File size: 18,397 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
import itertools
from collections.abc import Iterable

from sympy.core._print_helpers import Printable
from sympy.core.containers import Tuple
from sympy.core.function import diff
from sympy.core.singleton import S
from sympy.core.sympify import _sympify

from sympy.tensor.array.ndim_array import NDimArray
from sympy.tensor.array.dense_ndim_array import DenseNDimArray, ImmutableDenseNDimArray
from sympy.tensor.array.sparse_ndim_array import SparseNDimArray


def _arrayfy(a):
    from sympy.matrices import MatrixBase

    if isinstance(a, NDimArray):
        return a
    if isinstance(a, (MatrixBase, list, tuple, Tuple)):
        return ImmutableDenseNDimArray(a)
    return a


def tensorproduct(*args):
    """
    Tensor product among scalars or array-like objects.

    The equivalent operator for array expressions is ``ArrayTensorProduct``,
    which can be used to keep the expression unevaluated.

    Examples
    ========

    >>> from sympy.tensor.array import tensorproduct, Array
    >>> from sympy.abc import x, y, z, t
    >>> A = Array([[1, 2], [3, 4]])
    >>> B = Array([x, y])
    >>> tensorproduct(A, B)
    [[[x, y], [2*x, 2*y]], [[3*x, 3*y], [4*x, 4*y]]]
    >>> tensorproduct(A, x)
    [[x, 2*x], [3*x, 4*x]]
    >>> tensorproduct(A, B, B)
    [[[[x**2, x*y], [x*y, y**2]], [[2*x**2, 2*x*y], [2*x*y, 2*y**2]]], [[[3*x**2, 3*x*y], [3*x*y, 3*y**2]], [[4*x**2, 4*x*y], [4*x*y, 4*y**2]]]]

    Applying this function on two matrices will result in a rank 4 array.

    >>> from sympy import Matrix, eye
    >>> m = Matrix([[x, y], [z, t]])
    >>> p = tensorproduct(eye(3), m)
    >>> p
    [[[[x, y], [z, t]], [[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[x, y], [z, t]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]], [[x, y], [z, t]]]]

    See Also
    ========

    sympy.tensor.array.expressions.array_expressions.ArrayTensorProduct

    """
    from sympy.tensor.array import SparseNDimArray, ImmutableSparseNDimArray

    if len(args) == 0:
        return S.One
    if len(args) == 1:
        return _arrayfy(args[0])
    from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
    from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
    from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
    from sympy.matrices.expressions.matexpr import MatrixSymbol
    if any(isinstance(arg, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)) for arg in args):
        return ArrayTensorProduct(*args)
    if len(args) > 2:
        return tensorproduct(tensorproduct(args[0], args[1]), *args[2:])

    # length of args is 2:
    a, b = map(_arrayfy, args)

    if not isinstance(a, NDimArray) or not isinstance(b, NDimArray):
        return a*b

    if isinstance(a, SparseNDimArray) and isinstance(b, SparseNDimArray):
        lp = len(b)
        new_array = {k1*lp + k2: v1*v2 for k1, v1 in a._sparse_array.items() for k2, v2 in b._sparse_array.items()}
        return ImmutableSparseNDimArray(new_array, a.shape + b.shape)

    product_list = [i*j for i in Flatten(a) for j in Flatten(b)]
    return ImmutableDenseNDimArray(product_list, a.shape + b.shape)


def _util_contraction_diagonal(array, *contraction_or_diagonal_axes):
    array = _arrayfy(array)

    # Verify contraction_axes:
    taken_dims = set()
    for axes_group in contraction_or_diagonal_axes:
        if not isinstance(axes_group, Iterable):
            raise ValueError("collections of contraction/diagonal axes expected")

        dim = array.shape[axes_group[0]]

        for d in axes_group:
            if d in taken_dims:
                raise ValueError("dimension specified more than once")
            if dim != array.shape[d]:
                raise ValueError("cannot contract or diagonalize between axes of different dimension")
            taken_dims.add(d)

    rank = array.rank()

    remaining_shape = [dim for i, dim in enumerate(array.shape) if i not in taken_dims]
    cum_shape = [0]*rank
    _cumul = 1
    for i in range(rank):
        cum_shape[rank - i - 1] = _cumul
        _cumul *= int(array.shape[rank - i - 1])

    # DEFINITION: by absolute position it is meant the position along the one
    # dimensional array containing all the tensor components.

    # Possible future work on this module: move computation of absolute
    # positions to a class method.

    # Determine absolute positions of the uncontracted indices:
    remaining_indices = [[cum_shape[i]*j for j in range(array.shape[i])]
                         for i in range(rank) if i not in taken_dims]

    # Determine absolute positions of the contracted indices:
    summed_deltas = []
    for axes_group in contraction_or_diagonal_axes:
        lidx = []
        for js in range(array.shape[axes_group[0]]):
            lidx.append(sum(cum_shape[ig] * js for ig in axes_group))
        summed_deltas.append(lidx)

    return array, remaining_indices, remaining_shape, summed_deltas


def tensorcontraction(array, *contraction_axes):
    """
    Contraction of an array-like object on the specified axes.

    The equivalent operator for array expressions is ``ArrayContraction``,
    which can be used to keep the expression unevaluated.

    Examples
    ========

    >>> from sympy import Array, tensorcontraction
    >>> from sympy import Matrix, eye
    >>> tensorcontraction(eye(3), (0, 1))
    3
    >>> A = Array(range(18), (3, 2, 3))
    >>> A
    [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
    >>> tensorcontraction(A, (0, 2))
    [21, 30]

    Matrix multiplication may be emulated with a proper combination of
    ``tensorcontraction`` and ``tensorproduct``

    >>> from sympy import tensorproduct
    >>> from sympy.abc import a,b,c,d,e,f,g,h
    >>> m1 = Matrix([[a, b], [c, d]])
    >>> m2 = Matrix([[e, f], [g, h]])
    >>> p = tensorproduct(m1, m2)
    >>> p
    [[[[a*e, a*f], [a*g, a*h]], [[b*e, b*f], [b*g, b*h]]], [[[c*e, c*f], [c*g, c*h]], [[d*e, d*f], [d*g, d*h]]]]
    >>> tensorcontraction(p, (1, 2))
    [[a*e + b*g, a*f + b*h], [c*e + d*g, c*f + d*h]]
    >>> m1*m2
    Matrix([
    [a*e + b*g, a*f + b*h],
    [c*e + d*g, c*f + d*h]])

    See Also
    ========

    sympy.tensor.array.expressions.array_expressions.ArrayContraction

    """
    from sympy.tensor.array.expressions.array_expressions import _array_contraction
    from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
    from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
    from sympy.matrices.expressions.matexpr import MatrixSymbol
    if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
        return _array_contraction(array, *contraction_axes)

    array, remaining_indices, remaining_shape, summed_deltas = _util_contraction_diagonal(array, *contraction_axes)

    # Compute the contracted array:
    #
    # 1. external for loops on all uncontracted indices.
    #    Uncontracted indices are determined by the combinatorial product of
    #    the absolute positions of the remaining indices.
    # 2. internal loop on all contracted indices.
    #    It sums the values of the absolute contracted index and the absolute
    #    uncontracted index for the external loop.
    contracted_array = []
    for icontrib in itertools.product(*remaining_indices):
        index_base_position = sum(icontrib)
        isum = S.Zero
        for sum_to_index in itertools.product(*summed_deltas):
            idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
            isum += array[idx]

        contracted_array.append(isum)

    if len(remaining_indices) == 0:
        assert len(contracted_array) == 1
        return contracted_array[0]

    return type(array)(contracted_array, remaining_shape)


def tensordiagonal(array, *diagonal_axes):
    """
    Diagonalization of an array-like object on the specified axes.

    This is equivalent to multiplying the expression by Kronecker deltas
    uniting the axes.

    The diagonal indices are put at the end of the axes.

    The equivalent operator for array expressions is ``ArrayDiagonal``, which
    can be used to keep the expression unevaluated.

    Examples
    ========

    ``tensordiagonal`` acting on a 2-dimensional array by axes 0 and 1 is
    equivalent to the diagonal of the matrix:

    >>> from sympy import Array, tensordiagonal
    >>> from sympy import Matrix, eye
    >>> tensordiagonal(eye(3), (0, 1))
    [1, 1, 1]

    >>> from sympy.abc import a,b,c,d
    >>> m1 = Matrix([[a, b], [c, d]])
    >>> tensordiagonal(m1, [0, 1])
    [a, d]

    In case of higher dimensional arrays, the diagonalized out dimensions
    are appended removed and appended as a single dimension at the end:

    >>> A = Array(range(18), (3, 2, 3))
    >>> A
    [[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]], [[12, 13, 14], [15, 16, 17]]]
    >>> tensordiagonal(A, (0, 2))
    [[0, 7, 14], [3, 10, 17]]
    >>> from sympy import permutedims
    >>> tensordiagonal(A, (0, 2)) == permutedims(Array([A[0, :, 0], A[1, :, 1], A[2, :, 2]]), [1, 0])
    True

    See Also
    ========

    sympy.tensor.array.expressions.array_expressions.ArrayDiagonal

    """
    if any(len(i) <= 1 for i in diagonal_axes):
        raise ValueError("need at least two axes to diagonalize")

    from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
    from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
    from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, _array_diagonal
    from sympy.matrices.expressions.matexpr import MatrixSymbol
    if isinstance(array, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
        return _array_diagonal(array, *diagonal_axes)

    ArrayDiagonal._validate(array, *diagonal_axes)

    array, remaining_indices, remaining_shape, diagonal_deltas = _util_contraction_diagonal(array, *diagonal_axes)

    # Compute the diagonalized array:
    #
    # 1. external for loops on all undiagonalized indices.
    #    Undiagonalized indices are determined by the combinatorial product of
    #    the absolute positions of the remaining indices.
    # 2. internal loop on all diagonal indices.
    #    It appends the values of the absolute diagonalized index and the absolute
    #    undiagonalized index for the external loop.
    diagonalized_array = []
    diagonal_shape = [len(i) for i in diagonal_deltas]
    for icontrib in itertools.product(*remaining_indices):
        index_base_position = sum(icontrib)
        isum = []
        for sum_to_index in itertools.product(*diagonal_deltas):
            idx = array._get_tuple_index(index_base_position + sum(sum_to_index))
            isum.append(array[idx])

        isum = type(array)(isum).reshape(*diagonal_shape)
        diagonalized_array.append(isum)

    return type(array)(diagonalized_array, remaining_shape + diagonal_shape)


def derive_by_array(expr, dx):
    r"""
    Derivative by arrays. Supports both arrays and scalars.

    The equivalent operator for array expressions is ``array_derive``.

    Explanation
    ===========

    Given the array `A_{i_1, \ldots, i_N}` and the array `X_{j_1, \ldots, j_M}`
    this function will return a new array `B` defined by

    `B_{j_1,\ldots,j_M,i_1,\ldots,i_N} := \frac{\partial A_{i_1,\ldots,i_N}}{\partial X_{j_1,\ldots,j_M}}`

    Examples
    ========

    >>> from sympy import derive_by_array
    >>> from sympy.abc import x, y, z, t
    >>> from sympy import cos
    >>> derive_by_array(cos(x*t), x)
    -t*sin(t*x)
    >>> derive_by_array(cos(x*t), [x, y, z, t])
    [-t*sin(t*x), 0, 0, -x*sin(t*x)]
    >>> derive_by_array([x, y**2*z], [[x, y], [z, t]])
    [[[1, 0], [0, 2*y*z]], [[0, y**2], [0, 0]]]

    """
    from sympy.matrices import MatrixBase
    from sympy.tensor.array import SparseNDimArray
    array_types = (Iterable, MatrixBase, NDimArray)

    if isinstance(dx, array_types):
        dx = ImmutableDenseNDimArray(dx)
        for i in dx:
            if not i._diff_wrt:
                raise ValueError("cannot derive by this array")

    if isinstance(expr, array_types):
        if isinstance(expr, NDimArray):
            expr = expr.as_immutable()
        else:
            expr = ImmutableDenseNDimArray(expr)

        if isinstance(dx, array_types):
            if isinstance(expr, SparseNDimArray):
                lp = len(expr)
                new_array = {k + i*lp: v
                             for i, x in enumerate(Flatten(dx))
                             for k, v in expr.diff(x)._sparse_array.items()}
            else:
                new_array = [[y.diff(x) for y in Flatten(expr)] for x in Flatten(dx)]
            return type(expr)(new_array, dx.shape + expr.shape)
        else:
            return expr.diff(dx)
    else:
        expr = _sympify(expr)
        if isinstance(dx, array_types):
            return ImmutableDenseNDimArray([expr.diff(i) for i in Flatten(dx)], dx.shape)
        else:
            dx = _sympify(dx)
            return diff(expr, dx)


def permutedims(expr, perm=None, index_order_old=None, index_order_new=None):
    """
    Permutes the indices of an array.

    Parameter specifies the permutation of the indices.

    The equivalent operator for array expressions is ``PermuteDims``, which can
    be used to keep the expression unevaluated.

    Examples
    ========

    >>> from sympy.abc import x, y, z, t
    >>> from sympy import sin
    >>> from sympy import Array, permutedims
    >>> a = Array([[x, y, z], [t, sin(x), 0]])
    >>> a
    [[x, y, z], [t, sin(x), 0]]
    >>> permutedims(a, (1, 0))
    [[x, t], [y, sin(x)], [z, 0]]

    If the array is of second order, ``transpose`` can be used:

    >>> from sympy import transpose
    >>> transpose(a)
    [[x, t], [y, sin(x)], [z, 0]]

    Examples on higher dimensions:

    >>> b = Array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
    >>> permutedims(b, (2, 1, 0))
    [[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
    >>> permutedims(b, (1, 2, 0))
    [[[1, 5], [2, 6]], [[3, 7], [4, 8]]]

    An alternative way to specify the same permutations as in the previous
    lines involves passing the *old* and *new* indices, either as a list or as
    a string:

    >>> permutedims(b, index_order_old="cba", index_order_new="abc")
    [[[1, 5], [3, 7]], [[2, 6], [4, 8]]]
    >>> permutedims(b, index_order_old="cab", index_order_new="abc")
    [[[1, 5], [2, 6]], [[3, 7], [4, 8]]]

    ``Permutation`` objects are also allowed:

    >>> from sympy.combinatorics import Permutation
    >>> permutedims(b, Permutation([1, 2, 0]))
    [[[1, 5], [2, 6]], [[3, 7], [4, 8]]]

    See Also
    ========

    sympy.tensor.array.expressions.array_expressions.PermuteDims

    """
    from sympy.tensor.array import SparseNDimArray

    from sympy.tensor.array.expressions.array_expressions import _ArrayExpr
    from sympy.tensor.array.expressions.array_expressions import _CodegenArrayAbstract
    from sympy.tensor.array.expressions.array_expressions import _permute_dims
    from sympy.matrices.expressions.matexpr import MatrixSymbol
    from sympy.tensor.array.expressions import PermuteDims
    from sympy.tensor.array.expressions.array_expressions import get_rank
    perm = PermuteDims._get_permutation_from_arguments(perm, index_order_old, index_order_new, get_rank(expr))
    if isinstance(expr, (_ArrayExpr, _CodegenArrayAbstract, MatrixSymbol)):
        return _permute_dims(expr, perm)

    if not isinstance(expr, NDimArray):
        expr = ImmutableDenseNDimArray(expr)

    from sympy.combinatorics import Permutation
    if not isinstance(perm, Permutation):
        perm = Permutation(list(perm))

    if perm.size != expr.rank():
        raise ValueError("wrong permutation size")

    # Get the inverse permutation:
    iperm = ~perm
    new_shape = perm(expr.shape)

    if isinstance(expr, SparseNDimArray):
        return type(expr)({tuple(perm(expr._get_tuple_index(k))): v
                           for k, v in expr._sparse_array.items()}, new_shape)

    indices_span = perm([range(i) for i in expr.shape])

    new_array = [None]*len(expr)
    for i, idx in enumerate(itertools.product(*indices_span)):
        t = iperm(idx)
        new_array[i] = expr[t]

    return type(expr)(new_array, new_shape)


class Flatten(Printable):
    """
    Flatten an iterable object to a list in a lazy-evaluation way.

    Notes
    =====

    This class is an iterator with which the memory cost can be economised.
    Optimisation has been considered to ameliorate the performance for some
    specific data types like DenseNDimArray and SparseNDimArray.

    Examples
    ========

    >>> from sympy.tensor.array.arrayop import Flatten
    >>> from sympy.tensor.array import Array
    >>> A = Array(range(6)).reshape(2, 3)
    >>> Flatten(A)
    Flatten([[0, 1, 2], [3, 4, 5]])
    >>> [i for i in Flatten(A)]
    [0, 1, 2, 3, 4, 5]
    """
    def __init__(self, iterable):
        from sympy.matrices.matrixbase import MatrixBase
        from sympy.tensor.array import NDimArray

        if not isinstance(iterable, (Iterable, MatrixBase)):
            raise NotImplementedError("Data type not yet supported")

        if isinstance(iterable, list):
            iterable = NDimArray(iterable)

        self._iter = iterable
        self._idx = 0

    def __iter__(self):
        return self

    def __next__(self):
        from sympy.matrices.matrixbase import MatrixBase

        if len(self._iter) > self._idx:
            if isinstance(self._iter, DenseNDimArray):
                result = self._iter._array[self._idx]

            elif isinstance(self._iter, SparseNDimArray):
                if self._idx in self._iter._sparse_array:
                    result = self._iter._sparse_array[self._idx]
                else:
                    result = 0

            elif isinstance(self._iter, MatrixBase):
                result = self._iter[self._idx]

            elif hasattr(self._iter, '__next__'):
                result = next(self._iter)

            else:
                result = self._iter[self._idx]

        else:
            raise StopIteration

        self._idx += 1
        return result

    def next(self):
        return self.__next__()

    def _sympystr(self, printer):
        return type(self).__name__ + '(' + printer._print(self._iter) + ')'