Spaces:
Sleeping
Sleeping
File size: 18,397 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import itertools
from collections.abc import Iterable
from sympy.core._print_helpers import Printable
from sympy.core.containers import Tuple
from sympy.core.function import diff
from sympy.core.singleton import S
from sympy.core.sympify import _sympify
from sympy.tensor.array.ndim_array import NDimArray
from sympy.tensor.array.dense_ndim_array import DenseNDimArray, ImmutableDenseNDimArray
from sympy.tensor.array.sparse_ndim_array import SparseNDimArray
def _arrayfy(a):
from sympy.matrices import MatrixBase
if isinstance(a, NDimArray):
return a
if isinstance(a, (MatrixBase, list, tuple, Tuple)):
return ImmutableDenseNDimArray(a)
return a
def tensorproduct(*args):
"""
Tensor product among scalars or array-like objects.
The equivalent operator for array expressions is ``ArrayTensorProduct``,
which can be used to keep the expression unevaluated.
Examples
========
>>> from sympy.tensor.array import tensorproduct, Array
>>> from sympy.abc import x, y, z, t
>>> A = Array([[1, 2], [3, 4]])
>>> B = Array([x, y])
>>> tensorproduct(A, B)
[[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]]
>>> tensorproduct(A, x)
[[x, 2*x], [3*x, 4*x]]
>>> tensorproduct(A, B, B)
[[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]]
Applying this function on two matrices will result in a rank 4 array.
>>> from sympy import Matrix, eye
>>> m = Matrix([[x, y], [z, t]])
>>> p = tensorproduct(eye(3), m)
>>> p
[[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]]
See Also
========
sympy.tensor.array.expressions.array_expressions.ArrayTensorProduct
"""
from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray
if len(args) == 0:
return S.One
if len(args) == 1:
return _arrayfy(args[0])
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
from sympy.matrices.expressions.matexpr import MatrixSymbol
if any(isinstance(arg, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)) for arg in args):
return ArrayTensorProduct(*args)
if len(args) > 2:
return tensorproduct(tensorproduct(args[0], args[1]), *args[2:])
# length of args is 2:
a, b = map(_arrayfy, args)
if not isinstance(a, NDimArray) or not isinstance(b, NDimArray):
return a*b
if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray):
lp = len(b)
new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()}
return ImmutableSparseNDimArray(new_array, a.shape + b.shape)
product_list = [i*j for i in Flatten(a) for j in Flatten(b)]
return ImmutableDenseNDimArray(product_list, a.shape + b.shape)
def _util_contraction_diagonal(array, *contraction_or_diagonal_axes):
array = _arrayfy(array)
# Verify contraction_axes:
taken_dims = set()
for axes_group in contraction_or_diagonal_axes:
if not isinstance(axes_group, Iterable):
raise ValueError("collections of contraction/diagonal axes expected")
dim = array.shape[axes_group[0]]
for d in axes_group:
if d in taken_dims:
raise ValueError("dimension specified more than once")
if dim != array.shape[d]:
raise ValueError("cannot contract or diagonalize between axes of different dimension")
taken_dims.add(d)
rank = array.rank()
remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims]
cum_shape = [0]*rank
_cumul = 1
for i in range(rank):
cum_shape[rank - i - 1] = _cumul
_cumul *= int(array.shape[rank - i - 1])
# DEFINITION: by absolute position it is meant the position along the one
# dimensional array containing all the tensor components.
# Possible future work on this module: move computation of absolute
# positions to a class method.
# Determine absolute positions of the uncontracted indices:
remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])]
for i in range(rank) if i not in taken_dims]
# Determine absolute positions of the contracted indices:
summed_deltas = []
for axes_group in contraction_or_diagonal_axes:
lidx = []
for js in range(array.shape[axes_group[0]]):
lidx.append(sum(cum_shape[ig] * js for ig in axes_group))
summed_deltas.append(lidx)
return array, remaining_indices, remaining_shape, summed_deltas
def tensorcontraction(array, *contraction_axes):
"""
Contraction of an array-like object on the specified axes.
The equivalent operator for array expressions is ``ArrayContraction``,
which can be used to keep the expression unevaluated.
Examples
========
>>> from sympy import Array, tensorcontraction
>>> from sympy import Matrix, eye
>>> tensorcontraction(eye(3), (0, 1))
3
>>> A = Array(range(18), (3, 2, 3))
>>> A
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
>>> tensorcontraction(A, (0, 2))
[21, 30]
Matrix multiplication may be emulated with a proper combination of
``tensorcontraction`` and ``tensorproduct``
>>> from sympy import tensorproduct
>>> from sympy.abc import a,b,c,d,e,f,g,h
>>> m1 = Matrix([[a, b], [c, d]])
>>> m2 = Matrix([[e, f], [g, h]])
>>> p = tensorproduct(m1, m2)
>>> p
[[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]]
>>> tensorcontraction(p, (1, 2))
[[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]
>>> m1*m2
Matrix([
[a*e + b*g, a*f + b*h],
[c*e + d*g, c*f + d*h]])
See Also
========
sympy.tensor.array.expressions.array_expressions.ArrayContraction
"""
from sympy.tensor.array.expressions.array_expressions import _array_contraction
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
from sympy.matrices.expressions.matexpr import MatrixSymbol
if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
return _array_contraction(array, *contraction_axes)
array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes)
# Compute the contracted array:
#
# 1. external for loops on all uncontracted indices.
# Uncontracted indices are determined by the combinatorial product of
# the absolute positions of the remaining indices.
# 2. internal loop on all contracted indices.
# It sums the values of the absolute contracted index and the absolute
# uncontracted index for the external loop.
contracted_array = []
for icontrib in itertools.product(*remaining_indices):
index_base_position = sum(icontrib)
isum = S.Zero
for sum_to_index in itertools.product(*summed_deltas):
idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
isum += array[idx]
contracted_array.append(isum)
if len(remaining_indices) == 0:
assert len(contracted_array) == 1
return contracted_array[0]
return type(array)(contracted_array, remaining_shape)
def tensordiagonal(array, *diagonal_axes):
"""
Diagonalization of an array-like object on the specified axes.
This is equivalent to multiplying the expression by Kronecker deltas
uniting the axes.
The diagonal indices are put at the end of the axes.
The equivalent operator for array expressions is ``ArrayDiagonal``, which
can be used to keep the expression unevaluated.
Examples
========
``tensordiagonal`` acting on a 2-dimensional array by axes 0 and 1 is
equivalent to the diagonal of the matrix:
>>> from sympy import Array, tensordiagonal
>>> from sympy import Matrix, eye
>>> tensordiagonal(eye(3), (0, 1))
[1, 1, 1]
>>> from sympy.abc import a,b,c,d
>>> m1 = Matrix([[a, b], [c, d]])
>>> tensordiagonal(m1, [0, 1])
[a, d]
In case of higher dimensional arrays, the diagonalized out dimensions
are appended removed and appended as a single dimension at the end:
>>> A = Array(range(18), (3, 2, 3))
>>> A
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
>>> tensordiagonal(A, (0, 2))
[[0, 7, 14], [3, 10, 17]]
>>> from sympy import permutedims
>>> tensordiagonal(A, (0, 2)) == permutedims(Array([A[0, :, 0], A[1, :, 1], A[2, :, 2]]), [1, 0])
True
See Also
========
sympy.tensor.array.expressions.array_expressions.ArrayDiagonal
"""
if any(len(i) <= 1 for i in diagonal_axes):
raise ValueError("need at least two axes to diagonalize")
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, _array_diagonal
from sympy.matrices.expressions.matexpr import MatrixSymbol
if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
return _array_diagonal(array, *diagonal_axes)
ArrayDiagonal._validate(array, *diagonal_axes)
array, remaining_indices, remaining_shape, diagonal_deltas = _util_contraction_diagonal(array, *diagonal_axes)
# Compute the diagonalized array:
#
# 1. external for loops on all undiagonalized indices.
# Undiagonalized indices are determined by the combinatorial product of
# the absolute positions of the remaining indices.
# 2. internal loop on all diagonal indices.
# It appends the values of the absolute diagonalized index and the absolute
# undiagonalized index for the external loop.
diagonalized_array = []
diagonal_shape = [len(i) for i in diagonal_deltas]
for icontrib in itertools.product(*remaining_indices):
index_base_position = sum(icontrib)
isum = []
for sum_to_index in itertools.product(*diagonal_deltas):
idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
isum.append(array[idx])
isum = type(array)(isum).reshape(*diagonal_shape)
diagonalized_array.append(isum)
return type(array)(diagonalized_array, remaining_shape + diagonal_shape)
def derive_by_array(expr, dx):
r"""
Derivative by arrays. Supports both arrays and scalars.
The equivalent operator for array expressions is ``array_derive``.
Explanation
===========
Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}`
this function will return a new array `B` defined by
`B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}`
Examples
========
>>> from sympy import derive_by_array
>>> from sympy.abc import x, y, z, t
>>> from sympy import cos
>>> derive_by_array(cos(x*t), x)
-t*sin(t*x)
>>> derive_by_array(cos(x*t), [x, y, z, t])
[-t*sin(t*x), 0, 0, -x*sin(t*x)]
>>> derive_by_array([x, y**2*z], [[x, y], [z, t]])
[[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]]
"""
from sympy.matrices import MatrixBase
from sympy.tensor.array import SparseNDimArray
array_types = (Iterable, MatrixBase, NDimArray)
if isinstance(dx, array_types):
dx = ImmutableDenseNDimArray(dx)
for i in dx:
if not i._diff_wrt:
raise ValueError("cannot derive by this array")
if isinstance(expr, array_types):
if isinstance(expr, NDimArray):
expr = expr.as_immutable()
else:
expr = ImmutableDenseNDimArray(expr)
if isinstance(dx, array_types):
if isinstance(expr, SparseNDimArray):
lp = len(expr)
new_array = {k + i*lp: v
for i, x in enumerate(Flatten(dx))
for k, v in expr.diff(x)._sparse_array.items()}
else:
new_array = [[y.diff(x) for y in Flatten(expr)] for x in Flatten(dx)]
return type(expr)(new_array, dx.shape + expr.shape)
else:
return expr.diff(dx)
else:
expr = _sympify(expr)
if isinstance(dx, array_types):
return ImmutableDenseNDimArray([expr.diff(i) for i in Flatten(dx)], dx.shape)
else:
dx = _sympify(dx)
return diff(expr, dx)
def permutedims(expr, perm=None, index_order_old=None, index_order_new=None):
"""
Permutes the indices of an array.
Parameter specifies the permutation of the indices.
The equivalent operator for array expressions is ``PermuteDims``, which can
be used to keep the expression unevaluated.
Examples
========
>>> from sympy.abc import x, y, z, t
>>> from sympy import sin
>>> from sympy import Array, permutedims
>>> a = Array([[x, y, z], [t, sin(x), 0]])
>>> a
[[x, y, z], [t, sin(x), 0]]
>>> permutedims(a, (1, 0))
[[x, t], [y, sin(x)], [z, 0]]
If the array is of second order, ``transpose`` can be used:
>>> from sympy import transpose
>>> transpose(a)
[[x, t], [y, sin(x)], [z, 0]]
Examples on higher dimensions:
>>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
>>> permutedims(b, (2, 1, 0))
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
>>> permutedims(b, (1, 2, 0))
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
An alternative way to specify the same permutations as in the previous
lines involves passing the *old* and *new* indices, either as a list or as
a string:
>>> permutedims(b, index_order_old="cba", index_order_new="abc")
[[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
>>> permutedims(b, index_order_old="cab", index_order_new="abc")
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
``Permutation`` objects are also allowed:
>>> from sympy.combinatorics import Permutation
>>> permutedims(b, Permutation([1, 2, 0]))
[[[1, 5], [2, 6]], [[3, 7], [4, 8]]]
See Also
========
sympy.tensor.array.expressions.array_expressions.PermuteDims
"""
from sympy.tensor.array import SparseNDimArray
from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
from sympy.tensor.array.expressions.array_expressions import _permute_dims
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.tensor.array.expressions import PermuteDims
from sympy.tensor.array.expressions.array_expressions import get_rank
perm = PermuteDims._get_permutation_from_arguments(perm, index_order_old, index_order_new, get_rank(expr))
if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
return _permute_dims(expr, perm)
if not isinstance(expr, NDimArray):
expr = ImmutableDenseNDimArray(expr)
from sympy.combinatorics import Permutation
if not isinstance(perm, Permutation):
perm = Permutation(list(perm))
if perm.size != expr.rank():
raise ValueError("wrong permutation size")
# Get the inverse permutation:
iperm = ~perm
new_shape = perm(expr.shape)
if isinstance(expr, SparseNDimArray):
return type(expr)({tuple(perm(expr._get_tuple_index(k))): v
for k, v in expr._sparse_array.items()}, new_shape)
indices_span = perm([range(i) for i in expr.shape])
new_array = [None]*len(expr)
for i, idx in enumerate(itertools.product(*indices_span)):
t = iperm(idx)
new_array[i] = expr[t]
return type(expr)(new_array, new_shape)
class Flatten(Printable):
"""
Flatten an iterable object to a list in a lazy-evaluation way.
Notes
=====
This class is an iterator with which the memory cost can be economised.
Optimisation has been considered to ameliorate the performance for some
specific data types like DenseNDimArray and SparseNDimArray.
Examples
========
>>> from sympy.tensor.array.arrayop import Flatten
>>> from sympy.tensor.array import Array
>>> A = Array(range(6)).reshape(2, 3)
>>> Flatten(A)
Flatten([[0, 1, 2], [3, 4, 5]])
>>> [i for i in Flatten(A)]
[0, 1, 2, 3, 4, 5]
"""
def __init__(self, iterable):
from sympy.matrices.matrixbase import MatrixBase
from sympy.tensor.array import NDimArray
if not isinstance(iterable, (Iterable, MatrixBase)):
raise NotImplementedError("Data type not yet supported")
if isinstance(iterable, list):
iterable = NDimArray(iterable)
self._iter = iterable
self._idx = 0
def __iter__(self):
return self
def __next__(self):
from sympy.matrices.matrixbase import MatrixBase
if len(self._iter) > self._idx:
if isinstance(self._iter, DenseNDimArray):
result = self._iter._array[self._idx]
elif isinstance(self._iter, SparseNDimArray):
if self._idx in self._iter._sparse_array:
result = self._iter._sparse_array[self._idx]
else:
result = 0
elif isinstance(self._iter, MatrixBase):
result = self._iter[self._idx]
elif hasattr(self._iter, '__next__'):
result = next(self._iter)
else:
result = self._iter[self._idx]
else:
raise StopIteration
self._idx += 1
return result
def next(self):
return self.__next__()
def _sympystr(self, printer):
return type(self).__name__ + '(' + printer._print(self._iter) + ')'
|