File size: 21,028 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
"""
Continuous Random Variables Module

See Also
========
sympy.stats.crv_types
sympy.stats.rv
sympy.stats.frv
"""


from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.function import Lambda, PoleError
from sympy.core.numbers import (I, nan, oo)
from sympy.core.relational import (Eq, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.core.sympify import _sympify, sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.delta_functions import DiracDelta
from sympy.integrals.integrals import (Integral, integrate)
from sympy.logic.boolalg import (And, Or)
from sympy.polys.polyerrors import PolynomialError
from sympy.polys.polytools import poly
from sympy.series.series import series
from sympy.sets.sets import (FiniteSet, Intersection, Interval, Union)
from sympy.solvers.solveset import solveset
from sympy.solvers.inequalities import reduce_rational_inequalities
from sympy.stats.rv import (RandomDomain, SingleDomain, ConditionalDomain, is_random,
        ProductDomain, PSpace, SinglePSpace, random_symbols, NamedArgsMixin, Distribution)


class ContinuousDomain(RandomDomain):
    """
    A domain with continuous support

    Represented using symbols and Intervals.
    """
    is_Continuous = True

    def as_boolean(self):
        raise NotImplementedError("Not Implemented for generic Domains")


class SingleContinuousDomain(ContinuousDomain, SingleDomain):
    """
    A univariate domain with continuous support

    Represented using a single symbol and interval.
    """
    def compute_expectation(self, expr, variables=None, **kwargs):
        if variables is None:
            variables = self.symbols
        if not variables:
            return expr
        if frozenset(variables) != frozenset(self.symbols):
            raise ValueError("Values should be equal")
        # assumes only intervals
        return Integral(expr, (self.symbol, self.set), **kwargs)

    def as_boolean(self):
        return self.set.as_relational(self.symbol)


class ProductContinuousDomain(ProductDomain, ContinuousDomain):
    """
    A collection of independent domains with continuous support
    """

    def compute_expectation(self, expr, variables=None, **kwargs):
        if variables is None:
            variables = self.symbols
        for domain in self.domains:
            domain_vars = frozenset(variables) & frozenset(domain.symbols)
            if domain_vars:
                expr = domain.compute_expectation(expr, domain_vars, **kwargs)
        return expr

    def as_boolean(self):
        return And(*[domain.as_boolean() for domain in self.domains])


class ConditionalContinuousDomain(ContinuousDomain, ConditionalDomain):
    """
    A domain with continuous support that has been further restricted by a
    condition such as $x > 3$.
    """

    def compute_expectation(self, expr, variables=None, **kwargs):
        if variables is None:
            variables = self.symbols
        if not variables:
            return expr
        # Extract the full integral
        fullintgrl = self.fulldomain.compute_expectation(expr, variables)
        # separate into integrand and limits
        integrand, limits = fullintgrl.function, list(fullintgrl.limits)

        conditions = [self.condition]
        while conditions:
            cond = conditions.pop()
            if cond.is_Boolean:
                if isinstance(cond, And):
                    conditions.extend(cond.args)
                elif isinstance(cond, Or):
                    raise NotImplementedError("Or not implemented here")
            elif cond.is_Relational:
                if cond.is_Equality:
                    # Add the appropriate Delta to the integrand
                    integrand *= DiracDelta(cond.lhs - cond.rhs)
                else:
                    symbols = cond.free_symbols & set(self.symbols)
                    if len(symbols) != 1:  # Can't handle x > y
                        raise NotImplementedError(
                            "Multivariate Inequalities not yet implemented")
                    # Can handle x > 0
                    symbol = symbols.pop()
                    # Find the limit with x, such as (x, -oo, oo)
                    for i, limit in enumerate(limits):
                        if limit[0] == symbol:
                            # Make condition into an Interval like [0, oo]
                            cintvl = reduce_rational_inequalities_wrap(
                                cond, symbol)
                            # Make limit into an Interval like [-oo, oo]
                            lintvl = Interval(limit[1], limit[2])
                            # Intersect them to get [0, oo]
                            intvl = cintvl.intersect(lintvl)
                            # Put back into limits list
                            limits[i] = (symbol, intvl.left, intvl.right)
            else:
                raise TypeError(
                    "Condition %s is not a relational or Boolean" % cond)

        return Integral(integrand, *limits, **kwargs)

    def as_boolean(self):
        return And(self.fulldomain.as_boolean(), self.condition)

    @property
    def set(self):
        if len(self.symbols) == 1:
            return (self.fulldomain.set & reduce_rational_inequalities_wrap(
                self.condition, tuple(self.symbols)[0]))
        else:
            raise NotImplementedError(
                "Set of Conditional Domain not Implemented")


class ContinuousDistribution(Distribution):
    def __call__(self, *args):
        return self.pdf(*args)


class SingleContinuousDistribution(ContinuousDistribution, NamedArgsMixin):
    """ Continuous distribution of a single variable.

    Explanation
    ===========

    Serves as superclass for Normal/Exponential/UniformDistribution etc....

    Represented by parameters for each of the specific classes.  E.g
    NormalDistribution is represented by a mean and standard deviation.

    Provides methods for pdf, cdf, and sampling.

    See Also
    ========

    sympy.stats.crv_types.*
    """

    set = Interval(-oo, oo)

    def __new__(cls, *args):
        args = list(map(sympify, args))
        return Basic.__new__(cls, *args)

    @staticmethod
    def check(*args):
        pass

    @cacheit
    def compute_cdf(self, **kwargs):
        """ Compute the CDF from the PDF.

        Returns a Lambda.
        """
        x, z = symbols('x, z', real=True, cls=Dummy)
        left_bound = self.set.start

        # CDF is integral of PDF from left bound to z
        pdf = self.pdf(x)
        cdf = integrate(pdf.doit(), (x, left_bound, z), **kwargs)
        # CDF Ensure that CDF left of left_bound is zero
        cdf = Piecewise((cdf, z >= left_bound), (0, True))
        return Lambda(z, cdf)

    def _cdf(self, x):
        return None

    def cdf(self, x, **kwargs):
        """ Cumulative density function """
        if len(kwargs) == 0:
            cdf = self._cdf(x)
            if cdf is not None:
                return cdf
        return self.compute_cdf(**kwargs)(x)

    @cacheit
    def compute_characteristic_function(self, **kwargs):
        """ Compute the characteristic function from the PDF.

        Returns a Lambda.
        """
        x, t = symbols('x, t', real=True, cls=Dummy)
        pdf = self.pdf(x)
        cf = integrate(exp(I*t*x)*pdf, (x, self.set))
        return Lambda(t, cf)

    def _characteristic_function(self, t):
        return None

    def characteristic_function(self, t, **kwargs):
        """ Characteristic function """
        if len(kwargs) == 0:
            cf = self._characteristic_function(t)
            if cf is not None:
                return cf
        return self.compute_characteristic_function(**kwargs)(t)

    @cacheit
    def compute_moment_generating_function(self, **kwargs):
        """ Compute the moment generating function from the PDF.

        Returns a Lambda.
        """
        x, t = symbols('x, t', real=True, cls=Dummy)
        pdf = self.pdf(x)
        mgf = integrate(exp(t * x) * pdf, (x, self.set))
        return Lambda(t, mgf)

    def _moment_generating_function(self, t):
        return None

    def moment_generating_function(self, t, **kwargs):
        """ Moment generating function """
        if not kwargs:
                mgf = self._moment_generating_function(t)
                if mgf is not None:
                    return mgf
        return self.compute_moment_generating_function(**kwargs)(t)

    def expectation(self, expr, var, evaluate=True, **kwargs):
        """ Expectation of expression over distribution """
        if evaluate:
            try:
                p = poly(expr, var)
                if p.is_zero:
                    return S.Zero
                t = Dummy('t', real=True)
                mgf = self._moment_generating_function(t)
                if mgf is None:
                    return integrate(expr * self.pdf(var), (var, self.set), **kwargs)
                deg = p.degree()
                taylor = poly(series(mgf, t, 0, deg + 1).removeO(), t)
                result = 0
                for k in range(deg+1):
                    result += p.coeff_monomial(var ** k) * taylor.coeff_monomial(t ** k) * factorial(k)
                return result
            except PolynomialError:
                return integrate(expr * self.pdf(var), (var, self.set), **kwargs)
        else:
            return Integral(expr * self.pdf(var), (var, self.set), **kwargs)

    @cacheit
    def compute_quantile(self, **kwargs):
        """ Compute the Quantile from the PDF.

        Returns a Lambda.
        """
        x, p = symbols('x, p', real=True, cls=Dummy)
        left_bound = self.set.start

        pdf = self.pdf(x)
        cdf = integrate(pdf, (x, left_bound, x), **kwargs)
        quantile = solveset(cdf - p, x, self.set)
        return Lambda(p, Piecewise((quantile, (p >= 0) & (p <= 1) ), (nan, True)))

    def _quantile(self, x):
        return None

    def quantile(self, x, **kwargs):
        """ Cumulative density function """
        if len(kwargs) == 0:
            quantile = self._quantile(x)
            if quantile is not None:
                return quantile
        return self.compute_quantile(**kwargs)(x)


class ContinuousPSpace(PSpace):
    """ Continuous Probability Space

    Represents the likelihood of an event space defined over a continuum.

    Represented with a ContinuousDomain and a PDF (Lambda-Like)
    """

    is_Continuous = True
    is_real = True

    @property
    def pdf(self):
        return self.density(*self.domain.symbols)

    def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
        if rvs is None:
            rvs = self.values
        else:
            rvs = frozenset(rvs)

        expr = expr.xreplace({rv: rv.symbol for rv in rvs})

        domain_symbols = frozenset(rv.symbol for rv in rvs)

        return self.domain.compute_expectation(self.pdf * expr,
                domain_symbols, **kwargs)

    def compute_density(self, expr, **kwargs):
        # Common case Density(X) where X in self.values
        if expr in self.values:
            # Marginalize all other random symbols out of the density
            randomsymbols = tuple(set(self.values) - frozenset([expr]))
            symbols = tuple(rs.symbol for rs in randomsymbols)
            pdf = self.domain.compute_expectation(self.pdf, symbols, **kwargs)
            return Lambda(expr.symbol, pdf)

        z = Dummy('z', real=True)
        return Lambda(z, self.compute_expectation(DiracDelta(expr - z), **kwargs))

    @cacheit
    def compute_cdf(self, expr, **kwargs):
        if not self.domain.set.is_Interval:
            raise ValueError(
                "CDF not well defined on multivariate expressions")

        d = self.compute_density(expr, **kwargs)
        x, z = symbols('x, z', real=True, cls=Dummy)
        left_bound = self.domain.set.start

        # CDF is integral of PDF from left bound to z
        cdf = integrate(d(x), (x, left_bound, z), **kwargs)
        # CDF Ensure that CDF left of left_bound is zero
        cdf = Piecewise((cdf, z >= left_bound), (0, True))
        return Lambda(z, cdf)

    @cacheit
    def compute_characteristic_function(self, expr, **kwargs):
        if not self.domain.set.is_Interval:
            raise NotImplementedError("Characteristic function of multivariate expressions not implemented")

        d = self.compute_density(expr, **kwargs)
        x, t = symbols('x, t', real=True, cls=Dummy)
        cf = integrate(exp(I*t*x)*d(x), (x, -oo, oo), **kwargs)
        return Lambda(t, cf)

    @cacheit
    def compute_moment_generating_function(self, expr, **kwargs):
        if not self.domain.set.is_Interval:
            raise NotImplementedError("Moment generating function of multivariate expressions not implemented")

        d = self.compute_density(expr, **kwargs)
        x, t = symbols('x, t', real=True, cls=Dummy)
        mgf = integrate(exp(t * x) * d(x), (x, -oo, oo), **kwargs)
        return Lambda(t, mgf)

    @cacheit
    def compute_quantile(self, expr, **kwargs):
        if not self.domain.set.is_Interval:
            raise ValueError(
                "Quantile not well defined on multivariate expressions")

        d = self.compute_cdf(expr, **kwargs)
        x = Dummy('x', real=True)
        p = Dummy('p', positive=True)

        quantile = solveset(d(x) - p, x, self.set)

        return Lambda(p, quantile)

    def probability(self, condition, **kwargs):
        z = Dummy('z', real=True)
        cond_inv = False
        if isinstance(condition, Ne):
            condition = Eq(condition.args[0], condition.args[1])
            cond_inv = True
        # Univariate case can be handled by where
        try:
            domain = self.where(condition)
            rv = [rv for rv in self.values if rv.symbol == domain.symbol][0]
            # Integrate out all other random variables
            pdf = self.compute_density(rv, **kwargs)
            # return S.Zero if `domain` is empty set
            if domain.set is S.EmptySet or isinstance(domain.set, FiniteSet):
                return S.Zero if not cond_inv else S.One
            if isinstance(domain.set, Union):
                return sum(
                     Integral(pdf(z), (z, subset), **kwargs) for subset in
                     domain.set.args if isinstance(subset, Interval))
            # Integrate out the last variable over the special domain
            return Integral(pdf(z), (z, domain.set), **kwargs)

        # Other cases can be turned into univariate case
        # by computing a density handled by density computation
        except NotImplementedError:
            from sympy.stats.rv import density
            expr = condition.lhs - condition.rhs
            if not is_random(expr):
                dens = self.density
                comp = condition.rhs
            else:
                dens = density(expr, **kwargs)
                comp = 0
            if not isinstance(dens, ContinuousDistribution):
                from sympy.stats.crv_types import ContinuousDistributionHandmade
                dens = ContinuousDistributionHandmade(dens, set=self.domain.set)
            # Turn problem into univariate case
            space = SingleContinuousPSpace(z, dens)
            result = space.probability(condition.__class__(space.value, comp))
            return result if not cond_inv else S.One - result

    def where(self, condition):
        rvs = frozenset(random_symbols(condition))
        if not (len(rvs) == 1 and rvs.issubset(self.values)):
            raise NotImplementedError(
                "Multiple continuous random variables not supported")
        rv = tuple(rvs)[0]
        interval = reduce_rational_inequalities_wrap(condition, rv)
        interval = interval.intersect(self.domain.set)
        return SingleContinuousDomain(rv.symbol, interval)

    def conditional_space(self, condition, normalize=True, **kwargs):
        condition = condition.xreplace({rv: rv.symbol for rv in self.values})
        domain = ConditionalContinuousDomain(self.domain, condition)
        if normalize:
            # create a clone of the variable to
            # make sure that variables in nested integrals are different
            # from the variables outside the integral
            # this makes sure that they are evaluated separately
            # and in the correct order
            replacement  = {rv: Dummy(str(rv)) for rv in self.symbols}
            norm = domain.compute_expectation(self.pdf, **kwargs)
            pdf = self.pdf / norm.xreplace(replacement)
            # XXX: Converting set to tuple. The order matters to Lambda though
            # so we shouldn't be starting with a set here...
            density = Lambda(tuple(domain.symbols), pdf)

        return ContinuousPSpace(domain, density)


class SingleContinuousPSpace(ContinuousPSpace, SinglePSpace):
    """
    A continuous probability space over a single univariate variable.

    These consist of a Symbol and a SingleContinuousDistribution

    This class is normally accessed through the various random variable
    functions, Normal, Exponential, Uniform, etc....
    """

    @property
    def set(self):
        return self.distribution.set

    @property
    def domain(self):
        return SingleContinuousDomain(sympify(self.symbol), self.set)

    def sample(self, size=(), library='scipy', seed=None):
        """
        Internal sample method.

        Returns dictionary mapping RandomSymbol to realization value.
        """
        return {self.value: self.distribution.sample(size, library=library, seed=seed)}

    def compute_expectation(self, expr, rvs=None, evaluate=False, **kwargs):
        rvs = rvs or (self.value,)
        if self.value not in rvs:
            return expr

        expr = _sympify(expr)
        expr = expr.xreplace({rv: rv.symbol for rv in rvs})

        x = self.value.symbol
        try:
            return self.distribution.expectation(expr, x, evaluate=evaluate, **kwargs)
        except PoleError:
            return Integral(expr * self.pdf, (x, self.set), **kwargs)

    def compute_cdf(self, expr, **kwargs):
        if expr == self.value:
            z = Dummy("z", real=True)
            return Lambda(z, self.distribution.cdf(z, **kwargs))
        else:
            return ContinuousPSpace.compute_cdf(self, expr, **kwargs)

    def compute_characteristic_function(self, expr, **kwargs):
        if expr == self.value:
            t = Dummy("t", real=True)
            return Lambda(t, self.distribution.characteristic_function(t, **kwargs))
        else:
            return ContinuousPSpace.compute_characteristic_function(self, expr, **kwargs)

    def compute_moment_generating_function(self, expr, **kwargs):
        if expr == self.value:
            t = Dummy("t", real=True)
            return Lambda(t, self.distribution.moment_generating_function(t, **kwargs))
        else:
            return ContinuousPSpace.compute_moment_generating_function(self, expr, **kwargs)

    def compute_density(self, expr, **kwargs):
        # https://en.wikipedia.org/wiki/Random_variable#Functions_of_random_variables
        if expr == self.value:
            return self.density
        y = Dummy('y', real=True)

        gs = solveset(expr - y, self.value, S.Reals)

        if isinstance(gs, Intersection):
            if len(gs.args) == 2 and gs.args[0] is S.Reals:
                gs = gs.args[1]
        if not gs.is_FiniteSet:
            raise ValueError("Can not solve %s for %s" % (expr, self.value))
        fx = self.compute_density(self.value)
        fy = sum(fx(g) * abs(g.diff(y)) for g in gs)
        return Lambda(y, fy)

    def compute_quantile(self, expr, **kwargs):

        if expr == self.value:
            p = Dummy("p", real=True)
            return Lambda(p, self.distribution.quantile(p, **kwargs))
        else:
            return ContinuousPSpace.compute_quantile(self, expr, **kwargs)

def _reduce_inequalities(conditions, var, **kwargs):
    try:
        return reduce_rational_inequalities(conditions, var, **kwargs)
    except PolynomialError:
        raise ValueError("Reduction of condition failed %s\n" % conditions[0])


def reduce_rational_inequalities_wrap(condition, var):
    if condition.is_Relational:
        return _reduce_inequalities([[condition]], var, relational=False)
    if isinstance(condition, Or):
        return Union(*[_reduce_inequalities([[arg]], var, relational=False)
            for arg in condition.args])
    if isinstance(condition, And):
        intervals = [_reduce_inequalities([[arg]], var, relational=False)
            for arg in condition.args]
        I = intervals[0]
        for i in intervals:
            I = I.intersect(i)
        return I