Spaces:
Sleeping
Sleeping
File size: 15,963 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
"""
Joint Random Variables Module
See Also
========
sympy.stats.rv
sympy.stats.frv
sympy.stats.crv
sympy.stats.drv
"""
from math import prod
from sympy.core.basic import Basic
from sympy.core.function import Lambda
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.core.sympify import sympify
from sympy.sets.sets import ProductSet
from sympy.tensor.indexed import Indexed
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum, summation
from sympy.core.containers import Tuple
from sympy.integrals.integrals import Integral, integrate
from sympy.matrices import ImmutableMatrix, matrix2numpy, list2numpy
from sympy.stats.crv import SingleContinuousDistribution, SingleContinuousPSpace
from sympy.stats.drv import SingleDiscreteDistribution, SingleDiscretePSpace
from sympy.stats.rv import (ProductPSpace, NamedArgsMixin, Distribution,
ProductDomain, RandomSymbol, random_symbols,
SingleDomain, _symbol_converter)
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import filldedent
from sympy.external import import_module
# __all__ = ['marginal_distribution']
class JointPSpace(ProductPSpace):
"""
Represents a joint probability space. Represented using symbols for
each component and a distribution.
"""
def __new__(cls, sym, dist):
if isinstance(dist, SingleContinuousDistribution):
return SingleContinuousPSpace(sym, dist)
if isinstance(dist, SingleDiscreteDistribution):
return SingleDiscretePSpace(sym, dist)
sym = _symbol_converter(sym)
return Basic.__new__(cls, sym, dist)
@property
def set(self):
return self.domain.set
@property
def symbol(self):
return self.args[0]
@property
def distribution(self):
return self.args[1]
@property
def value(self):
return JointRandomSymbol(self.symbol, self)
@property
def component_count(self):
_set = self.distribution.set
if isinstance(_set, ProductSet):
return S(len(_set.args))
elif isinstance(_set, Product):
return _set.limits[0][-1]
return S.One
@property
def pdf(self):
sym = [Indexed(self.symbol, i) for i in range(self.component_count)]
return self.distribution(*sym)
@property
def domain(self):
rvs = random_symbols(self.distribution)
if not rvs:
return SingleDomain(self.symbol, self.distribution.set)
return ProductDomain(*[rv.pspace.domain for rv in rvs])
def component_domain(self, index):
return self.set.args[index]
def marginal_distribution(self, *indices):
count = self.component_count
if count.atoms(Symbol):
raise ValueError("Marginal distributions cannot be computed "
"for symbolic dimensions. It is a work under progress.")
orig = [Indexed(self.symbol, i) for i in range(count)]
all_syms = [Symbol(str(i)) for i in orig]
replace_dict = dict(zip(all_syms, orig))
sym = tuple(Symbol(str(Indexed(self.symbol, i))) for i in indices)
limits = [[i,] for i in all_syms if i not in sym]
index = 0
for i in range(count):
if i not in indices:
limits[index].append(self.distribution.set.args[i])
limits[index] = tuple(limits[index])
index += 1
if self.distribution.is_Continuous:
f = Lambda(sym, integrate(self.distribution(*all_syms), *limits))
elif self.distribution.is_Discrete:
f = Lambda(sym, summation(self.distribution(*all_syms), *limits))
return f.xreplace(replace_dict)
def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
syms = tuple(self.value[i] for i in range(self.component_count))
rvs = rvs or syms
if not any(i in rvs for i in syms):
return expr
expr = expr*self.pdf
for rv in rvs:
if isinstance(rv, Indexed):
expr = expr.xreplace({rv: Indexed(str(rv.base), rv.args[1])})
elif isinstance(rv, RandomSymbol):
expr = expr.xreplace({rv: rv.symbol})
if self.value in random_symbols(expr):
raise NotImplementedError(filldedent('''
Expectations of expression with unindexed joint random symbols
cannot be calculated yet.'''))
limits = tuple((Indexed(str(rv.base),rv.args[1]),
self.distribution.set.args[rv.args[1]]) for rv in syms)
return Integral(expr, *limits)
def where(self, condition):
raise NotImplementedError()
def compute_density(self, expr):
raise NotImplementedError()
def sample(self, size=(), library='scipy', seed=None):
"""
Internal sample method
Returns dictionary mapping RandomSymbol to realization value.
"""
return {RandomSymbol(self.symbol, self): self.distribution.sample(size,
library=library, seed=seed)}
def probability(self, condition):
raise NotImplementedError()
class SampleJointScipy:
"""Returns the sample from scipy of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_scipy(dist, size, seed)
@classmethod
def _sample_scipy(cls, dist, size, seed):
"""Sample from SciPy."""
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
from scipy import stats as scipy_stats
scipy_rv_map = {
'MultivariateNormalDistribution': lambda dist, size: scipy_stats.multivariate_normal.rvs(
mean=matrix2numpy(dist.mu).flatten(),
cov=matrix2numpy(dist.sigma), size=size, random_state=rand_state),
'MultivariateBetaDistribution': lambda dist, size: scipy_stats.dirichlet.rvs(
alpha=list2numpy(dist.alpha, float).flatten(), size=size, random_state=rand_state),
'MultinomialDistribution': lambda dist, size: scipy_stats.multinomial.rvs(
n=int(dist.n), p=list2numpy(dist.p, float).flatten(), size=size, random_state=rand_state)
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = scipy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
samples = scipy_rv_map[dist.__class__.__name__](dist, size)
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleJointNumpy:
"""Returns the sample from numpy of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_numpy(dist, size, seed)
@classmethod
def _sample_numpy(cls, dist, size, seed):
"""Sample from NumPy."""
import numpy
if seed is None or isinstance(seed, int):
rand_state = numpy.random.default_rng(seed=seed)
else:
rand_state = seed
numpy_rv_map = {
'MultivariateNormalDistribution': lambda dist, size: rand_state.multivariate_normal(
mean=matrix2numpy(dist.mu, float).flatten(),
cov=matrix2numpy(dist.sigma, float), size=size),
'MultivariateBetaDistribution': lambda dist, size: rand_state.dirichlet(
alpha=list2numpy(dist.alpha, float).flatten(), size=size),
'MultinomialDistribution': lambda dist, size: rand_state.multinomial(
n=int(dist.n), pvals=list2numpy(dist.p, float).flatten(), size=size)
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = numpy_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
samples = numpy_rv_map[dist.__class__.__name__](dist, prod(size))
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
class SampleJointPymc:
"""Returns the sample from pymc of the given distribution"""
def __new__(cls, dist, size, seed=None):
return cls._sample_pymc(dist, size, seed)
@classmethod
def _sample_pymc(cls, dist, size, seed):
"""Sample from PyMC."""
try:
import pymc
except ImportError:
import pymc3 as pymc
pymc_rv_map = {
'MultivariateNormalDistribution': lambda dist:
pymc.MvNormal('X', mu=matrix2numpy(dist.mu, float).flatten(),
cov=matrix2numpy(dist.sigma, float), shape=(1, dist.mu.shape[0])),
'MultivariateBetaDistribution': lambda dist:
pymc.Dirichlet('X', a=list2numpy(dist.alpha, float).flatten()),
'MultinomialDistribution': lambda dist:
pymc.Multinomial('X', n=int(dist.n),
p=list2numpy(dist.p, float).flatten(), shape=(1, len(dist.p)))
}
sample_shape = {
'MultivariateNormalDistribution': lambda dist: matrix2numpy(dist.mu).flatten().shape,
'MultivariateBetaDistribution': lambda dist: list2numpy(dist.alpha).flatten().shape,
'MultinomialDistribution': lambda dist: list2numpy(dist.p).flatten().shape
}
dist_list = pymc_rv_map.keys()
if dist.__class__.__name__ not in dist_list:
return None
import logging
logging.getLogger("pymc3").setLevel(logging.ERROR)
with pymc.Model():
pymc_rv_map[dist.__class__.__name__](dist)
samples = pymc.sample(draws=prod(size), chains=1, progressbar=False, random_seed=seed, return_inferencedata=False, compute_convergence_checks=False)[:]['X']
return samples.reshape(size + sample_shape[dist.__class__.__name__](dist))
_get_sample_class_jrv = {
'scipy': SampleJointScipy,
'pymc3': SampleJointPymc,
'pymc': SampleJointPymc,
'numpy': SampleJointNumpy
}
class JointDistribution(Distribution, NamedArgsMixin):
"""
Represented by the random variables part of the joint distribution.
Contains methods for PDF, CDF, sampling, marginal densities, etc.
"""
_argnames = ('pdf', )
def __new__(cls, *args):
args = list(map(sympify, args))
for i in range(len(args)):
if isinstance(args[i], list):
args[i] = ImmutableMatrix(args[i])
return Basic.__new__(cls, *args)
@property
def domain(self):
return ProductDomain(self.symbols)
@property
def pdf(self):
return self.density.args[1]
def cdf(self, other):
if not isinstance(other, dict):
raise ValueError("%s should be of type dict, got %s"%(other, type(other)))
rvs = other.keys()
_set = self.domain.set.sets
expr = self.pdf(tuple(i.args[0] for i in self.symbols))
for i in range(len(other)):
if rvs[i].is_Continuous:
density = Integral(expr, (rvs[i], _set[i].inf,
other[rvs[i]]))
elif rvs[i].is_Discrete:
density = Sum(expr, (rvs[i], _set[i].inf,
other[rvs[i]]))
return density
def sample(self, size=(), library='scipy', seed=None):
""" A random realization from the distribution """
libraries = ('scipy', 'numpy', 'pymc3', 'pymc')
if library not in libraries:
raise NotImplementedError("Sampling from %s is not supported yet."
% str(library))
if not import_module(library):
raise ValueError("Failed to import %s" % library)
samps = _get_sample_class_jrv[library](self, size, seed=seed)
if samps is not None:
return samps
raise NotImplementedError(
"Sampling for %s is not currently implemented from %s"
% (self.__class__.__name__, library)
)
def __call__(self, *args):
return self.pdf(*args)
class JointRandomSymbol(RandomSymbol):
"""
Representation of random symbols with joint probability distributions
to allow indexing."
"""
def __getitem__(self, key):
if isinstance(self.pspace, JointPSpace):
if (self.pspace.component_count <= key) == True:
raise ValueError("Index keys for %s can only up to %s." %
(self.name, self.pspace.component_count - 1))
return Indexed(self, key)
class MarginalDistribution(Distribution):
"""
Represents the marginal distribution of a joint probability space.
Initialised using a probability distribution and random variables(or
their indexed components) which should be a part of the resultant
distribution.
"""
def __new__(cls, dist, *rvs):
if len(rvs) == 1 and iterable(rvs[0]):
rvs = tuple(rvs[0])
if not all(isinstance(rv, (Indexed, RandomSymbol)) for rv in rvs):
raise ValueError(filldedent('''Marginal distribution can be
intitialised only in terms of random variables or indexed random
variables'''))
rvs = Tuple.fromiter(rv for rv in rvs)
if not isinstance(dist, JointDistribution) and len(random_symbols(dist)) == 0:
return dist
return Basic.__new__(cls, dist, rvs)
def check(self):
pass
@property
def set(self):
rvs = [i for i in self.args[1] if isinstance(i, RandomSymbol)]
return ProductSet(*[rv.pspace.set for rv in rvs])
@property
def symbols(self):
rvs = self.args[1]
return {rv.pspace.symbol for rv in rvs}
def pdf(self, *x):
expr, rvs = self.args[0], self.args[1]
marginalise_out = [i for i in random_symbols(expr) if i not in rvs]
if isinstance(expr, JointDistribution):
count = len(expr.domain.args)
x = Dummy('x', real=True)
syms = tuple(Indexed(x, i) for i in count)
expr = expr.pdf(syms)
else:
syms = tuple(rv.pspace.symbol if isinstance(rv, RandomSymbol) else rv.args[0] for rv in rvs)
return Lambda(syms, self.compute_pdf(expr, marginalise_out))(*x)
def compute_pdf(self, expr, rvs):
for rv in rvs:
lpdf = 1
if isinstance(rv, RandomSymbol):
lpdf = rv.pspace.pdf
expr = self.marginalise_out(expr*lpdf, rv)
return expr
def marginalise_out(self, expr, rv):
from sympy.concrete.summations import Sum
if isinstance(rv, RandomSymbol):
dom = rv.pspace.set
elif isinstance(rv, Indexed):
dom = rv.base.component_domain(
rv.pspace.component_domain(rv.args[1]))
expr = expr.xreplace({rv: rv.pspace.symbol})
if rv.pspace.is_Continuous:
#TODO: Modify to support integration
#for all kinds of sets.
expr = Integral(expr, (rv.pspace.symbol, dom))
elif rv.pspace.is_Discrete:
#incorporate this into `Sum`/`summation`
if dom in (S.Integers, S.Naturals, S.Naturals0):
dom = (dom.inf, dom.sup)
expr = Sum(expr, (rv.pspace.symbol, dom))
return expr
def __call__(self, *args):
return self.pdf(*args)
|