym
        if g.symmetry == TensorSymmetry.fully_symmetric(-2):
            antisym = 1
        elif g.symmetry == TensorSymmetry.fully_symmetric(2):
            antisym = 0
        elif g.symmetry == TensorSymmetry.no_symmetry(2):
            antisym = None
        else:
            raise NotImplementedError

        # list of positions of the metric ``g`` inside ``args``
        gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
        if not gpos:
            return self

        # Sign is either 1 or -1, to correct the sign after metric contraction
        # (for spinor indices).
        sign = 1
        dum = self.dum[:]
        free = self.free[:]
        elim = set()
        for gposx in gpos:
            if gposx in elim:
                continue
            free1 = [x for x in free if pos_map[x[1]] == gposx]
            dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
            if not dum1:
                continue
            elim.add(gposx)
            # subs with the multiplication neutral element, that is, remove it:
            args[gposx] = 1
            if len(dum1) == 2:
                if not antisym:
                    dum10, dum11 = dum1
                    if pos_map[dum10[1]] == gposx:
                        # the index with pos p0 contravariant
                        p0 = dum10[0]
                    else:
                        # the index with pos p0 is covariant
                        p0 = dum10[1]
                    if pos_map[dum11[1]] == gposx:
                        # the index with pos p1 is contravariant
                        p1 = dum11[0]
                    else:
                        # the index with pos p1 is covariant
                        p1 = dum11[1]

                    dum.append((p0, p1))
                else:
                    dum10, dum11 = dum1
                    # change the sign to bring the indices of the metric to contravariant
                    # form; change the sign if dum10 has the metric index in position 0
                    if pos_map[dum10[1]] == gposx:
                        # the index with pos p0 is contravariant
                        p0 = dum10[0]
                        if dum10[1] == 1:
                            sign = -sign
                    else:
                        # the index with pos p0 is covariant
                        p0 = dum10[1]
                        if dum10[0] == 0:
                            sign = -sign
                    if pos_map[dum11[1]] == gposx:
                        # the index with pos p1 is contravariant
                        p1 = dum11[0]
                        sign = -sign
                    else:
                        # the index with pos p1 is covariant
                        p1 = dum11[1]

                    dum.append((p0, p1))

            elif len(dum1) == 1:
                if not antisym:
                    dp0, dp1 = dum1[0]
                    if pos_map[dp0] == pos_map[dp1]:
                        # g(i, -i)
                        typ = g.index_types[0]
                        sign = sign*typ.dim

                    else:
                        # g(i0, i1)*p(-i1)
                        if pos_map[dp0] == gposx:
                            p1 = dp1
                        else:
                            p1 = dp0

                        ind, p = free1[0]
                        free.append((ind, p1))
                else:
                    dp0, dp1 = dum1[0]
                    if pos_map[dp0] == pos_map[dp1]:
                        # g(i, -i)
                        typ = g.index_types[0]
                        sign = sign*typ.dim

                        if dp0 < dp1:
                            # g(i, -i) = -D with antisymmetric metric
                            sign = -sign
                    else:
                        # g(i0, i1)*p(-i1)
                        if pos_map[dp0] == gposx:
                            p1 = dp1
                            if dp0 == 0:
                                sign = -sign
                        else:
                            p1 = dp0
                        ind, p = free1[0]
                        free.append((ind, p1))
            dum = [x for x in dum if x not in dum1]
            free = [x for x in free if x not in free1]

        # shift positions:
        shift = 0
        shifts = [0]*len(args)
        for i in range(len(args)):
            if i in elim:
                shift += 2
                continue
            shifts[i] = shift
        free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
        dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for p0, p1 in dum if pos_map[p0] not in elim and pos_map[p1] not in elim]

        res = sign*TensMul(*args).doit()
        if not isinstance(res, TensExpr):
            return res
        im = _IndexStructure.from_components_free_dum(res.components, free, dum)
        return res._set_new_index_structure(im)

    def _set_new_index_structure(self, im, is_canon_bp=False):
        indices = im.get_indices()
        return self._set_indices(*indices, is_canon_bp=is_canon_bp)

    def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
        if len(indices) != self.ext_rank:
            raise ValueError("indices length mismatch")
        args = list(self.args)[:]
        pos = 0
        for i, arg in enumerate(args):
            if not isinstance(arg, TensExpr):
                continue
            assert isinstance(arg, Tensor)
            ext_rank = arg.ext_rank
            args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
            pos += ext_rank
        return TensMul(*args, is_canon_bp=is_canon_bp).doit()

    @staticmethod
    def _index_replacement_for_contract_metric(args, free, dum):
        for arg in args:
            if not isinstance(arg, TensExpr):
                continue
            assert isinstance(arg, Tensor)

    def substitute_indices(self, *index_tuples):
        new_args = []
        for arg in self.args:
            if isinstance(arg, TensExpr):
                arg = arg.substitute_indices(*index_tuples)
            new_args.append(arg)
        return TensMul(*new_args).doit()

    def __call__(self, *indices):
        deprecate_call()
        free_args = self.free_args
        indices = list(indices)
        if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
            raise ValueError('incompatible types')
        if indices == free_args:
            return self
        t = self.substitute_indices(*list(zip(free_args, indices)))

        # object is rebuilt in order to make sure that all contracted indices
        # get recognized as dummies, but only if there are contracted indices.
        if len({i if i.is_up else -i for i in indices}) != len(indices):
            return t.func(*t.args)
        return t

    def _extract_data(self, replacement_dict):
        args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
        coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
        indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
        dum = TensMul._dummy_data_to_dum(dummy_data)
        ext_rank = self.ext_rank
        free.sort(key=lambda x: x[1])
        free_indices = [i[0] for i in free]
        return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)

    @property
    def data(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            dat = _tensor_data_substitution_dict[self.expand()]
        return dat

    @data.setter
    def data(self, data):
        deprecate_data()
        raise ValueError("Not possible to set component data to a tensor expression")

    @data.deleter
    def data(self):
        deprecate_data()
        raise ValueError("Not possible to delete component data to a tensor expression")

    def __iter__(self):
        deprecate_data()
        with ignore_warnings(SymPyDeprecationWarning):
            if self.data is None:
                raise ValueError("No iteration on abstract tensors")
            return self.data.__iter__()

    @staticmethod
    def _dedupe_indices(new, exclude):
        """
        exclude: set
        new: TensExpr

        If ``new`` has any dummy indices that are in ``exclude``, return a version
        of new with those indices replaced. If no replacements are needed,
        return None

        """
        exclude = set(exclude)
        dums_new = set(get_dummy_indices(new))
        free_new = set(get_free_indices(new))

        conflicts = dums_new.intersection(exclude)
        if len(conflicts) == 0:
            return None

        """
        ``exclude_for_gen`` is to be passed to ``_IndexStructure._get_generator_for_dummy_indices()``.
        Since the latter does not use the index position for anything, we just
        set it as ``None`` here.
        """
        exclude.update(dums_new)
        exclude.update(free_new)
        exclude_for_gen = [(i, None) for i in exclude]
        gen = _IndexStructure._get_generator_for_dummy_indices(exclude_for_gen)
        repl = {}
        for d in conflicts:
            if -d in repl.keys():
                continue
            newname = gen(d.tensor_index_type)
            new_d = d.func(newname, *d.args[1:])
            repl[d] = new_d
            repl[-d] = -new_d

        if len(repl) == 0:
            return None

        new_renamed = new._replace_indices(repl)
        return new_renamed

    def _dedupe_indices_in_rule(self, rule):
        """
        rule: dict

        This applies TensMul._dedupe_indices on all values of rule.

        """
        index_rules = {k:v for k,v in rule.items() if isinstance(k, TensorIndex)}
        other_rules = {k:v for k,v in rule.items() if k not in index_rules.keys()}
        exclude = set(self.get_indices())

        newrule = {}
        newrule.update(index_rules)
        exclude.update(index_rules.keys())
        exclude.update(index_rules.values())
        for old, new in other_rules.items():
            new_renamed = TensMul._dedupe_indices(new, exclude)
            if old == new or new_renamed is None:
                newrule[old] = new
            else:
                newrule[old] = new_renamed
                exclude.update(get_indices(new_renamed))
        return newrule

    def _eval_rewrite_as_Indexed(self, *args, **kwargs):
        from sympy.concrete.summations import Sum
        index_symbols = [i.args[0] for i in self.get_indices()]
        args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
        expr = Mul.fromiter(args)
        return self._check_add_Sum(expr, index_symbols)

    def _eval_partial_derivative(self, s):
        # Evaluation like Mul
        terms = []
        for i, arg in enumerate(self.args):
            # checking whether some tensor instance is differentiated
            # or some other thing is necessary, but ugly
            if isinstance(arg, TensExpr):
                d = arg._eval_partial_derivative(s)
            else:
                # do not call diff is s is no symbol
                if s._diff_wrt:
                    d = arg._eval_derivative(s)
                else:
                    d = S.Zero
            if d:
                terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:]))
        return TensAdd.fromiter(terms)


class TensorElement(TensExpr):
    """
    Tensor with evaluated components.

    Examples
    ========

    >>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
    >>> from sympy import symbols
    >>> L = TensorIndexType("L")
    >>> i, j, k = symbols("i j k")
    >>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2))
    >>> A(i, j).get_free_indices()
    [i, j]

    If we want to set component ``i`` to a specific value, use the
    ``TensorElement`` class:

    >>> from sympy.tensor.tensor import TensorElement
    >>> te = TensorElement(A(i, j), {i: 2})

    As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
    element), the free indices will only contain ``j``:

    >>> te.get_free_indices()
    [j]
    """

    def __new__(cls, expr, index_map):
        if not isinstance(expr, Tensor):
            # remap
            if not isinstance(expr, TensExpr):
                raise TypeError("%s is not a tensor expression" % expr)
            return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
        expr_free_indices = expr.get_free_indices()
        name_translation = {i.args[0]: i for i in expr_free_indices}
        index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
        index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
        if len(index_map) == 0:
            return expr
        free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
        index_map = Dict(index_map)
        obj = TensExpr.__new__(cls, expr, index_map)
        obj._free_indices = free_indices
        return obj

    @property
    def free(self):
        return [(index, i) for i, index in enumerate(self.get_free_indices())]

    @property
    def dum(self):
        # TODO: inherit dummies from expr
        return []

    @property
    def expr(self):
        return self._args[0]

    @property
    def index_map(self):
        return self._args[1]

    @property
    def coeff(self):
        return S.One

    @property
    def nocoeff(self):
        return self

    def get_free_indices(self):
        return self._free_indices

    def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
        # TODO: can be improved:
        return self.xreplace(repl)

    def get_indices(self):
        return self.get_free_indices()

    def _extract_data(self, replacement_dict):
        ret_indices, array = self.expr._extract_data(replacement_dict)
        index_map = self.index_map
        slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
        ret_indices = [i for i in ret_indices if i not in index_map]
        array = array.__getitem__(slice_tuple)
        return ret_indices, array


class WildTensorHead(TensorHead):
    """
    A wild object that is used to create ``WildTensor`` instances

    Explanation
    ===========

    Examples
    ========
    >>> from sympy.tensor.tensor import TensorHead, TensorIndex, WildTensorHead, TensorIndexType
    >>> R3 = TensorIndexType('R3', dim=3)
    >>> p = TensorIndex('p', R3)
    >>> q = TensorIndex('q', R3)

    A WildTensorHead can be created without specifying a ``TensorIndexType``

    >>> W = WildTensorHead("W")

    Calling it with a ``TensorIndex`` creates a ``WildTensor`` instance.

    >>> type(W(p))
    <class 'sympy.tensor.tensor.WildTensor'>

    The ``TensorIndexType`` is automatically detected from the index that is passed

    >>> W(p).component
    W(R3)

    Calling it with no indices returns an object that can match tensors with any number of indices.

    >>> K = TensorHead('K', [R3])
    >>> Q = TensorHead('Q', [R3, R3])
    >>> W().matches(K(p))
    {W: K(p)}
    >>> W().matches(Q(p,q))
    {W: Q(p, q)}

    If you want to ignore the order of indices while matching, pass ``unordered_indices=True``.

    >>> U = WildTensorHead("U", unordered_indices=True)
    >>> W(p,q).matches(Q(q,p))
    >>> U(p,q).matches(Q(q,p))
    {U(R3,R3): _WildTensExpr(Q(q, p))}

    Parameters
    ==========
    name : name of the tensor
    unordered_indices : whether the order of the indices matters for matching
        (default: False)

    See also
    ========
    ``WildTensor``
    ``TensorHead``

    """
    def __new__(cls, name, index_types=None, symmetry=None, comm=0,  unordered_indices=False):
        if isinstance(name, str):
            name_symbol = Symbol(name)
        elif isinstance(name, Symbol):
            name_symbol = name
        else:
            raise ValueError("invalid name")

        if index_types is None:
            index_types = []

        if symmetry is None:
            symmetry = TensorSymmetry.no_symmetry(len(index_types))
        else:
            assert symmetry.rank == len(index_types)

        if symmetry != TensorSymmetry.no_symmetry(len(index_types)):
            raise NotImplementedError("Wild matching based on symmetry is not implemented.")

        obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), sympify(symmetry), sympify(comm), sympify(unordered_indices))

        return obj

    @property
    def unordered_indices(self):
        return self.args[4]

    def __call__(self, *indices, **kwargs):
        tensor = WildTensor(self, indices, **kwargs)
        return tensor.doit()


class WildTensor(Tensor):
    """
    A wild object which matches ``Tensor`` instances

    Explanation
    ===========
    This is instantiated by attaching indices to a ``WildTensorHead`` instance.

    Examples
    ========
    >>> from sympy.tensor.tensor import TensorHead, TensorIndex, WildTensorHead, TensorIndexType
    >>> W = WildTensorHead("W")
    >>> R3 = TensorIndexType('R3', dim=3)
    >>> p = TensorIndex('p', R3)
    >>> q = TensorIndex('q', R3)
    >>> K = TensorHead('K', [R3])
    >>> Q = TensorHead('Q', [R3, R3])

    Matching also takes the indices into account
    >>> W(p).matches(K(p))
    {W(R3): _WildTensExpr(K(p))}
    >>> W(p).matches(K(q))
    >>> W(p).matches(K(-p))

    If you want to match objects with any number of indices, just use a ``WildTensor`` with no indices.
    >>> W().matches(K(p))
    {W: K(p)}
    >>> W().matches(Q(p,q))
    {W: Q(p, q)}

    See Also
    ========
    ``WildTensorHead``
    ``Tensor``

    """
    def __new__(cls, tensor_head, indices, **kw_args):
        is_canon_bp = kw_args.pop("is_canon_bp", False)

        if tensor_head.func == TensorHead:
            """
            If someone tried to call WildTensor by supplying a TensorHead (not a WildTensorHead), return a normal tensor instead. This is helpful when using subs on an expression to replace occurrences of a WildTensorHead with a TensorHead.
            """
            return Tensor(tensor_head, indices, is_canon_bp=is_canon_bp, **kw_args)
        elif tensor_head.func == _WildTensExpr:
            return tensor_head(*indices)

        indices = cls._parse_indices(tensor_head, indices)
        index_types = [ind.tensor_index_type for ind in indices]
        tensor_head = tensor_head.func(
            tensor_head.name,
            index_types,
            symmetry=None,
            comm=tensor_head.comm,
            unordered_indices=tensor_head.unordered_indices,
            )

        obj = Basic.__new__(cls, tensor_head, Tuple(*indices))
        obj.name = tensor_head.name
        obj._index_structure = _IndexStructure.from_indices(*indices)
        obj._free = obj._index_structure.free[:]
        obj._dum = obj._index_structure.dum[:]
        obj._ext_rank = obj._index_structure._ext_rank
        obj._coeff = S.One
        obj._nocoeff = obj
        obj._component = tensor_head
        obj._components = [tensor_head]
        if tensor_head.rank != len(indices):
            raise ValueError("wrong number of indices")
        obj.is_canon_bp = is_canon_bp
        obj._index_map = obj._build_index_map(indices, obj._index_structure)

        return obj


    def matches(self, expr, repl_dict=None, old=False):
        if not isinstance(expr, TensExpr) and expr != S(1):
            return None

        if repl_dict is None:
            repl_dict = {}
        else:
            repl_dict = repl_dict.copy()

        if len(self.indices) > 0:
            if not hasattr(expr, "get_free_indices"):
                return None
            expr_indices = expr.get_free_indices()
            if len(expr_indices) != len(self.indices):
                return None
            if self._component.unordered_indices:
                m = self._match_indices_ignoring_order(expr)
                if m is None:
                    return None
                else:
                    repl_dict.update(m)
            else:
                for i in range(len(expr_indices)):
                    m = self.indices[i].matches(expr_indices[i])
                    if m is None:
                        return None
                    else:
                        repl_dict.update(m)

            repl_dict[self.component] = _WildTensExpr(expr)
        else:
            #If no indices were passed to the WildTensor, it may match tensors with any number of indices.
            repl_dict[self] = expr

        return repl_dict

    def _match_indices_ignoring_order(self, expr, repl_dict=None, old=False):
        """
        Helper method for matches. Checks if the indices of self and expr
        match disregarding index ordering.
        """
        if repl_dict is None:
            repl_dict = {}
        else:
            repl_dict = repl_dict.copy()

        def siftkey(ind):
            if isinstance(ind, WildTensorIndex):
                if ind.ignore_updown:
                    return "wild, updown"
                else:
                    return "wild"
            else:
                return "nonwild"

        indices_sifted = sift(self.indices, siftkey)

        matched_indices = []
        expr_indices_remaining = expr.get_indices()
        for ind in indices_sifted["nonwild"]:
            matched_this_ind = False
            for e_ind in expr_indices_remaining:
                if e_ind in matched_indices:
                    continue
                m = ind.matches(e_ind)
                if m is not None:
                    matched_this_ind = True
                    repl_dict.update(m)
                    matched_indices.append(e_ind)
                    break
            if not matched_this_ind:
                return None

        expr_indices_remaining = [i for i in expr_indices_remaining if i not in matched_indices]
        for ind in indices_sifted["wild"]:
            matched_this_ind = False
            for e_ind in expr_indices_remaining:
                m = ind.matches(e_ind)
                if m is not None:
                    if -ind in repl_dict.keys() and -repl_dict[-ind] != m[ind]:
                        return None
                    matched_this_ind = True
                    repl_dict.update(m)
                    matched_indices.append(e_ind)
                    break
            if not matched_this_ind:
                return None

        expr_indices_remaining = [i for i in expr_indices_remaining if i not in matched_indices]
        for ind in indices_sifted["wild, updown"]:
            matched_this_ind = False
            for e_ind in expr_indices_remaining:
                m = ind.matches(e_ind)
                if m is not None:
                    if -ind in repl_dict.keys() and -repl_dict[-ind] != m[ind]:
                        return None
                    matched_this_ind = True
                    repl_dict.update(m)
                    matched_indices.append(e_ind)
                    break
            if not matched_this_ind:
                return None

        if len(matched_indices) < len(self.indices):
            return None
        else:
            return repl_dict

class WildTensorIndex(TensorIndex):
    """
    A wild object that matches TensorIndex instances.

    Examples
    ========
    >>> from sympy.tensor.tensor import TensorIndex, TensorIndexType, WildTensorIndex
    >>> R3 = TensorIndexType('R3', dim=3)
    >>> p = TensorIndex("p", R3)

    By default, covariant indices only match with covariant indices (and
    similarly for contravariant)

    >>> q = WildTensorIndex("q", R3)
    >>> (q).matches(p)
    {q: p}
    >>> (q).matches(-p)

    If you want matching to ignore whether the index is co/contra-variant, set
    ignore_updown=True

    >>> r = WildTensorIndex("r", R3, ignore_updown=True)
    >>> (r).matches(-p)
    {r: -p}
    >>> (r).matches(p)
    {r: p}

    Parameters
    ==========
    name : name of the index (string), or ``True`` if you want it to be
        automatically assigned
    tensor_index_type : ``TensorIndexType`` of the index
    is_up :  flag for contravariant index (is_up=True by default)
    ignore_updown : bool, Whether this should match both co- and contra-variant
        indices (default:False)
    """
    def __new__(cls, name, tensor_index_type, is_up=True, ignore_updown=False):
        if isinstance(name, str):
            name_symbol = Symbol(name)
        elif isinstance(name, Symbol):
            name_symbol = name
        elif name is True:
            name = "_i{}".format(len(tensor_index_type._autogenerated))
            name_symbol = Symbol(name)
            tensor_index_type._autogenerated.append(name_symbol)
        else:
            raise ValueError("invalid name")

        is_up = sympify(is_up)
        ignore_updown = sympify(ignore_updown)
        return Basic.__new__(cls, name_symbol, tensor_index_type, is_up, ignore_updown)

    @property
    def ignore_updown(self):
        return self.args[3]

    def __neg__(self):
        t1 = WildTensorIndex(self.name, self.tensor_index_type,
                (not self.is_up), self.ignore_updown)
        return t1

    def matches(self, expr, repl_dict=None, old=False):
        if not isinstance(expr, TensorIndex):
            return None
        if self.tensor_index_type != expr.tensor_index_type:
            return None
        if not self.ignore_updown:
            if self.is_up != expr.is_up:
                return None

        if repl_dict is None:
            repl_dict = {}
        else:
            repl_dict = repl_dict.copy()

        repl_dict[self] = expr
        return repl_dict


class _WildTensExpr(Basic):
    """
    INTERNAL USE ONLY

    This is an object that helps with replacement of WildTensors in expressions.
    When this object is set as the tensor_head of a WildTensor, it replaces the
    WildTensor by a TensExpr (passed when initializing this object).

    Examples
    ========
    >>> from sympy.tensor.tensor import WildTensorHead, TensorIndex, TensorHead, TensorIndexType
    >>> W = WildTensorHead("W")
    >>> R3 = TensorIndexType('R3', dim=3)
    >>> p = TensorIndex('p', R3)
    >>> q = TensorIndex('q', R3)
    >>> K = TensorHead('K', [R3])
    >>> print( ( K(p) ).replace( W(p), W(q)*W(-q)*W(p) ) )
    K(R_0)*K(-R_0)*K(p)

    """
    def __init__(self, expr):
        if not isinstance(expr, TensExpr):
            raise TypeError("_WildTensExpr expects a TensExpr as argument")
        self.expr = expr

    def __call__(self, *indices):
        return self.expr._replace_indices(dict(zip(self.expr.get_free_indices(), indices)))

    def __neg__(self):
        return self.func(self.expr*S.NegativeOne)

    def __abs__(self):
        raise NotImplementedError

    def __add__(self, other):
        if other.func != self.func:
            raise TypeError(f"Cannot add {self.func} to {other.func}")
        return self.func(self.expr+other.expr)

    def __radd__(self, other):
        if other.func != self.func:
            raise TypeError(f"Cannot add {self.func} to {other.func}")
        return self.func(other.expr+self.expr)

    def __sub__(self, other):
        return self + (-other)

    def __rsub__(self, other):
        return other + (-self)

    def __mul__(self, other):
        raise NotImplementedError

    def __rmul__(self, other):
        raise NotImplementedError

    def __truediv__(self, other):
        raise NotImplementedError

    def __rtruediv__(self, other):
        raise NotImplementedError

    def __pow__(self, other):
        raise NotImplementedError

    def __rpow__(self, other):
        raise NotImplementedError


def canon_bp(p):
    """
    Butler-Portugal canonicalization. See ``tensor_can.py`` from the
    combinatorics module for the details.
    """
    if isinstance(p, TensExpr):
        return p.canon_bp()
    return p


def tensor_mul(*a):
    """
    product of tensors
    """
    if not a:
        return TensMul.from_data(S.One, [], [], [])
    t = a[0]
    for tx in a[1:]:
        t = t*tx
    return t


def riemann_cyclic_replace(t_r):
    """
    replace Riemann tensor with an equivalent expression

    ``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``

    """
    free = sorted(t_r.free, key=lambda x: x[1])
    m, n, p, q = [x[0] for x in free]
    t0 = t_r*Rational(2, 3)
    t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3)
    t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3)
    t3 = t0 + t1 + t2
    return t3

def riemann_cyclic(t2):
    """
    Replace each Riemann tensor with an equivalent expression
    satisfying the cyclic identity.

    This trick is discussed in the reference guide to Cadabra.

    Examples
    ========

    >>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry
    >>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
    >>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
    >>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
    >>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
    >>> riemann_cyclic(t)
    0
    """
    t2 = t2.expand()
    if isinstance(t2, (TensMul, Tensor)):
        args = [t2]
    else:
        args = t2.args
    a1 = [x.split() for x in args]
    a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
    a3 = [tensor_mul(*v) for v in a2]
    t3 = TensAdd(*a3).doit()
    if not t3:
        return t3
    else:
        return canon_bp(t3)


def get_lines(ex, index_type):
    """
    Returns ``(lines, traces, rest)`` for an index type,
    where ``lines`` is the list of list of positions of a matrix line,
    ``traces`` is the list of list of traced matrix lines,
    ``rest`` is the rest of the elements of the tensor.
    """
    def _join_lines(a):
        i = 0
        while i < len(a):
            x = a[i]
            xend = x[-1]
            xstart = x[0]
            hit = True
            while hit:
                hit = False
                for j in range(i + 1, len(a)):
                    if j >= len(a):
                        break
                    if a[j][0] == xend:
                        hit = True
                        x.extend(a[j][1:])
                        xend = x[-1]
                        a.pop(j)
                        continue
                    if a[j][0] == xstart:
                        hit = True
                        a[i] = reversed(a[j][1:]) + x
                        x = a[i]
                        xstart = a[i][0]
                        a.pop(j)
                        continue
                    if a[j][-1] == xend:
                        hit = True
                        x.extend(reversed(a[j][:-1]))
                        xend = x[-1]
                        a.pop(j)
                        continue
                    if a[j][-1] == xstart:
                        hit = True
                        a[i] = a[j][:-1] + x
                        x = a[i]
                        xstart = x[0]
                        a.pop(j)
                        continue
            i += 1
        return a

    arguments = ex.args
    dt = {}
    for c in ex.args:
        if not isinstance(c, TensExpr):
            continue
        if c in dt:
            continue
        index_types = c.index_types
        a = []
        for i in range(len(index_types)):
            if index_types[i] is index_type:
                a.append(i)
        if len(a) > 2:
            raise ValueError('at most two indices of type %s allowed' % index_type)
        if len(a) == 2:
            dt[c] = a
    #dum = ex.dum
    lines = []
    traces = []
    traces1 = []
    #indices_to_args_pos = ex._get_indices_to_args_pos()
    # TODO: add a dum_to_components_map ?
    for p0, p1, c0, c1 in ex.dum_in_args:
        if arguments[c0] not in dt:
            continue
        if c0 == c1:
            traces.append([c0])
            continue
        ta0 = dt[arguments[c0]]
        ta1 = dt[arguments[c1]]
        if p0 not in ta0:
            continue
        if ta0.index(p0) == ta1.index(p1):
            # case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
            # to deal with this case one could add to the position
            # a flag for transposition;
            # one could write [(c0, False), (c1, True)]
            raise NotImplementedError
        # if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
        # if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
        ta0 = dt[arguments[c0]]
        b0, b1 = (c0, c1) if p0 == ta0[1]  else (c1, c0)
        lines1 = lines[:]
        for line in lines:
            if line[-1] == b0:
                if line[0] == b1:
                    n = line.index(min(line))
                    traces1.append(line)
                    traces.append(line[n:] + line[:n])
                else:
                    line.append(b1)
                break
            elif line[0] == b1:
                line.insert(0, b0)
                break
        else:
            lines1.append([b0, b1])

        lines = [x for x in lines1 if x not in traces1]
        lines = _join_lines(lines)
    rest = []
    for line in lines:
        for y in line:
            rest.append(y)
    for line in traces:
        for y in line:
            rest.append(y)
    rest = [x for x in range(len(arguments)) if x not in rest]

    return lines, traces, rest


def get_free_indices(t):
    if not isinstance(t, TensExpr):
        return ()
    return t.get_free_indices()


def get_indices(t):
    if not isinstance(t, TensExpr):
        return ()
    return t.get_indices()

def get_dummy_indices(t):
    if not isinstance(t, TensExpr):
        return ()
    inds = t.get_indices()
    free = t.get_free_indices()
    return [i for i in inds if i not in free]

def get_index_structure(t):
    if isinstance(t, TensExpr):
        return t._index_structure
    return _IndexStructure([], [], [], [])


def get_coeff(t):
    if isinstance(t, Tensor):
        return S.One
    if isinstance(t, TensMul):
        return t.coeff
    if isinstance(t, TensExpr):
        raise ValueError("no coefficient associated to this tensor expression")
    return t

def contract_metric(t, g):
    if isinstance(t, TensExpr):
        return t.contract_metric(g)
    return t


def perm2tensor(t, g, is_canon_bp=False):
    """
    Returns the tensor corresponding to the permutation ``g``

    For further details, see the method in ``TIDS`` with the same name.
    """
    if not isinstance(t, TensExpr):
        return t
    elif isinstance(t, (Tensor, TensMul)):
        nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
        res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
        if g[-1] != len(g) - 1:
            return -res

        return res
    raise NotImplementedError()


def substitute_indices(t, *index_tuples):
    if not isinstance(t, TensExpr):
        return t
    return t.substitute_indices(*index_tuples)


def _expand(expr, **kwargs):
    if isinstance(expr, TensExpr):
        return expr._expand(**kwargs)
    else:
        return expr.expand(**kwargs)


def get_postprocessor(cls):
    def _postprocessor(expr):
        tens_class = {Mul: TensMul, Add: TensAdd}[cls]
        if any(isinstance(a, TensExpr) for a in expr.args):
            return tens_class(*expr.args)
        else:
            return expr

    return _postprocessor

Basic._constructor_postprocessor_mapping[TensExpr] = {
    "Mul": [get_postprocessor(Mul)],
}