File size: 15,963 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
"""
Joint Random Variables Module

See Also
========
sympy.stats.rv
sympy.stats.frv
sympy.stats.crv
sympy.stats.drv
"""
from math import prod

from sympy.core.basic import Basic
from sympy.core.function import Lambda
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.core.sympify import sympify
from sympy.sets.sets import ProductSet
from sympy.tensor.indexed import Indexed
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum, summation
from sympy.core.containers import Tuple
from sympy.integrals.integrals import Integral, integrate
from sympy.matrices import ImmutableMatrix, matrix2numpy, list2numpy
from sympy.stats.crv import SingleContinuousDistribution, SingleContinuousPSpace
from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace
from sympy.stats.rv import (ProductPSpace, NamedArgsMixin, Distribution,
                            ProductDomain, RandomSymbol, random_symbols,
                            SingleDomain, _symbol_converter)
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import filldedent
from sympy.external import import_module

# __all__ = ['marginal_distribution']

class JointPSpace(ProductPSpace):
    """
    Represents a joint probability space. Represented using symbols for
    each component and a distribution.
    """
    def __new__(cls, sym, dist):
        if isinstance(dist, SingleContinuousDistribution):
            return SingleContinuousPSpace(sym, dist)
        if isinstance(dist, SingleDiscreteDistribution):
            return SingleDiscretePSpace(sym, dist)
        sym = _symbol_converter(sym)
        return Basic.__new__(cls, sym, dist)

    @property
    def set(self):
        return self.domain.set

    @property
    def symbol(self):
        return self.args[0]

    @property
    def distribution(self):
        return self.args[1]

    @property
    def value(self):
        return JointRandomSymbol(self.symbol, self)

    @property
    def component_count(self):
        _set = self.distribution.set
        if isinstance(_set, ProductSet):
            return S(len(_set.args))
        elif isinstance(_set, Product):
            return _set.limits[0][-1]
        return S.One

    @property
    def pdf(self):
        sym = [Indexed(self.symbol, i) for i in range(self.component_count)]
        return self.distribution(*sym)

    @property
    def domain(self):
        rvs = random_symbols(self.distribution)
        if not rvs:
            return SingleDomain(self.symbol, self.distribution.set)
        return ProductDomain(*[rv.pspace.domain for rv in rvs])

    def component_domain(self, index):
        return self.set.args[index]

    def marginal_distribution(self, *indices):
        count = self.component_count
        if count.atoms(Symbol):
            raise ValueError("Marginal distributions cannot be computed "
                                "for symbolic dimensions. It is a work under progress.")
        orig = [Indexed(self.symbol, i) for i in range(count)]
        all_syms = [Symbol(str(i)) for i in orig]
        replace_dict = dict(zip(all_syms, orig))
        sym = tuple(Symbol(str(Indexed(self.symbol, i))) for i in indices)
        limits = [[i,] for i in all_syms if i not in sym]
        index = 0
        for i in range(count):
            if i not in indices:
                limits[index].append(self.distribution.set.args[i])
                limits[index] = tuple(limits[index])
                index += 1
        if self.distribution.is_Continuous:
            f = Lambda(sym, integrate(self.distribution(*all_syms), *limits))
        elif self.distribution.is_Discrete:
            f = Lambda(sym, summation(self.distribution(*all_syms), *limits))
        return f.xreplace(replace_dict)

    def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
        syms = tuple(self.value[i] for i in range(self.component_count))
        rvs = rvs or syms
        if not any(i in rvs for i in syms):
            return expr
        expr = expr*self.pdf
        for rv in rvs:
            if isinstance(rv, Indexed):
                expr = expr.xreplace({rv: Indexed(str(rv.base), rv.args[1])})
            elif isinstance(rv, RandomSymbol):
                expr = expr.xreplace({rv: rv.symbol})
        if self.value in random_symbols(expr):
            raise NotImplementedError(filldedent('''
            Expectations of expression with unindexed joint random symbols
            cannot be calculated yet.'''))
        limits = tuple((Indexed(str(rv.base),rv.args[1]),
            self.distribution.set.args[rv.args[1]]) for rv in syms)
        return Integral(expr, *limits)

    def where(self, condition):
        raise NotImplementedError()

    def compute_density(self, expr):
        raise NotImplementedError()

    def sample(self, size=(), library='scipy', seed=None):
        """
        Internal sample method

        Returns dictionary mapping RandomSymbol to realization value.
        """
        return {RandomSymbol(self.symbol, self): self.distribution.sample(size,
                    library=library, seed=seed)}

    def probability(self, condition):
        raise NotImplementedError()


class SampleJointScipy:
    """Returns the sample from scipy of the given distribution"""
    def __new__(cls, dist, size, seed=None):
        return cls._sample_scipy(dist, size, seed)

    @classmethod
    def _sample_scipy(cls, dist, size, seed):
        """Sample from SciPy."""

        import numpy
        if seed is None or isinstance(seed, int):
            rand_state = numpy.random.default_rng(seed=seed)
        else:
            rand_state = seed
        from scipy import stats as scipy_stats
        scipy_rv_map = {
            'MultivariateNormalDistribution': lambda dist, size: scipy_stats.multivariate_normal.rvs(
                mean=matrix2numpy(dist.mu).flatten(),
                cov=matrix2numpy(dist.sigma), size=size, random_state=rand_state),
            'MultivariateBetaDistribution': lambda dist, size: scipy_stats.dirichlet.rvs(
                alpha=list2numpy(dist.alpha, float).flatten(), size=size, random_state=rand_state),
            'MultinomialDistribution': lambda dist, size: scipy_stats.multinomial.rvs(
                n=int(dist.n), p=list2numpy(dist.p, float).flatten(), size=size, random_state=rand_state)
        }

        sample_shape = {
            'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
            'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
            'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
        }

        dist_list = scipy_rv_map.keys()

        if dist.__class__.__name__ not in dist_list:
            return None

        samples = scipy_rv_map[dist.__class__.__name__](dist, size)
        return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))

class SampleJointNumpy:
    """Returns the sample from numpy of the given distribution"""

    def __new__(cls, dist, size, seed=None):
        return cls._sample_numpy(dist, size, seed)

    @classmethod
    def _sample_numpy(cls, dist, size, seed):
        """Sample from NumPy."""

        import numpy
        if seed is None or isinstance(seed, int):
            rand_state = numpy.random.default_rng(seed=seed)
        else:
            rand_state = seed
        numpy_rv_map = {
            'MultivariateNormalDistribution': lambda dist, size: rand_state.multivariate_normal(
                mean=matrix2numpy(dist.mu, float).flatten(),
                cov=matrix2numpy(dist.sigma, float), size=size),
            'MultivariateBetaDistribution': lambda dist, size: rand_state.dirichlet(
                alpha=list2numpy(dist.alpha, float).flatten(), size=size),
            'MultinomialDistribution': lambda dist, size: rand_state.multinomial(
                n=int(dist.n), pvals=list2numpy(dist.p, float).flatten(), size=size)
        }

        sample_shape = {
            'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
            'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
            'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
        }

        dist_list = numpy_rv_map.keys()

        if dist.__class__.__name__ not in dist_list:
            return None

        samples = numpy_rv_map[dist.__class__.__name__](dist, prod(size))
        return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))

class SampleJointPymc:
    """Returns the sample from pymc of the given distribution"""

    def __new__(cls, dist, size, seed=None):
        return cls._sample_pymc(dist, size, seed)

    @classmethod
    def _sample_pymc(cls, dist, size, seed):
        """Sample from PyMC."""

        try:
            import pymc
        except ImportError:
            import pymc3 as pymc
        pymc_rv_map = {
            'MultivariateNormalDistribution': lambda dist:
                pymc.MvNormal('X', mu=matrix2numpy(dist.mu, float).flatten(),
                cov=matrix2numpy(dist.sigma, float), shape=(1, dist.mu.shape[0])),
            'MultivariateBetaDistribution': lambda dist:
                pymc.Dirichlet('X', a=list2numpy(dist.alpha, float).flatten()),
            'MultinomialDistribution': lambda dist:
                pymc.Multinomial('X', n=int(dist.n),
                p=list2numpy(dist.p, float).flatten(), shape=(1, len(dist.p)))
        }

        sample_shape = {
            'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
            'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
            'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
        }

        dist_list = pymc_rv_map.keys()

        if dist.__class__.__name__ not in dist_list:
            return None

        import logging
        logging.getLogger("pymc3").setLevel(logging.ERROR)
        with pymc.Model():
            pymc_rv_map[dist.__class__.__name__](dist)
            samples = pymc.sample(draws=prod(size), chains=1, progressbar=False, random_seed=seed, return_inferencedata=False, compute_convergence_checks=False)[:]['X']
        return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))


_get_sample_class_jrv = {
    'scipy': SampleJointScipy,
    'pymc3': SampleJointPymc,
    'pymc': SampleJointPymc,
    'numpy': SampleJointNumpy
}

class JointDistribution(Distribution, NamedArgsMixin):
    """
    Represented by the random variables part of the joint distribution.
    Contains methods for PDF, CDF, sampling, marginal densities, etc.
    """

    _argnames = ('pdf', )

    def __new__(cls, *args):
        args = list(map(sympify, args))
        for i in range(len(args)):
            if isinstance(args[i], list):
                args[i] = ImmutableMatrix(args[i])
        return Basic.__new__(cls, *args)

    @property
    def domain(self):
        return ProductDomain(self.symbols)

    @property
    def pdf(self):
        return self.density.args[1]

    def cdf(self, other):
        if not isinstance(other, dict):
            raise ValueError("%s should be of type dict, got %s"%(other, type(other)))
        rvs = other.keys()
        _set = self.domain.set.sets
        expr = self.pdf(tuple(i.args[0] for i in self.symbols))
        for i in range(len(other)):
            if rvs[i].is_Continuous:
                density = Integral(expr, (rvs[i], _set[i].inf,
                    other[rvs[i]]))
            elif rvs[i].is_Discrete:
                density = Sum(expr, (rvs[i], _set[i].inf,
                    other[rvs[i]]))
        return density

    def sample(self, size=(), library='scipy', seed=None):
        """ A random realization from the distribution """

        libraries = ('scipy', 'numpy', 'pymc3', 'pymc')
        if library not in libraries:
            raise NotImplementedError("Sampling from %s is not supported yet."
                                        % str(library))
        if not import_module(library):
            raise ValueError("Failed to import %s" % library)

        samps = _get_sample_class_jrv[library](self, size, seed=seed)

        if samps is not None:
            return samps
        raise NotImplementedError(
                "Sampling for %s is not currently implemented from %s"
                % (self.__class__.__name__, library)
                )

    def __call__(self, *args):
        return self.pdf(*args)

class JointRandomSymbol(RandomSymbol):
    """
    Representation of random symbols with joint probability distributions
    to allow indexing."
    """
    def __getitem__(self, key):
        if isinstance(self.pspace, JointPSpace):
            if (self.pspace.component_count <= key) == True:
                raise ValueError("Index keys for %s can only up to %s." %
                    (self.name, self.pspace.component_count - 1))
            return Indexed(self, key)



class MarginalDistribution(Distribution):
    """
    Represents the marginal distribution of a joint probability space.

    Initialised using a probability distribution and random variables(or
    their indexed components) which should be a part of the resultant
    distribution.
    """

    def __new__(cls, dist, *rvs):
        if len(rvs) == 1 and iterable(rvs[0]):
            rvs = tuple(rvs[0])
        if not all(isinstance(rv, (Indexed, RandomSymbol)) for rv in rvs):
            raise ValueError(filldedent('''Marginal distribution can be
             intitialised only in terms of random variables or indexed random
             variables'''))
        rvs = Tuple.fromiter(rv for rv in rvs)
        if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0:
            return dist
        return Basic.__new__(cls, dist, rvs)

    def check(self):
        pass

    @property
    def set(self):
        rvs = [i for i in self.args[1] if isinstance(i, RandomSymbol)]
        return ProductSet(*[rv.pspace.set for rv in rvs])

    @property
    def symbols(self):
        rvs = self.args[1]
        return {rv.pspace.symbol for rv in rvs}

    def pdf(self, *x):
        expr, rvs = self.args[0], self.args[1]
        marginalise_out = [i for i in random_symbols(expr) if i not in rvs]
        if isinstance(expr, JointDistribution):
            count = len(expr.domain.args)
            x = Dummy('x', real=True)
            syms = tuple(Indexed(x, i) for i in count)
            expr = expr.pdf(syms)
        else:
            syms = tuple(rv.pspace.symbol if isinstance(rv, RandomSymbol) else rv.args[0] for rv in rvs)
        return Lambda(syms, self.compute_pdf(expr, marginalise_out))(*x)

    def compute_pdf(self, expr, rvs):
        for rv in rvs:
            lpdf = 1
            if isinstance(rv, RandomSymbol):
                lpdf = rv.pspace.pdf
            expr = self.marginalise_out(expr*lpdf, rv)
        return expr

    def marginalise_out(self, expr, rv):
        from sympy.concrete.summations import Sum
        if isinstance(rv, RandomSymbol):
            dom = rv.pspace.set
        elif isinstance(rv, Indexed):
            dom = rv.base.component_domain(
                rv.pspace.component_domain(rv.args[1]))
        expr = expr.xreplace({rv: rv.pspace.symbol})
        if rv.pspace.is_Continuous:
            #TODO: Modify to support integration
            #for all kinds of sets.
            expr = Integral(expr, (rv.pspace.symbol, dom))
        elif rv.pspace.is_Discrete:
            #incorporate this into `Sum`/`summation`
            if dom in (S.Integers, S.Naturals, S.Naturals0):
                dom = (dom.inf, dom.sup)
            expr = Sum(expr, (rv.pspace.symbol, dom))
        return expr

    def __call__(self, *args):
        return self.pdf(*args)