Spaces:
Sleeping
Sleeping
File size: 151,783 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 |
"""
This module contains functions to:
- solve a single equation for a single variable, in any domain either real or complex.
- solve a single transcendental equation for a single variable in any domain either real or complex.
(currently supports solving in real domain only)
- solve a system of linear equations with N variables and M equations.
- solve a system of Non Linear Equations with N variables and M equations
"""
from sympy.core.sympify import sympify
from sympy.core import (S, Pow, Dummy, pi, Expr, Wild, Mul,
Add, Basic)
from sympy.core.containers import Tuple
from sympy.core.function import (Lambda, expand_complex, AppliedUndef,
expand_log, _mexpand, expand_trig, nfloat)
from sympy.core.mod import Mod
from sympy.core.numbers import I, Number, Rational, oo
from sympy.core.intfunc import integer_log
from sympy.core.relational import Eq, Ne, Relational
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Symbol, _uniquely_named_symbol
from sympy.core.sympify import _sympify
from sympy.core.traversal import preorder_traversal
from sympy.external.gmpy import gcd as number_gcd, lcm as number_lcm
from sympy.polys.matrices.linsolve import _linear_eq_to_dict
from sympy.polys.polyroots import UnsolvableFactorError
from sympy.simplify.simplify import simplify, fraction, trigsimp, nsimplify
from sympy.simplify import powdenest, logcombine
from sympy.functions import (log, tan, cot, sin, cos, sec, csc, exp,
acos, asin, atan, acot, acsc, asec,
piecewise_fold, Piecewise)
from sympy.functions.combinatorial.numbers import totient
from sympy.functions.elementary.complexes import Abs, arg, re, im
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction,
sinh, cosh, tanh, coth, sech, csch,
asinh, acosh, atanh, acoth, asech, acsch)
from sympy.functions.elementary.miscellaneous import real_root
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.logic.boolalg import And, BooleanTrue
from sympy.sets import (FiniteSet, imageset, Interval, Intersection,
Union, ConditionSet, ImageSet, Complement, Contains)
from sympy.sets.sets import Set, ProductSet
from sympy.matrices import zeros, Matrix, MatrixBase
from sympy.ntheory.factor_ import divisors
from sympy.ntheory.residue_ntheory import discrete_log, nthroot_mod
from sympy.polys import (roots, Poly, degree, together, PolynomialError,
RootOf, factor, lcm, gcd)
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.polytools import invert, groebner, poly
from sympy.polys.solvers import (sympy_eqs_to_ring, solve_lin_sys,
PolyNonlinearError)
from sympy.polys.matrices.linsolve import _linsolve
from sympy.solvers.solvers import (checksol, denoms, unrad,
_simple_dens, recast_to_symbols)
from sympy.solvers.polysys import solve_poly_system
from sympy.utilities import filldedent
from sympy.utilities.iterables import (numbered_symbols, has_dups,
is_sequence, iterable)
from sympy.calculus.util import periodicity, continuous_domain, function_range
from types import GeneratorType
class NonlinearError(ValueError):
"""Raised when unexpectedly encountering nonlinear equations"""
pass
def _masked(f, *atoms):
"""Return ``f``, with all objects given by ``atoms`` replaced with
Dummy symbols, ``d``, and the list of replacements, ``(d, e)``,
where ``e`` is an object of type given by ``atoms`` in which
any other instances of atoms have been recursively replaced with
Dummy symbols, too. The tuples are ordered so that if they are
applied in sequence, the origin ``f`` will be restored.
Examples
========
>>> from sympy import cos
>>> from sympy.abc import x
>>> from sympy.solvers.solveset import _masked
>>> f = cos(cos(x) + 1)
>>> f, reps = _masked(cos(1 + cos(x)), cos)
>>> f
_a1
>>> reps
[(_a1, cos(_a0 + 1)), (_a0, cos(x))]
>>> for d, e in reps:
... f = f.xreplace({d: e})
>>> f
cos(cos(x) + 1)
"""
sym = numbered_symbols('a', cls=Dummy, real=True)
mask = []
for a in ordered(f.atoms(*atoms)):
for i in mask:
a = a.replace(*i)
mask.append((a, next(sym)))
for i, (o, n) in enumerate(mask):
f = f.replace(o, n)
mask[i] = (n, o)
mask = list(reversed(mask))
return f, mask
def _invert(f_x, y, x, domain=S.Complexes):
r"""
Reduce the complex valued equation $f(x) = y$ to a set of equations
$$\left\{g(x) = h_1(y),\ g(x) = h_2(y),\ \dots,\ g(x) = h_n(y) \right\}$$
where $g(x)$ is a simpler function than $f(x)$. The return value is a tuple
$(g(x), \mathrm{set}_h)$, where $g(x)$ is a function of $x$ and $\mathrm{set}_h$ is
the set of function $\left\{h_1(y), h_2(y), \dots, h_n(y)\right\}$.
Here, $y$ is not necessarily a symbol.
$\mathrm{set}_h$ contains the functions, along with the information
about the domain in which they are valid, through set
operations. For instance, if :math:`y = |x| - n` is inverted
in the real domain, then $\mathrm{set}_h$ is not simply
$\{-n, n\}$ as the nature of `n` is unknown; rather, it is:
$$ \left(\left[0, \infty\right) \cap \left\{n\right\}\right) \cup
\left(\left(-\infty, 0\right] \cap \left\{- n\right\}\right)$$
By default, the complex domain is used which means that inverting even
seemingly simple functions like $\exp(x)$ will give very different
results from those obtained in the real domain.
(In the case of $\exp(x)$, the inversion via $\log$ is multi-valued
in the complex domain, having infinitely many branches.)
If you are working with real values only (or you are not sure which
function to use) you should probably set the domain to
``S.Reals`` (or use ``invert_real`` which does that automatically).
Examples
========
>>> from sympy.solvers.solveset import invert_complex, invert_real
>>> from sympy.abc import x, y
>>> from sympy import exp
When does exp(x) == y?
>>> invert_complex(exp(x), y, x)
(x, ImageSet(Lambda(_n, I*(2*_n*pi + arg(y)) + log(Abs(y))), Integers))
>>> invert_real(exp(x), y, x)
(x, Intersection({log(y)}, Reals))
When does exp(x) == 1?
>>> invert_complex(exp(x), 1, x)
(x, ImageSet(Lambda(_n, 2*_n*I*pi), Integers))
>>> invert_real(exp(x), 1, x)
(x, {0})
See Also
========
invert_real, invert_complex
"""
x = sympify(x)
if not x.is_Symbol:
raise ValueError("x must be a symbol")
f_x = sympify(f_x)
if x not in f_x.free_symbols:
raise ValueError("Inverse of constant function doesn't exist")
y = sympify(y)
if x in y.free_symbols:
raise ValueError("y should be independent of x ")
if domain.is_subset(S.Reals):
x1, s = _invert_real(f_x, FiniteSet(y), x)
else:
x1, s = _invert_complex(f_x, FiniteSet(y), x)
# f couldn't be inverted completely; return unmodified.
if x1 != x:
return x1, s
# Avoid adding gratuitous intersections with S.Complexes. Actual
# conditions should be handled by the respective inverters.
if domain is S.Complexes:
return x1, s
if isinstance(s, FiniteSet):
return x1, s.intersect(domain)
# "Fancier" solution sets like those obtained by inversion of trigonometric
# functions already include general validity conditions (i.e. conditions on
# the domain of the respective inverse functions), so we should avoid adding
# blanket intesections with S.Reals. But subsets of R (or C) must still be
# accounted for.
if domain is S.Reals:
return x1, s
else:
return x1, s.intersect(domain)
invert_complex = _invert
def invert_real(f_x, y, x):
"""
Inverts a real-valued function. Same as :func:`invert_complex`, but sets
the domain to ``S.Reals`` before inverting.
"""
return _invert(f_x, y, x, S.Reals)
def _invert_real(f, g_ys, symbol):
"""Helper function for _invert."""
if f == symbol or g_ys is S.EmptySet:
return (symbol, g_ys)
n = Dummy('n', real=True)
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
return _invert_real(f.exp,
imageset(Lambda(n, log(n)), g_ys),
symbol)
if hasattr(f, 'inverse') and f.inverse() is not None and not isinstance(f, (
TrigonometricFunction,
HyperbolicFunction,
)):
if len(f.args) > 1:
raise ValueError("Only functions with one argument are supported.")
return _invert_real(f.args[0],
imageset(Lambda(n, f.inverse()(n)), g_ys),
symbol)
if isinstance(f, Abs):
return _invert_abs(f.args[0], g_ys, symbol)
if f.is_Add:
# f = g + h
g, h = f.as_independent(symbol)
if g is not S.Zero:
return _invert_real(h, imageset(Lambda(n, n - g), g_ys), symbol)
if f.is_Mul:
# f = g*h
g, h = f.as_independent(symbol)
if g is not S.One:
return _invert_real(h, imageset(Lambda(n, n/g), g_ys), symbol)
if f.is_Pow:
base, expo = f.args
base_has_sym = base.has(symbol)
expo_has_sym = expo.has(symbol)
if not expo_has_sym:
if expo.is_rational:
num, den = expo.as_numer_denom()
if den % 2 == 0 and num % 2 == 1 and den.is_zero is False:
# Here we have f(x)**(num/den) = y
# where den is nonzero and even and y is an element
# of the set g_ys.
# den is even, so we are only interested in the cases
# where both f(x) and y are positive.
# Restricting y to be positive (using the set g_ys_pos)
# means that y**(den/num) is always positive.
# Therefore it isn't necessary to also constrain f(x)
# to be positive because we are only going to
# find solutions of f(x) = y**(d/n)
# where the rhs is already required to be positive.
root = Lambda(n, real_root(n, expo))
g_ys_pos = g_ys & Interval(0, oo)
res = imageset(root, g_ys_pos)
_inv, _set = _invert_real(base, res, symbol)
return (_inv, _set)
if den % 2 == 1:
root = Lambda(n, real_root(n, expo))
res = imageset(root, g_ys)
if num % 2 == 0:
neg_res = imageset(Lambda(n, -n), res)
return _invert_real(base, res + neg_res, symbol)
if num % 2 == 1:
return _invert_real(base, res, symbol)
elif expo.is_irrational:
root = Lambda(n, real_root(n, expo))
g_ys_pos = g_ys & Interval(0, oo)
res = imageset(root, g_ys_pos)
return _invert_real(base, res, symbol)
else:
# indeterminate exponent, e.g. Float or parity of
# num, den of rational could not be determined
pass # use default return
if not base_has_sym:
rhs = g_ys.args[0]
if base.is_positive:
return _invert_real(expo,
imageset(Lambda(n, log(n, base, evaluate=False)), g_ys), symbol)
elif base.is_negative:
s, b = integer_log(rhs, base)
if b:
return _invert_real(expo, FiniteSet(s), symbol)
else:
return (expo, S.EmptySet)
elif base.is_zero:
one = Eq(rhs, 1)
if one == S.true:
# special case: 0**x - 1
return _invert_real(expo, FiniteSet(0), symbol)
elif one == S.false:
return (expo, S.EmptySet)
if isinstance(f, (TrigonometricFunction, HyperbolicFunction)):
return _invert_trig_hyp_real(f, g_ys, symbol)
return (f, g_ys)
# Dictionaries of inverses will be cached after first use.
_trig_inverses = None
_hyp_inverses = None
def _invert_trig_hyp_real(f, g_ys, symbol):
"""Helper function for inverting trigonometric and hyperbolic functions.
This helper only handles inversion over the reals.
For trigonometric functions only finite `g_ys` sets are implemented.
For hyperbolic functions the set `g_ys` is checked against the domain of the
respective inverse functions. Infinite `g_ys` sets are also supported.
"""
if isinstance(f, HyperbolicFunction):
n = Dummy('n', real=True)
if isinstance(f, sinh):
# asinh is defined over R.
return _invert_real(f.args[0], imageset(n, asinh(n), g_ys), symbol)
if isinstance(f, cosh):
g_ys_dom = g_ys.intersect(Interval(1, oo))
if isinstance(g_ys_dom, Intersection):
# could not properly resolve domain check
if isinstance(g_ys, FiniteSet):
# If g_ys is a `FiniteSet`` it should be sufficient to just
# let the calling `_invert_real()` add an intersection with
# `S.Reals` (or a subset `domain`) to ensure that only valid
# (real) solutions are returned.
# This avoids adding "too many" Intersections or
# ConditionSets in the returned set.
g_ys_dom = g_ys
else:
return (f, g_ys)
return _invert_real(f.args[0], Union(
imageset(n, acosh(n), g_ys_dom),
imageset(n, -acosh(n), g_ys_dom)), symbol)
if isinstance(f, sech):
g_ys_dom = g_ys.intersect(Interval.Lopen(0, 1))
if isinstance(g_ys_dom, Intersection):
if isinstance(g_ys, FiniteSet):
g_ys_dom = g_ys
else:
return (f, g_ys)
return _invert_real(f.args[0], Union(
imageset(n, asech(n), g_ys_dom),
imageset(n, -asech(n), g_ys_dom)), symbol)
if isinstance(f, tanh):
g_ys_dom = g_ys.intersect(Interval.open(-1, 1))
if isinstance(g_ys_dom, Intersection):
if isinstance(g_ys, FiniteSet):
g_ys_dom = g_ys
else:
return (f, g_ys)
return _invert_real(f.args[0],
imageset(n, atanh(n), g_ys_dom), symbol)
if isinstance(f, coth):
g_ys_dom = g_ys - Interval(-1, 1)
if isinstance(g_ys_dom, Complement):
if isinstance(g_ys, FiniteSet):
g_ys_dom = g_ys
else:
return (f, g_ys)
return _invert_real(f.args[0],
imageset(n, acoth(n), g_ys_dom), symbol)
if isinstance(f, csch):
g_ys_dom = g_ys - FiniteSet(0)
if isinstance(g_ys_dom, Complement):
if isinstance(g_ys, FiniteSet):
g_ys_dom = g_ys
else:
return (f, g_ys)
return _invert_real(f.args[0],
imageset(n, acsch(n), g_ys_dom), symbol)
elif isinstance(f, TrigonometricFunction) and isinstance(g_ys, FiniteSet):
def _get_trig_inverses(func):
global _trig_inverses
if _trig_inverses is None:
_trig_inverses = {
sin : ((asin, lambda y: pi-asin(y)), 2*pi, Interval(-1, 1)),
cos : ((acos, lambda y: -acos(y)), 2*pi, Interval(-1, 1)),
tan : ((atan,), pi, S.Reals),
cot : ((acot,), pi, S.Reals),
sec : ((asec, lambda y: -asec(y)), 2*pi,
Union(Interval(-oo, -1), Interval(1, oo))),
csc : ((acsc, lambda y: pi-acsc(y)), 2*pi,
Union(Interval(-oo, -1), Interval(1, oo)))}
return _trig_inverses[func]
invs, period, rng = _get_trig_inverses(f.func)
n = Dummy('n', integer=True)
def create_return_set(g):
# returns ConditionSet that will be part of the final (x, set) tuple
invsimg = Union(*[
imageset(n, period*n + inv(g), S.Integers) for inv in invs])
inv_f, inv_g_ys = _invert_real(f.args[0], invsimg, symbol)
if inv_f == symbol: # inversion successful
conds = rng.contains(g)
return ConditionSet(symbol, conds, inv_g_ys)
else:
return ConditionSet(symbol, Eq(f, g), S.Reals)
retset = Union(*[create_return_set(g) for g in g_ys])
return (symbol, retset)
else:
return (f, g_ys)
def _invert_trig_hyp_complex(f, g_ys, symbol):
"""Helper function for inverting trigonometric and hyperbolic functions.
This helper only handles inversion over the complex numbers.
Only finite `g_ys` sets are implemented.
Handling of singularities is only implemented for hyperbolic equations.
In case of a symbolic element g in g_ys a ConditionSet may be returned.
"""
if isinstance(f, TrigonometricFunction) and isinstance(g_ys, FiniteSet):
def inv(trig):
if isinstance(trig, (sin, csc)):
F = asin if isinstance(trig, sin) else acsc
return (
lambda a: 2*n*pi + F(a),
lambda a: 2*n*pi + pi - F(a))
if isinstance(trig, (cos, sec)):
F = acos if isinstance(trig, cos) else asec
return (
lambda a: 2*n*pi + F(a),
lambda a: 2*n*pi - F(a))
if isinstance(trig, (tan, cot)):
return (lambda a: n*pi + trig.inverse()(a),)
n = Dummy('n', integer=True)
invs = S.EmptySet
for L in inv(f):
invs += Union(*[imageset(Lambda(n, L(g)), S.Integers) for g in g_ys])
return _invert_complex(f.args[0], invs, symbol)
elif isinstance(f, HyperbolicFunction) and isinstance(g_ys, FiniteSet):
# There are two main options regarding singularities / domain checking
# for symbolic elements in g_ys:
# 1. Add a "catch-all" intersection with S.Complexes.
# 2. ConditionSets.
# At present ConditionSets seem to work better and have the additional
# benefit of representing the precise conditions that must be satisfied.
# The conditions are also rather straightforward. (At most two isolated
# points.)
def _get_hyp_inverses(func):
global _hyp_inverses
if _hyp_inverses is None:
_hyp_inverses = {
sinh : ((asinh, lambda y: I*pi-asinh(y)), 2*I*pi, ()),
cosh : ((acosh, lambda y: -acosh(y)), 2*I*pi, ()),
tanh : ((atanh,), I*pi, (-1, 1)),
coth : ((acoth,), I*pi, (-1, 1)),
sech : ((asech, lambda y: -asech(y)), 2*I*pi, (0, )),
csch : ((acsch, lambda y: I*pi-acsch(y)), 2*I*pi, (0, ))}
return _hyp_inverses[func]
# invs: iterable of main inverses, e.g. (acosh, -acosh).
# excl: iterable of singularities to be checked for.
invs, period, excl = _get_hyp_inverses(f.func)
n = Dummy('n', integer=True)
def create_return_set(g):
# returns ConditionSet that will be part of the final (x, set) tuple
invsimg = Union(*[
imageset(n, period*n + inv(g), S.Integers) for inv in invs])
inv_f, inv_g_ys = _invert_complex(f.args[0], invsimg, symbol)
if inv_f == symbol: # inversion successful
conds = And(*[Ne(g, e) for e in excl])
return ConditionSet(symbol, conds, inv_g_ys)
else:
return ConditionSet(symbol, Eq(f, g), S.Complexes)
retset = Union(*[create_return_set(g) for g in g_ys])
return (symbol, retset)
else:
return (f, g_ys)
def _invert_complex(f, g_ys, symbol):
"""Helper function for _invert."""
if f == symbol or g_ys is S.EmptySet:
return (symbol, g_ys)
n = Dummy('n')
if f.is_Add:
# f = g + h
g, h = f.as_independent(symbol)
if g is not S.Zero:
return _invert_complex(h, imageset(Lambda(n, n - g), g_ys), symbol)
if f.is_Mul:
# f = g*h
g, h = f.as_independent(symbol)
if g is not S.One:
if g in {S.NegativeInfinity, S.ComplexInfinity, S.Infinity}:
return (h, S.EmptySet)
return _invert_complex(h, imageset(Lambda(n, n/g), g_ys), symbol)
if f.is_Pow:
base, expo = f.args
# special case: g**r = 0
# Could be improved like `_invert_real` to handle more general cases.
if expo.is_Rational and g_ys == FiniteSet(0):
if expo.is_positive:
return _invert_complex(base, g_ys, symbol)
if hasattr(f, 'inverse') and f.inverse() is not None and \
not isinstance(f, TrigonometricFunction) and \
not isinstance(f, HyperbolicFunction) and \
not isinstance(f, exp):
if len(f.args) > 1:
raise ValueError("Only functions with one argument are supported.")
return _invert_complex(f.args[0],
imageset(Lambda(n, f.inverse()(n)), g_ys), symbol)
if isinstance(f, exp) or (f.is_Pow and f.base == S.Exp1):
if isinstance(g_ys, ImageSet):
# can solve up to `(d*exp(exp(...(exp(a*x + b))...) + c)` format.
# Further can be improved to `(d*exp(exp(...(exp(a*x**n + b*x**(n-1) + ... + f))...) + c)`.
g_ys_expr = g_ys.lamda.expr
g_ys_vars = g_ys.lamda.variables
k = Dummy('k{}'.format(len(g_ys_vars)))
g_ys_vars_1 = (k,) + g_ys_vars
exp_invs = Union(*[imageset(Lambda((g_ys_vars_1,), (I*(2*k*pi + arg(g_ys_expr))
+ log(Abs(g_ys_expr)))), S.Integers**(len(g_ys_vars_1)))])
return _invert_complex(f.exp, exp_invs, symbol)
elif isinstance(g_ys, FiniteSet):
exp_invs = Union(*[imageset(Lambda(n, I*(2*n*pi + arg(g_y)) +
log(Abs(g_y))), S.Integers)
for g_y in g_ys if g_y != 0])
return _invert_complex(f.exp, exp_invs, symbol)
if isinstance(f, (TrigonometricFunction, HyperbolicFunction)):
return _invert_trig_hyp_complex(f, g_ys, symbol)
return (f, g_ys)
def _invert_abs(f, g_ys, symbol):
"""Helper function for inverting absolute value functions.
Returns the complete result of inverting an absolute value
function along with the conditions which must also be satisfied.
If it is certain that all these conditions are met, a :class:`~.FiniteSet`
of all possible solutions is returned. If any condition cannot be
satisfied, an :class:`~.EmptySet` is returned. Otherwise, a
:class:`~.ConditionSet` of the solutions, with all the required conditions
specified, is returned.
"""
if not g_ys.is_FiniteSet:
# this could be used for FiniteSet, but the
# results are more compact if they aren't, e.g.
# ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}) vs
# Union(Intersection(Interval(0, oo), {n}), Intersection(Interval(-oo, 0), {-n}))
# for the solution of abs(x) - n
pos = Intersection(g_ys, Interval(0, S.Infinity))
parg = _invert_real(f, pos, symbol)
narg = _invert_real(-f, pos, symbol)
if parg[0] != narg[0]:
raise NotImplementedError
return parg[0], Union(narg[1], parg[1])
# check conditions: all these must be true. If any are unknown
# then return them as conditions which must be satisfied
unknown = []
for a in g_ys.args:
ok = a.is_nonnegative if a.is_Number else a.is_positive
if ok is None:
unknown.append(a)
elif not ok:
return symbol, S.EmptySet
if unknown:
conditions = And(*[Contains(i, Interval(0, oo))
for i in unknown])
else:
conditions = True
n = Dummy('n', real=True)
# this is slightly different than above: instead of solving
# +/-f on positive values, here we solve for f on +/- g_ys
g_x, values = _invert_real(f, Union(
imageset(Lambda(n, n), g_ys),
imageset(Lambda(n, -n), g_ys)), symbol)
return g_x, ConditionSet(g_x, conditions, values)
def domain_check(f, symbol, p):
"""Returns False if point p is infinite or any subexpression of f
is infinite or becomes so after replacing symbol with p. If none of
these conditions is met then True will be returned.
Examples
========
>>> from sympy import Mul, oo
>>> from sympy.abc import x
>>> from sympy.solvers.solveset import domain_check
>>> g = 1/(1 + (1/(x + 1))**2)
>>> domain_check(g, x, -1)
False
>>> domain_check(x**2, x, 0)
True
>>> domain_check(1/x, x, oo)
False
* The function relies on the assumption that the original form
of the equation has not been changed by automatic simplification.
>>> domain_check(x/x, x, 0) # x/x is automatically simplified to 1
True
* To deal with automatic evaluations use evaluate=False:
>>> domain_check(Mul(x, 1/x, evaluate=False), x, 0)
False
"""
f, p = sympify(f), sympify(p)
if p.is_infinite:
return False
return _domain_check(f, symbol, p)
def _domain_check(f, symbol, p):
# helper for domain check
if f.is_Atom and f.is_finite:
return True
elif f.subs(symbol, p).is_infinite:
return False
elif isinstance(f, Piecewise):
# Check the cases of the Piecewise in turn. There might be invalid
# expressions in later cases that don't apply e.g.
# solveset(Piecewise((0, Eq(x, 0)), (1/x, True)), x)
for expr, cond in f.args:
condsubs = cond.subs(symbol, p)
if condsubs is S.false:
continue
elif condsubs is S.true:
return _domain_check(expr, symbol, p)
else:
# We don't know which case of the Piecewise holds. On this
# basis we cannot decide whether any solution is in or out of
# the domain. Ideally this function would allow returning a
# symbolic condition for the validity of the solution that
# could be handled in the calling code. In the mean time we'll
# give this particular solution the benefit of the doubt and
# let it pass.
return True
else:
# TODO : We should not blindly recurse through all args of arbitrary expressions like this
return all(_domain_check(g, symbol, p)
for g in f.args)
def _is_finite_with_finite_vars(f, domain=S.Complexes):
"""
Return True if the given expression is finite. For symbols that
do not assign a value for `complex` and/or `real`, the domain will
be used to assign a value; symbols that do not assign a value
for `finite` will be made finite. All other assumptions are
left unmodified.
"""
def assumptions(s):
A = s.assumptions0
A.setdefault('finite', A.get('finite', True))
if domain.is_subset(S.Reals):
# if this gets set it will make complex=True, too
A.setdefault('real', True)
else:
# don't change 'real' because being complex implies
# nothing about being real
A.setdefault('complex', True)
return A
reps = {s: Dummy(**assumptions(s)) for s in f.free_symbols}
return f.xreplace(reps).is_finite
def _is_function_class_equation(func_class, f, symbol):
""" Tests whether the equation is an equation of the given function class.
The given equation belongs to the given function class if it is
comprised of functions of the function class which are multiplied by
or added to expressions independent of the symbol. In addition, the
arguments of all such functions must be linear in the symbol as well.
Examples
========
>>> from sympy.solvers.solveset import _is_function_class_equation
>>> from sympy import tan, sin, tanh, sinh, exp
>>> from sympy.abc import x
>>> from sympy.functions.elementary.trigonometric import TrigonometricFunction
>>> from sympy.functions.elementary.hyperbolic import HyperbolicFunction
>>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)
False
>>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)
True
>>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)
False
>>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)
True
>>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)
True
"""
if f.is_Mul or f.is_Add:
return all(_is_function_class_equation(func_class, arg, symbol)
for arg in f.args)
if f.is_Pow:
if not f.exp.has(symbol):
return _is_function_class_equation(func_class, f.base, symbol)
else:
return False
if not f.has(symbol):
return True
if isinstance(f, func_class):
try:
g = Poly(f.args[0], symbol)
return g.degree() <= 1
except PolynomialError:
return False
else:
return False
def _solve_as_rational(f, symbol, domain):
""" solve rational functions"""
f = together(_mexpand(f, recursive=True), deep=True)
g, h = fraction(f)
if not h.has(symbol):
try:
return _solve_as_poly(g, symbol, domain)
except NotImplementedError:
# The polynomial formed from g could end up having
# coefficients in a ring over which finding roots
# isn't implemented yet, e.g. ZZ[a] for some symbol a
return ConditionSet(symbol, Eq(f, 0), domain)
except CoercionFailed:
# contained oo, zoo or nan
return S.EmptySet
else:
valid_solns = _solveset(g, symbol, domain)
invalid_solns = _solveset(h, symbol, domain)
return valid_solns - invalid_solns
class _SolveTrig1Error(Exception):
"""Raised when _solve_trig1 heuristics do not apply"""
def _solve_trig(f, symbol, domain):
"""Function to call other helpers to solve trigonometric equations """
# If f is composed of a single trig function (potentially appearing multiple
# times) we should solve by either inverting directly or inverting after a
# suitable change of variable.
#
# _solve_trig is currently only called by _solveset for trig/hyperbolic
# functions of an argument linear in x. Inverting a symbolic argument should
# include a guard against division by zero in order to have a result that is
# consistent with similar processing done by _solve_trig1.
# (Ideally _invert should add these conditions by itself.)
trig_expr, count = None, 0
for expr in preorder_traversal(f):
if isinstance(expr, (TrigonometricFunction,
HyperbolicFunction)) and expr.has(symbol):
if not trig_expr:
trig_expr, count = expr, 1
elif expr == trig_expr:
count += 1
else:
trig_expr, count = False, 0
break
if count == 1:
# direct inversion
x, sol = _invert(f, 0, symbol, domain)
if x == symbol:
cond = True
if trig_expr.free_symbols - {symbol}:
a, h = trig_expr.args[0].as_independent(symbol, as_Add=True)
m, h = h.as_independent(symbol, as_Add=False)
num, den = m.as_numer_denom()
cond = Ne(num, 0) & Ne(den, 0)
return ConditionSet(symbol, cond, sol)
else:
return ConditionSet(symbol, Eq(f, 0), domain)
elif count:
# solve by change of variable
y = Dummy('y')
f_cov = f.subs(trig_expr, y)
sol_cov = solveset(f_cov, y, domain)
if isinstance(sol_cov, FiniteSet):
return Union(
*[_solve_trig(trig_expr-s, symbol, domain) for s in sol_cov])
sol = None
try:
# multiple trig/hyp functions; solve by rewriting to exp
sol = _solve_trig1(f, symbol, domain)
except _SolveTrig1Error:
try:
# multiple trig/hyp functions; solve by rewriting to tan(x/2)
sol = _solve_trig2(f, symbol, domain)
except ValueError:
raise NotImplementedError(filldedent('''
Solution to this kind of trigonometric equations
is yet to be implemented'''))
return sol
def _solve_trig1(f, symbol, domain):
"""Primary solver for trigonometric and hyperbolic equations
Returns either the solution set as a ConditionSet (auto-evaluated to a
union of ImageSets if no variables besides 'symbol' are involved) or
raises _SolveTrig1Error if f == 0 cannot be solved.
Notes
=====
Algorithm:
1. Do a change of variable x -> mu*x in arguments to trigonometric and
hyperbolic functions, in order to reduce them to small integers. (This
step is crucial to keep the degrees of the polynomials of step 4 low.)
2. Rewrite trigonometric/hyperbolic functions as exponentials.
3. Proceed to a 2nd change of variable, replacing exp(I*x) or exp(x) by y.
4. Solve the resulting rational equation.
5. Use invert_complex or invert_real to return to the original variable.
6. If the coefficients of 'symbol' were symbolic in nature, add the
necessary consistency conditions in a ConditionSet.
"""
# Prepare change of variable
x = Dummy('x')
if _is_function_class_equation(HyperbolicFunction, f, symbol):
cov = exp(x)
inverter = invert_real if domain.is_subset(S.Reals) else invert_complex
else:
cov = exp(I*x)
inverter = invert_complex
f = trigsimp(f)
f_original = f
trig_functions = f.atoms(TrigonometricFunction, HyperbolicFunction)
trig_arguments = [e.args[0] for e in trig_functions]
# trigsimp may have reduced the equation to an expression
# that is independent of 'symbol' (e.g. cos**2+sin**2)
if not any(a.has(symbol) for a in trig_arguments):
return solveset(f_original, symbol, domain)
denominators = []
numerators = []
for ar in trig_arguments:
try:
poly_ar = Poly(ar, symbol)
except PolynomialError:
raise _SolveTrig1Error("trig argument is not a polynomial")
if poly_ar.degree() > 1: # degree >1 still bad
raise _SolveTrig1Error("degree of variable must not exceed one")
if poly_ar.degree() == 0: # degree 0, don't care
continue
c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol'
numerators.append(fraction(c)[0])
denominators.append(fraction(c)[1])
mu = lcm(denominators)/gcd(numerators)
f = f.subs(symbol, mu*x)
f = f.rewrite(exp)
f = together(f)
g, h = fraction(f)
y = Dummy('y')
g, h = g.expand(), h.expand()
g, h = g.subs(cov, y), h.subs(cov, y)
if g.has(x) or h.has(x):
raise _SolveTrig1Error("change of variable not possible")
solns = solveset_complex(g, y) - solveset_complex(h, y)
if isinstance(solns, ConditionSet):
raise _SolveTrig1Error("polynomial has ConditionSet solution")
if isinstance(solns, FiniteSet):
if any(isinstance(s, RootOf) for s in solns):
raise _SolveTrig1Error("polynomial results in RootOf object")
# revert the change of variable
cov = cov.subs(x, symbol/mu)
result = Union(*[inverter(cov, s, symbol)[1] for s in solns])
# In case of symbolic coefficients, the solution set is only valid
# if numerator and denominator of mu are non-zero.
if mu.has(Symbol):
syms = (mu).atoms(Symbol)
munum, muden = fraction(mu)
condnum = munum.as_independent(*syms, as_Add=False)[1]
condden = muden.as_independent(*syms, as_Add=False)[1]
cond = And(Ne(condnum, 0), Ne(condden, 0))
else:
cond = True
# Actual conditions are returned as part of the ConditionSet. Adding an
# intersection with C would only complicate some solution sets due to
# current limitations of intersection code. (e.g. #19154)
if domain is S.Complexes:
# This is a slight abuse of ConditionSet. Ideally this should
# be some kind of "PiecewiseSet". (See #19507 discussion)
return ConditionSet(symbol, cond, result)
else:
return ConditionSet(symbol, cond, Intersection(result, domain))
elif solns is S.EmptySet:
return S.EmptySet
else:
raise _SolveTrig1Error("polynomial solutions must form FiniteSet")
def _solve_trig2(f, symbol, domain):
"""Secondary helper to solve trigonometric equations,
called when first helper fails """
f = trigsimp(f)
f_original = f
trig_functions = f.atoms(sin, cos, tan, sec, cot, csc)
trig_arguments = [e.args[0] for e in trig_functions]
denominators = []
numerators = []
# todo: This solver can be extended to hyperbolics if the
# analogous change of variable to tanh (instead of tan)
# is used.
if not trig_functions:
return ConditionSet(symbol, Eq(f_original, 0), domain)
# todo: The pre-processing below (extraction of numerators, denominators,
# gcd, lcm, mu, etc.) should be updated to the enhanced version in
# _solve_trig1. (See #19507)
for ar in trig_arguments:
try:
poly_ar = Poly(ar, symbol)
except PolynomialError:
raise ValueError("give up, we cannot solve if this is not a polynomial in x")
if poly_ar.degree() > 1: # degree >1 still bad
raise ValueError("degree of variable inside polynomial should not exceed one")
if poly_ar.degree() == 0: # degree 0, don't care
continue
c = poly_ar.all_coeffs()[0] # got the coefficient of 'symbol'
try:
numerators.append(Rational(c).p)
denominators.append(Rational(c).q)
except TypeError:
return ConditionSet(symbol, Eq(f_original, 0), domain)
x = Dummy('x')
mu = Rational(2)*number_lcm(*denominators)/number_gcd(*numerators)
f = f.subs(symbol, mu*x)
f = f.rewrite(tan)
f = expand_trig(f)
f = together(f)
g, h = fraction(f)
y = Dummy('y')
g, h = g.expand(), h.expand()
g, h = g.subs(tan(x), y), h.subs(tan(x), y)
if g.has(x) or h.has(x):
return ConditionSet(symbol, Eq(f_original, 0), domain)
solns = solveset(g, y, S.Reals) - solveset(h, y, S.Reals)
if isinstance(solns, FiniteSet):
result = Union(*[invert_real(tan(symbol/mu), s, symbol)[1]
for s in solns])
dsol = invert_real(tan(symbol/mu), oo, symbol)[1]
if degree(h) > degree(g): # If degree(denom)>degree(num) then there
result = Union(result, dsol) # would be another sol at Lim(denom-->oo)
return Intersection(result, domain)
elif solns is S.EmptySet:
return S.EmptySet
else:
return ConditionSet(symbol, Eq(f_original, 0), S.Reals)
def _solve_as_poly(f, symbol, domain=S.Complexes):
"""
Solve the equation using polynomial techniques if it already is a
polynomial equation or, with a change of variables, can be made so.
"""
result = None
if f.is_polynomial(symbol):
solns = roots(f, symbol, cubics=True, quartics=True,
quintics=True, domain='EX')
num_roots = sum(solns.values())
if degree(f, symbol) <= num_roots:
result = FiniteSet(*solns.keys())
else:
poly = Poly(f, symbol)
solns = poly.all_roots()
if poly.degree() <= len(solns):
result = FiniteSet(*solns)
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
else:
poly = Poly(f)
if poly is None:
result = ConditionSet(symbol, Eq(f, 0), domain)
gens = [g for g in poly.gens if g.has(symbol)]
if len(gens) == 1:
poly = Poly(poly, gens[0])
gen = poly.gen
deg = poly.degree()
poly = Poly(poly.as_expr(), poly.gen, composite=True)
poly_solns = FiniteSet(*roots(poly, cubics=True, quartics=True,
quintics=True).keys())
if len(poly_solns) < deg:
result = ConditionSet(symbol, Eq(f, 0), domain)
if gen != symbol:
y = Dummy('y')
inverter = invert_real if domain.is_subset(S.Reals) else invert_complex
lhs, rhs_s = inverter(gen, y, symbol)
if lhs == symbol:
result = Union(*[rhs_s.subs(y, s) for s in poly_solns])
if isinstance(result, FiniteSet) and isinstance(gen, Pow
) and gen.base.is_Rational:
result = FiniteSet(*[expand_log(i) for i in result])
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
else:
result = ConditionSet(symbol, Eq(f, 0), domain)
if result is not None:
if isinstance(result, FiniteSet):
# this is to simplify solutions like -sqrt(-I) to sqrt(2)/2
# - sqrt(2)*I/2. We are not expanding for solution with symbols
# or undefined functions because that makes the solution more complicated.
# For example, expand_complex(a) returns re(a) + I*im(a)
if all(s.atoms(Symbol, AppliedUndef) == set() and not isinstance(s, RootOf)
for s in result):
s = Dummy('s')
result = imageset(Lambda(s, expand_complex(s)), result)
if isinstance(result, FiniteSet) and domain != S.Complexes:
# Avoid adding gratuitous intersections with S.Complexes. Actual
# conditions should be handled elsewhere.
result = result.intersection(domain)
return result
else:
return ConditionSet(symbol, Eq(f, 0), domain)
def _solve_radical(f, unradf, symbol, solveset_solver):
""" Helper function to solve equations with radicals """
res = unradf
eq, cov = res if res else (f, [])
if not cov:
result = solveset_solver(eq, symbol) - \
Union(*[solveset_solver(g, symbol) for g in denoms(f, symbol)])
else:
y, yeq = cov
if not solveset_solver(y - I, y):
yreal = Dummy('yreal', real=True)
yeq = yeq.xreplace({y: yreal})
eq = eq.xreplace({y: yreal})
y = yreal
g_y_s = solveset_solver(yeq, symbol)
f_y_sols = solveset_solver(eq, y)
result = Union(*[imageset(Lambda(y, g_y), f_y_sols)
for g_y in g_y_s])
def check_finiteset(solutions):
f_set = [] # solutions for FiniteSet
c_set = [] # solutions for ConditionSet
for s in solutions:
if checksol(f, symbol, s):
f_set.append(s)
else:
c_set.append(s)
return FiniteSet(*f_set) + ConditionSet(symbol, Eq(f, 0), FiniteSet(*c_set))
def check_set(solutions):
if solutions is S.EmptySet:
return solutions
elif isinstance(solutions, ConditionSet):
# XXX: Maybe the base set should be checked?
return solutions
elif isinstance(solutions, FiniteSet):
return check_finiteset(solutions)
elif isinstance(solutions, Complement):
A, B = solutions.args
return Complement(check_set(A), B)
elif isinstance(solutions, Union):
return Union(*[check_set(s) for s in solutions.args])
else:
# XXX: There should be more cases checked here. The cases above
# are all those that come up in the test suite for now.
return solutions
solution_set = check_set(result)
return solution_set
def _solve_abs(f, symbol, domain):
""" Helper function to solve equation involving absolute value function """
if not domain.is_subset(S.Reals):
raise ValueError(filldedent('''
Absolute values cannot be inverted in the
complex domain.'''))
p, q, r = Wild('p'), Wild('q'), Wild('r')
pattern_match = f.match(p*Abs(q) + r) or {}
f_p, f_q, f_r = [pattern_match.get(i, S.Zero) for i in (p, q, r)]
if not (f_p.is_zero or f_q.is_zero):
domain = continuous_domain(f_q, symbol, domain)
from .inequalities import solve_univariate_inequality
q_pos_cond = solve_univariate_inequality(f_q >= 0, symbol,
relational=False, domain=domain, continuous=True)
q_neg_cond = q_pos_cond.complement(domain)
sols_q_pos = solveset_real(f_p*f_q + f_r,
symbol).intersect(q_pos_cond)
sols_q_neg = solveset_real(f_p*(-f_q) + f_r,
symbol).intersect(q_neg_cond)
return Union(sols_q_pos, sols_q_neg)
else:
return ConditionSet(symbol, Eq(f, 0), domain)
def solve_decomposition(f, symbol, domain):
"""
Function to solve equations via the principle of "Decomposition
and Rewriting".
Examples
========
>>> from sympy import exp, sin, Symbol, pprint, S
>>> from sympy.solvers.solveset import solve_decomposition as sd
>>> x = Symbol('x')
>>> f1 = exp(2*x) - 3*exp(x) + 2
>>> sd(f1, x, S.Reals)
{0, log(2)}
>>> f2 = sin(x)**2 + 2*sin(x) + 1
>>> pprint(sd(f2, x, S.Reals), use_unicode=False)
3*pi
{2*n*pi + ---- | n in Integers}
2
>>> f3 = sin(x + 2)
>>> pprint(sd(f3, x, S.Reals), use_unicode=False)
{2*n*pi - 2 | n in Integers} U {2*n*pi - 2 + pi | n in Integers}
"""
from sympy.solvers.decompogen import decompogen
# decompose the given function
g_s = decompogen(f, symbol)
# `y_s` represents the set of values for which the function `g` is to be
# solved.
# `solutions` represent the solutions of the equations `g = y_s` or
# `g = 0` depending on the type of `y_s`.
# As we are interested in solving the equation: f = 0
y_s = FiniteSet(0)
for g in g_s:
frange = function_range(g, symbol, domain)
y_s = Intersection(frange, y_s)
result = S.EmptySet
if isinstance(y_s, FiniteSet):
for y in y_s:
solutions = solveset(Eq(g, y), symbol, domain)
if not isinstance(solutions, ConditionSet):
result += solutions
else:
if isinstance(y_s, ImageSet):
iter_iset = (y_s,)
elif isinstance(y_s, Union):
iter_iset = y_s.args
elif y_s is S.EmptySet:
# y_s is not in the range of g in g_s, so no solution exists
#in the given domain
return S.EmptySet
for iset in iter_iset:
new_solutions = solveset(Eq(iset.lamda.expr, g), symbol, domain)
dummy_var = tuple(iset.lamda.expr.free_symbols)[0]
(base_set,) = iset.base_sets
if isinstance(new_solutions, FiniteSet):
new_exprs = new_solutions
elif isinstance(new_solutions, Intersection):
if isinstance(new_solutions.args[1], FiniteSet):
new_exprs = new_solutions.args[1]
for new_expr in new_exprs:
result += ImageSet(Lambda(dummy_var, new_expr), base_set)
if result is S.EmptySet:
return ConditionSet(symbol, Eq(f, 0), domain)
y_s = result
return y_s
def _solveset(f, symbol, domain, _check=False):
"""Helper for solveset to return a result from an expression
that has already been sympify'ed and is known to contain the
given symbol."""
# _check controls whether the answer is checked or not
from sympy.simplify.simplify import signsimp
if isinstance(f, BooleanTrue):
return domain
orig_f = f
if f.is_Mul:
coeff, f = f.as_independent(symbol, as_Add=False)
if coeff in {S.ComplexInfinity, S.NegativeInfinity, S.Infinity}:
f = together(orig_f)
elif f.is_Add:
a, h = f.as_independent(symbol)
m, h = h.as_independent(symbol, as_Add=False)
if m not in {S.ComplexInfinity, S.Zero, S.Infinity,
S.NegativeInfinity}:
f = a/m + h # XXX condition `m != 0` should be added to soln
# assign the solvers to use
solver = lambda f, x, domain=domain: _solveset(f, x, domain)
inverter = lambda f, rhs, symbol: _invert(f, rhs, symbol, domain)
result = S.EmptySet
if f.expand().is_zero:
return domain
elif not f.has(symbol):
return S.EmptySet
elif f.is_Mul and all(_is_finite_with_finite_vars(m, domain)
for m in f.args):
# if f(x) and g(x) are both finite we can say that the solution of
# f(x)*g(x) == 0 is same as Union(f(x) == 0, g(x) == 0) is not true in
# general. g(x) can grow to infinitely large for the values where
# f(x) == 0. To be sure that we are not silently allowing any
# wrong solutions we are using this technique only if both f and g are
# finite for a finite input.
result = Union(*[solver(m, symbol) for m in f.args])
elif (_is_function_class_equation(TrigonometricFunction, f, symbol) or \
_is_function_class_equation(HyperbolicFunction, f, symbol)):
result = _solve_trig(f, symbol, domain)
elif isinstance(f, arg):
a = f.args[0]
result = Intersection(_solveset(re(a) > 0, symbol, domain),
_solveset(im(a), symbol, domain))
elif f.is_Piecewise:
expr_set_pairs = f.as_expr_set_pairs(domain)
for (expr, in_set) in expr_set_pairs:
if in_set.is_Relational:
in_set = in_set.as_set()
solns = solver(expr, symbol, in_set)
result += solns
elif isinstance(f, Eq):
result = solver(Add(f.lhs, -f.rhs, evaluate=False), symbol, domain)
elif f.is_Relational:
from .inequalities import solve_univariate_inequality
try:
result = solve_univariate_inequality(
f, symbol, domain=domain, relational=False)
except NotImplementedError:
result = ConditionSet(symbol, f, domain)
return result
elif _is_modular(f, symbol):
result = _solve_modular(f, symbol, domain)
else:
lhs, rhs_s = inverter(f, 0, symbol)
if lhs == symbol:
# do some very minimal simplification since
# repeated inversion may have left the result
# in a state that other solvers (e.g. poly)
# would have simplified; this is done here
# rather than in the inverter since here it
# is only done once whereas there it would
# be repeated for each step of the inversion
if isinstance(rhs_s, FiniteSet):
rhs_s = FiniteSet(*[Mul(*
signsimp(i).as_content_primitive())
for i in rhs_s])
result = rhs_s
elif isinstance(rhs_s, FiniteSet):
for equation in [lhs - rhs for rhs in rhs_s]:
if equation == f:
u = unrad(f, symbol)
if u:
result += _solve_radical(equation, u,
symbol,
solver)
elif equation.has(Abs):
result += _solve_abs(f, symbol, domain)
else:
result_rational = _solve_as_rational(equation, symbol, domain)
if not isinstance(result_rational, ConditionSet):
result += result_rational
else:
# may be a transcendental type equation
t_result = _transolve(equation, symbol, domain)
if isinstance(t_result, ConditionSet):
# might need factoring; this is expensive so we
# have delayed until now. To avoid recursion
# errors look for a non-trivial factoring into
# a product of symbol dependent terms; I think
# that something that factors as a Pow would
# have already been recognized by now.
factored = equation.factor()
if factored.is_Mul and equation != factored:
_, dep = factored.as_independent(symbol)
if not dep.is_Add:
# non-trivial factoring of equation
# but use form with constants
# in case they need special handling
t_results = []
for fac in Mul.make_args(factored):
if fac.has(symbol):
t_results.append(solver(fac, symbol))
t_result = Union(*t_results)
result += t_result
else:
result += solver(equation, symbol)
elif rhs_s is not S.EmptySet:
result = ConditionSet(symbol, Eq(f, 0), domain)
if isinstance(result, ConditionSet):
if isinstance(f, Expr):
num, den = f.as_numer_denom()
if den.has(symbol):
_result = _solveset(num, symbol, domain)
if not isinstance(_result, ConditionSet):
singularities = _solveset(den, symbol, domain)
result = _result - singularities
if _check:
if isinstance(result, ConditionSet):
# it wasn't solved or has enumerated all conditions
# -- leave it alone
return result
# whittle away all but the symbol-containing core
# to use this for testing
if isinstance(orig_f, Expr):
fx = orig_f.as_independent(symbol, as_Add=True)[1]
fx = fx.as_independent(symbol, as_Add=False)[1]
else:
fx = orig_f
if isinstance(result, FiniteSet):
# check the result for invalid solutions
result = FiniteSet(*[s for s in result
if isinstance(s, RootOf)
or domain_check(fx, symbol, s)])
return result
def _is_modular(f, symbol):
"""
Helper function to check below mentioned types of modular equations.
``A - Mod(B, C) = 0``
A -> This can or cannot be a function of symbol.
B -> This is surely a function of symbol.
C -> It is an integer.
Parameters
==========
f : Expr
The equation to be checked.
symbol : Symbol
The concerned variable for which the equation is to be checked.
Examples
========
>>> from sympy import symbols, exp, Mod
>>> from sympy.solvers.solveset import _is_modular as check
>>> x, y = symbols('x y')
>>> check(Mod(x, 3) - 1, x)
True
>>> check(Mod(x, 3) - 1, y)
False
>>> check(Mod(x, 3)**2 - 5, x)
False
>>> check(Mod(x, 3)**2 - y, x)
False
>>> check(exp(Mod(x, 3)) - 1, x)
False
>>> check(Mod(3, y) - 1, y)
False
"""
if not f.has(Mod):
return False
# extract modterms from f.
modterms = list(f.atoms(Mod))
return (len(modterms) == 1 and # only one Mod should be present
modterms[0].args[0].has(symbol) and # B-> function of symbol
modterms[0].args[1].is_integer and # C-> to be an integer.
any(isinstance(term, Mod)
for term in list(_term_factors(f))) # free from other funcs
)
def _invert_modular(modterm, rhs, n, symbol):
"""
Helper function to invert modular equation.
``Mod(a, m) - rhs = 0``
Generally it is inverted as (a, ImageSet(Lambda(n, m*n + rhs), S.Integers)).
More simplified form will be returned if possible.
If it is not invertible then (modterm, rhs) is returned.
The following cases arise while inverting equation ``Mod(a, m) - rhs = 0``:
1. If a is symbol then m*n + rhs is the required solution.
2. If a is an instance of ``Add`` then we try to find two symbol independent
parts of a and the symbol independent part gets transferred to the other
side and again the ``_invert_modular`` is called on the symbol
dependent part.
3. If a is an instance of ``Mul`` then same as we done in ``Add`` we separate
out the symbol dependent and symbol independent parts and transfer the
symbol independent part to the rhs with the help of invert and again the
``_invert_modular`` is called on the symbol dependent part.
4. If a is an instance of ``Pow`` then two cases arise as following:
- If a is of type (symbol_indep)**(symbol_dep) then the remainder is
evaluated with the help of discrete_log function and then the least
period is being found out with the help of totient function.
period*n + remainder is the required solution in this case.
For reference: (https://en.wikipedia.org/wiki/Euler's_theorem)
- If a is of type (symbol_dep)**(symbol_indep) then we try to find all
primitive solutions list with the help of nthroot_mod function.
m*n + rem is the general solution where rem belongs to solutions list
from nthroot_mod function.
Parameters
==========
modterm, rhs : Expr
The modular equation to be inverted, ``modterm - rhs = 0``
symbol : Symbol
The variable in the equation to be inverted.
n : Dummy
Dummy variable for output g_n.
Returns
=======
A tuple (f_x, g_n) is being returned where f_x is modular independent function
of symbol and g_n being set of values f_x can have.
Examples
========
>>> from sympy import symbols, exp, Mod, Dummy, S
>>> from sympy.solvers.solveset import _invert_modular as invert_modular
>>> x, y = symbols('x y')
>>> n = Dummy('n')
>>> invert_modular(Mod(exp(x), 7), S(5), n, x)
(Mod(exp(x), 7), 5)
>>> invert_modular(Mod(x, 7), S(5), n, x)
(x, ImageSet(Lambda(_n, 7*_n + 5), Integers))
>>> invert_modular(Mod(3*x + 8, 7), S(5), n, x)
(x, ImageSet(Lambda(_n, 7*_n + 6), Integers))
>>> invert_modular(Mod(x**4, 7), S(5), n, x)
(x, EmptySet)
>>> invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x)
(x**2 + x + 1, ImageSet(Lambda(_n, 3*_n + 1), Naturals0))
"""
a, m = modterm.args
if rhs.is_integer is False:
return symbol, S.EmptySet
if rhs.is_real is False or any(term.is_real is False
for term in list(_term_factors(a))):
# Check for complex arguments
return modterm, rhs
if abs(rhs) >= abs(m):
# if rhs has value greater than value of m.
return symbol, S.EmptySet
if a == symbol:
return symbol, ImageSet(Lambda(n, m*n + rhs), S.Integers)
if a.is_Add:
# g + h = a
g, h = a.as_independent(symbol)
if g is not S.Zero:
x_indep_term = rhs - Mod(g, m)
return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol)
if a.is_Mul:
# g*h = a
g, h = a.as_independent(symbol)
if g is not S.One:
x_indep_term = rhs*invert(g, m)
return _invert_modular(Mod(h, m), Mod(x_indep_term, m), n, symbol)
if a.is_Pow:
# base**expo = a
base, expo = a.args
if expo.has(symbol) and not base.has(symbol):
# remainder -> solution independent of n of equation.
# m, rhs are made coprime by dividing number_gcd(m, rhs)
if not m.is_Integer and rhs.is_Integer and a.base.is_Integer:
return modterm, rhs
mdiv = m.p // number_gcd(m.p, rhs.p)
try:
remainder = discrete_log(mdiv, rhs.p, a.base.p)
except ValueError: # log does not exist
return modterm, rhs
# period -> coefficient of n in the solution and also referred as
# the least period of expo in which it is repeats itself.
# (a**(totient(m)) - 1) divides m. Here is link of theorem:
# (https://en.wikipedia.org/wiki/Euler's_theorem)
period = totient(m)
for p in divisors(period):
# there might a lesser period exist than totient(m).
if pow(a.base, p, m / number_gcd(m.p, a.base.p)) == 1:
period = p
break
# recursion is not applied here since _invert_modular is currently
# not smart enough to handle infinite rhs as here expo has infinite
# rhs = ImageSet(Lambda(n, period*n + remainder), S.Naturals0).
return expo, ImageSet(Lambda(n, period*n + remainder), S.Naturals0)
elif base.has(symbol) and not expo.has(symbol):
try:
remainder_list = nthroot_mod(rhs, expo, m, all_roots=True)
if remainder_list == []:
return symbol, S.EmptySet
except (ValueError, NotImplementedError):
return modterm, rhs
g_n = S.EmptySet
for rem in remainder_list:
g_n += ImageSet(Lambda(n, m*n + rem), S.Integers)
return base, g_n
return modterm, rhs
def _solve_modular(f, symbol, domain):
r"""
Helper function for solving modular equations of type ``A - Mod(B, C) = 0``,
where A can or cannot be a function of symbol, B is surely a function of
symbol and C is an integer.
Currently ``_solve_modular`` is only able to solve cases
where A is not a function of symbol.
Parameters
==========
f : Expr
The modular equation to be solved, ``f = 0``
symbol : Symbol
The variable in the equation to be solved.
domain : Set
A set over which the equation is solved. It has to be a subset of
Integers.
Returns
=======
A set of integer solutions satisfying the given modular equation.
A ``ConditionSet`` if the equation is unsolvable.
Examples
========
>>> from sympy.solvers.solveset import _solve_modular as solve_modulo
>>> from sympy import S, Symbol, sin, Intersection, Interval, Mod
>>> x = Symbol('x')
>>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Integers)
ImageSet(Lambda(_n, 7*_n + 5), Integers)
>>> solve_modulo(Mod(5*x - 8, 7) - 3, x, S.Reals) # domain should be subset of integers.
ConditionSet(x, Eq(Mod(5*x + 6, 7) - 3, 0), Reals)
>>> solve_modulo(-7 + Mod(x, 5), x, S.Integers)
EmptySet
>>> solve_modulo(Mod(12**x, 21) - 18, x, S.Integers)
ImageSet(Lambda(_n, 6*_n + 2), Naturals0)
>>> solve_modulo(Mod(sin(x), 7) - 3, x, S.Integers) # not solvable
ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), Integers)
>>> solve_modulo(3 - Mod(x, 5), x, Intersection(S.Integers, Interval(0, 100)))
Intersection(ImageSet(Lambda(_n, 5*_n + 3), Integers), Range(0, 101, 1))
"""
# extract modterm and g_y from f
unsolved_result = ConditionSet(symbol, Eq(f, 0), domain)
modterm = list(f.atoms(Mod))[0]
rhs = -S.One*(f.subs(modterm, S.Zero))
if f.as_coefficients_dict()[modterm].is_negative:
# checks if coefficient of modterm is negative in main equation.
rhs *= -S.One
if not domain.is_subset(S.Integers):
return unsolved_result
if rhs.has(symbol):
# TODO Case: A-> function of symbol, can be extended here
# in future.
return unsolved_result
n = Dummy('n', integer=True)
f_x, g_n = _invert_modular(modterm, rhs, n, symbol)
if f_x == modterm and g_n == rhs:
return unsolved_result
if f_x == symbol:
if domain is not S.Integers:
return domain.intersect(g_n)
return g_n
if isinstance(g_n, ImageSet):
lamda_expr = g_n.lamda.expr
lamda_vars = g_n.lamda.variables
base_sets = g_n.base_sets
sol_set = _solveset(f_x - lamda_expr, symbol, S.Integers)
if isinstance(sol_set, FiniteSet):
tmp_sol = S.EmptySet
for sol in sol_set:
tmp_sol += ImageSet(Lambda(lamda_vars, sol), *base_sets)
sol_set = tmp_sol
else:
sol_set = ImageSet(Lambda(lamda_vars, sol_set), *base_sets)
return domain.intersect(sol_set)
return unsolved_result
def _term_factors(f):
"""
Iterator to get the factors of all terms present
in the given equation.
Parameters
==========
f : Expr
Equation that needs to be addressed
Returns
=======
Factors of all terms present in the equation.
Examples
========
>>> from sympy import symbols
>>> from sympy.solvers.solveset import _term_factors
>>> x = symbols('x')
>>> list(_term_factors(-2 - x**2 + x*(x + 1)))
[-2, -1, x**2, x, x + 1]
"""
for add_arg in Add.make_args(f):
yield from Mul.make_args(add_arg)
def _solve_exponential(lhs, rhs, symbol, domain):
r"""
Helper function for solving (supported) exponential equations.
Exponential equations are the sum of (currently) at most
two terms with one or both of them having a power with a
symbol-dependent exponent.
For example
.. math:: 5^{2x + 3} - 5^{3x - 1}
.. math:: 4^{5 - 9x} - e^{2 - x}
Parameters
==========
lhs, rhs : Expr
The exponential equation to be solved, `lhs = rhs`
symbol : Symbol
The variable in which the equation is solved
domain : Set
A set over which the equation is solved.
Returns
=======
A set of solutions satisfying the given equation.
A ``ConditionSet`` if the equation is unsolvable or
if the assumptions are not properly defined, in that case
a different style of ``ConditionSet`` is returned having the
solution(s) of the equation with the desired assumptions.
Examples
========
>>> from sympy.solvers.solveset import _solve_exponential as solve_expo
>>> from sympy import symbols, S
>>> x = symbols('x', real=True)
>>> a, b = symbols('a b')
>>> solve_expo(2**x + 3**x - 5**x, 0, x, S.Reals) # not solvable
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), Reals)
>>> solve_expo(a**x - b**x, 0, x, S.Reals) # solvable but incorrect assumptions
ConditionSet(x, (a > 0) & (b > 0), {0})
>>> solve_expo(3**(2*x) - 2**(x + 3), 0, x, S.Reals)
{-3*log(2)/(-2*log(3) + log(2))}
>>> solve_expo(2**x - 4**x, 0, x, S.Reals)
{0}
* Proof of correctness of the method
The logarithm function is the inverse of the exponential function.
The defining relation between exponentiation and logarithm is:
.. math:: {\log_b x} = y \enspace if \enspace b^y = x
Therefore if we are given an equation with exponent terms, we can
convert every term to its corresponding logarithmic form. This is
achieved by taking logarithms and expanding the equation using
logarithmic identities so that it can easily be handled by ``solveset``.
For example:
.. math:: 3^{2x} = 2^{x + 3}
Taking log both sides will reduce the equation to
.. math:: (2x)\log(3) = (x + 3)\log(2)
This form can be easily handed by ``solveset``.
"""
unsolved_result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain)
newlhs = powdenest(lhs)
if lhs != newlhs:
# it may also be advantageous to factor the new expr
neweq = factor(newlhs - rhs)
if neweq != (lhs - rhs):
return _solveset(neweq, symbol, domain) # try again with _solveset
if not (isinstance(lhs, Add) and len(lhs.args) == 2):
# solving for the sum of more than two powers is possible
# but not yet implemented
return unsolved_result
if rhs != 0:
return unsolved_result
a, b = list(ordered(lhs.args))
a_term = a.as_independent(symbol)[1]
b_term = b.as_independent(symbol)[1]
a_base, a_exp = a_term.as_base_exp()
b_base, b_exp = b_term.as_base_exp()
if domain.is_subset(S.Reals):
conditions = And(
a_base > 0,
b_base > 0,
Eq(im(a_exp), 0),
Eq(im(b_exp), 0))
else:
conditions = And(
Ne(a_base, 0),
Ne(b_base, 0))
L, R = (expand_log(log(i), force=True) for i in (a, -b))
solutions = _solveset(L - R, symbol, domain)
return ConditionSet(symbol, conditions, solutions)
def _is_exponential(f, symbol):
r"""
Return ``True`` if one or more terms contain ``symbol`` only in
exponents, else ``False``.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Examples
========
>>> from sympy import symbols, cos, exp
>>> from sympy.solvers.solveset import _is_exponential as check
>>> x, y = symbols('x y')
>>> check(y, y)
False
>>> check(x**y - 1, y)
True
>>> check(x**y*2**y - 1, y)
True
>>> check(exp(x + 3) + 3**x, x)
True
>>> check(cos(2**x), x)
False
* Philosophy behind the helper
The function extracts each term of the equation and checks if it is
of exponential form w.r.t ``symbol``.
"""
rv = False
for expr_arg in _term_factors(f):
if symbol not in expr_arg.free_symbols:
continue
if (isinstance(expr_arg, Pow) and
symbol not in expr_arg.base.free_symbols or
isinstance(expr_arg, exp)):
rv = True # symbol in exponent
else:
return False # dependent on symbol in non-exponential way
return rv
def _solve_logarithm(lhs, rhs, symbol, domain):
r"""
Helper to solve logarithmic equations which are reducible
to a single instance of `\log`.
Logarithmic equations are (currently) the equations that contains
`\log` terms which can be reduced to a single `\log` term or
a constant using various logarithmic identities.
For example:
.. math:: \log(x) + \log(x - 4)
can be reduced to:
.. math:: \log(x(x - 4))
Parameters
==========
lhs, rhs : Expr
The logarithmic equation to be solved, `lhs = rhs`
symbol : Symbol
The variable in which the equation is solved
domain : Set
A set over which the equation is solved.
Returns
=======
A set of solutions satisfying the given equation.
A ``ConditionSet`` if the equation is unsolvable.
Examples
========
>>> from sympy import symbols, log, S
>>> from sympy.solvers.solveset import _solve_logarithm as solve_log
>>> x = symbols('x')
>>> f = log(x - 3) + log(x + 3)
>>> solve_log(f, 0, x, S.Reals)
{-sqrt(10), sqrt(10)}
* Proof of correctness
A logarithm is another way to write exponent and is defined by
.. math:: {\log_b x} = y \enspace if \enspace b^y = x
When one side of the equation contains a single logarithm, the
equation can be solved by rewriting the equation as an equivalent
exponential equation as defined above. But if one side contains
more than one logarithm, we need to use the properties of logarithm
to condense it into a single logarithm.
Take for example
.. math:: \log(2x) - 15 = 0
contains single logarithm, therefore we can directly rewrite it to
exponential form as
.. math:: x = \frac{e^{15}}{2}
But if the equation has more than one logarithm as
.. math:: \log(x - 3) + \log(x + 3) = 0
we use logarithmic identities to convert it into a reduced form
Using,
.. math:: \log(a) + \log(b) = \log(ab)
the equation becomes,
.. math:: \log((x - 3)(x + 3))
This equation contains one logarithm and can be solved by rewriting
to exponents.
"""
new_lhs = logcombine(lhs, force=True)
new_f = new_lhs - rhs
return _solveset(new_f, symbol, domain)
def _is_logarithmic(f, symbol):
r"""
Return ``True`` if the equation is in the form
`a\log(f(x)) + b\log(g(x)) + ... + c` else ``False``.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Returns
=======
``True`` if the equation is logarithmic otherwise ``False``.
Examples
========
>>> from sympy import symbols, tan, log
>>> from sympy.solvers.solveset import _is_logarithmic as check
>>> x, y = symbols('x y')
>>> check(log(x + 2) - log(x + 3), x)
True
>>> check(tan(log(2*x)), x)
False
>>> check(x*log(x), x)
False
>>> check(x + log(x), x)
False
>>> check(y + log(x), x)
True
* Philosophy behind the helper
The function extracts each term and checks whether it is
logarithmic w.r.t ``symbol``.
"""
rv = False
for term in Add.make_args(f):
saw_log = False
for term_arg in Mul.make_args(term):
if symbol not in term_arg.free_symbols:
continue
if isinstance(term_arg, log):
if saw_log:
return False # more than one log in term
saw_log = True
else:
return False # dependent on symbol in non-log way
if saw_log:
rv = True
return rv
def _is_lambert(f, symbol):
r"""
If this returns ``False`` then the Lambert solver (``_solve_lambert``) will not be called.
Explanation
===========
Quick check for cases that the Lambert solver might be able to handle.
1. Equations containing more than two operands and `symbol`s involving any of
`Pow`, `exp`, `HyperbolicFunction`,`TrigonometricFunction`, `log` terms.
2. In `Pow`, `exp` the exponent should have `symbol` whereas for
`HyperbolicFunction`,`TrigonometricFunction`, `log` should contain `symbol`.
3. For `HyperbolicFunction`,`TrigonometricFunction` the number of trigonometric functions in
equation should be less than number of symbols. (since `A*cos(x) + B*sin(x) - c`
is not the Lambert type).
Some forms of lambert equations are:
1. X**X = C
2. X*(B*log(X) + D)**A = C
3. A*log(B*X + A) + d*X = C
4. (B*X + A)*exp(d*X + g) = C
5. g*exp(B*X + h) - B*X = C
6. A*D**(E*X + g) - B*X = C
7. A*cos(X) + B*sin(X) - D*X = C
8. A*cosh(X) + B*sinh(X) - D*X = C
Where X is any variable,
A, B, C, D, E are any constants,
g, h are linear functions or log terms.
Parameters
==========
f : Expr
The equation to be checked
symbol : Symbol
The variable in which the equation is checked
Returns
=======
If this returns ``False`` then the Lambert solver (``_solve_lambert``) will not be called.
Examples
========
>>> from sympy.solvers.solveset import _is_lambert
>>> from sympy import symbols, cosh, sinh, log
>>> x = symbols('x')
>>> _is_lambert(3*log(x) - x*log(3), x)
True
>>> _is_lambert(log(log(x - 3)) + log(x-3), x)
True
>>> _is_lambert(cosh(x) - sinh(x), x)
False
>>> _is_lambert((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x)
True
See Also
========
_solve_lambert
"""
term_factors = list(_term_factors(f.expand()))
# total number of symbols in equation
no_of_symbols = len([arg for arg in term_factors if arg.has(symbol)])
# total number of trigonometric terms in equation
no_of_trig = len([arg for arg in term_factors \
if arg.has(HyperbolicFunction, TrigonometricFunction)])
if f.is_Add and no_of_symbols >= 2:
# `log`, `HyperbolicFunction`, `TrigonometricFunction` should have symbols
# and no_of_trig < no_of_symbols
lambert_funcs = (log, HyperbolicFunction, TrigonometricFunction)
if any(isinstance(arg, lambert_funcs)\
for arg in term_factors if arg.has(symbol)):
if no_of_trig < no_of_symbols:
return True
# here, `Pow`, `exp` exponent should have symbols
elif any(isinstance(arg, (Pow, exp)) \
for arg in term_factors if (arg.as_base_exp()[1]).has(symbol)):
return True
return False
def _transolve(f, symbol, domain):
r"""
Function to solve transcendental equations. It is a helper to
``solveset`` and should be used internally. ``_transolve``
currently supports the following class of equations:
- Exponential equations
- Logarithmic equations
Parameters
==========
f : Any transcendental equation that needs to be solved.
This needs to be an expression, which is assumed
to be equal to ``0``.
symbol : The variable for which the equation is solved.
This needs to be of class ``Symbol``.
domain : A set over which the equation is solved.
This needs to be of class ``Set``.
Returns
=======
Set
A set of values for ``symbol`` for which ``f`` is equal to
zero. An ``EmptySet`` is returned if ``f`` does not have solutions
in respective domain. A ``ConditionSet`` is returned as unsolved
object if algorithms to evaluate complete solution are not
yet implemented.
How to use ``_transolve``
=========================
``_transolve`` should not be used as an independent function, because
it assumes that the equation (``f``) and the ``symbol`` comes from
``solveset`` and might have undergone a few modification(s).
To use ``_transolve`` as an independent function the equation (``f``)
and the ``symbol`` should be passed as they would have been by
``solveset``.
Examples
========
>>> from sympy.solvers.solveset import _transolve as transolve
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy import symbols, S, pprint
>>> x = symbols('x', real=True) # assumption added
>>> transolve(5**(x - 3) - 3**(2*x + 1), x, S.Reals)
{-(log(3) + 3*log(5))/(-log(5) + 2*log(3))}
How ``_transolve`` works
========================
``_transolve`` uses two types of helper functions to solve equations
of a particular class:
Identifying helpers: To determine whether a given equation
belongs to a certain class of equation or not. Returns either
``True`` or ``False``.
Solving helpers: Once an equation is identified, a corresponding
helper either solves the equation or returns a form of the equation
that ``solveset`` might better be able to handle.
* Philosophy behind the module
The purpose of ``_transolve`` is to take equations which are not
already polynomial in their generator(s) and to either recast them
as such through a valid transformation or to solve them outright.
A pair of helper functions for each class of supported
transcendental functions are employed for this purpose. One
identifies the transcendental form of an equation and the other
either solves it or recasts it into a tractable form that can be
solved by ``solveset``.
For example, an equation in the form `ab^{f(x)} - cd^{g(x)} = 0`
can be transformed to
`\log(a) + f(x)\log(b) - \log(c) - g(x)\log(d) = 0`
(under certain assumptions) and this can be solved with ``solveset``
if `f(x)` and `g(x)` are in polynomial form.
How ``_transolve`` is better than ``_tsolve``
=============================================
1) Better output
``_transolve`` provides expressions in a more simplified form.
Consider a simple exponential equation
>>> f = 3**(2*x) - 2**(x + 3)
>>> pprint(transolve(f, x, S.Reals), use_unicode=False)
-3*log(2)
{------------------}
-2*log(3) + log(2)
>>> pprint(tsolve(f, x), use_unicode=False)
/ 3 \
| --------|
| log(2/9)|
[-log\2 /]
2) Extensible
The API of ``_transolve`` is designed such that it is easily
extensible, i.e. the code that solves a given class of
equations is encapsulated in a helper and not mixed in with
the code of ``_transolve`` itself.
3) Modular
``_transolve`` is designed to be modular i.e, for every class of
equation a separate helper for identification and solving is
implemented. This makes it easy to change or modify any of the
method implemented directly in the helpers without interfering
with the actual structure of the API.
4) Faster Computation
Solving equation via ``_transolve`` is much faster as compared to
``_tsolve``. In ``solve``, attempts are made computing every possibility
to get the solutions. This series of attempts makes solving a bit
slow. In ``_transolve``, computation begins only after a particular
type of equation is identified.
How to add new class of equations
=================================
Adding a new class of equation solver is a three-step procedure:
- Identify the type of the equations
Determine the type of the class of equations to which they belong:
it could be of ``Add``, ``Pow``, etc. types. Separate internal functions
are used for each type. Write identification and solving helpers
and use them from within the routine for the given type of equation
(after adding it, if necessary). Something like:
.. code-block:: python
def add_type(lhs, rhs, x):
....
if _is_exponential(lhs, x):
new_eq = _solve_exponential(lhs, rhs, x)
....
rhs, lhs = eq.as_independent(x)
if lhs.is_Add:
result = add_type(lhs, rhs, x)
- Define the identification helper.
- Define the solving helper.
Apart from this, a few other things needs to be taken care while
adding an equation solver:
- Naming conventions:
Name of the identification helper should be as
``_is_class`` where class will be the name or abbreviation
of the class of equation. The solving helper will be named as
``_solve_class``.
For example: for exponential equations it becomes
``_is_exponential`` and ``_solve_expo``.
- The identifying helpers should take two input parameters,
the equation to be checked and the variable for which a solution
is being sought, while solving helpers would require an additional
domain parameter.
- Be sure to consider corner cases.
- Add tests for each helper.
- Add a docstring to your helper that describes the method
implemented.
The documentation of the helpers should identify:
- the purpose of the helper,
- the method used to identify and solve the equation,
- a proof of correctness
- the return values of the helpers
"""
def add_type(lhs, rhs, symbol, domain):
"""
Helper for ``_transolve`` to handle equations of
``Add`` type, i.e. equations taking the form as
``a*f(x) + b*g(x) + .... = c``.
For example: 4**x + 8**x = 0
"""
result = ConditionSet(symbol, Eq(lhs - rhs, 0), domain)
# check if it is exponential type equation
if _is_exponential(lhs, symbol):
result = _solve_exponential(lhs, rhs, symbol, domain)
# check if it is logarithmic type equation
elif _is_logarithmic(lhs, symbol):
result = _solve_logarithm(lhs, rhs, symbol, domain)
return result
result = ConditionSet(symbol, Eq(f, 0), domain)
# invert_complex handles the call to the desired inverter based
# on the domain specified.
lhs, rhs_s = invert_complex(f, 0, symbol, domain)
if isinstance(rhs_s, FiniteSet):
assert (len(rhs_s.args)) == 1
rhs = rhs_s.args[0]
if lhs.is_Add:
result = add_type(lhs, rhs, symbol, domain)
else:
result = rhs_s
return result
def solveset(f, symbol=None, domain=S.Complexes):
r"""Solves a given inequality or equation with set as output
Parameters
==========
f : Expr or a relational.
The target equation or inequality
symbol : Symbol
The variable for which the equation is solved
domain : Set
The domain over which the equation is solved
Returns
=======
Set
A set of values for `symbol` for which `f` is True or is equal to
zero. An :class:`~.EmptySet` is returned if `f` is False or nonzero.
A :class:`~.ConditionSet` is returned as unsolved object if algorithms
to evaluate complete solution are not yet implemented.
``solveset`` claims to be complete in the solution set that it returns.
Raises
======
NotImplementedError
The algorithms to solve inequalities in complex domain are
not yet implemented.
ValueError
The input is not valid.
RuntimeError
It is a bug, please report to the github issue tracker.
Notes
=====
Python interprets 0 and 1 as False and True, respectively, but
in this function they refer to solutions of an expression. So 0 and 1
return the domain and EmptySet, respectively, while True and False
return the opposite (as they are assumed to be solutions of relational
expressions).
See Also
========
solveset_real: solver for real domain
solveset_complex: solver for complex domain
Examples
========
>>> from sympy import exp, sin, Symbol, pprint, S, Eq
>>> from sympy.solvers.solveset import solveset, solveset_real
* The default domain is complex. Not specifying a domain will lead
to the solving of the equation in the complex domain (and this
is not affected by the assumptions on the symbol):
>>> x = Symbol('x')
>>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
{2*n*I*pi | n in Integers}
>>> x = Symbol('x', real=True)
>>> pprint(solveset(exp(x) - 1, x), use_unicode=False)
{2*n*I*pi | n in Integers}
* If you want to use ``solveset`` to solve the equation in the
real domain, provide a real domain. (Using ``solveset_real``
does this automatically.)
>>> R = S.Reals
>>> x = Symbol('x')
>>> solveset(exp(x) - 1, x, R)
{0}
>>> solveset_real(exp(x) - 1, x)
{0}
The solution is unaffected by assumptions on the symbol:
>>> p = Symbol('p', positive=True)
>>> pprint(solveset(p**2 - 4))
{-2, 2}
When a :class:`~.ConditionSet` is returned, symbols with assumptions that
would alter the set are replaced with more generic symbols:
>>> i = Symbol('i', imaginary=True)
>>> solveset(Eq(i**2 + i*sin(i), 1), i, domain=S.Reals)
ConditionSet(_R, Eq(_R**2 + _R*sin(_R) - 1, 0), Reals)
* Inequalities can be solved over the real domain only. Use of a complex
domain leads to a NotImplementedError.
>>> solveset(exp(x) > 1, x, R)
Interval.open(0, oo)
"""
f = sympify(f)
symbol = sympify(symbol)
if f is S.true:
return domain
if f is S.false:
return S.EmptySet
if not isinstance(f, (Expr, Relational, Number)):
raise ValueError("%s is not a valid SymPy expression" % f)
if not isinstance(symbol, (Expr, Relational)) and symbol is not None:
raise ValueError("%s is not a valid SymPy symbol" % (symbol,))
if not isinstance(domain, Set):
raise ValueError("%s is not a valid domain" %(domain))
free_symbols = f.free_symbols
if f.has(Piecewise):
f = piecewise_fold(f)
if symbol is None and not free_symbols:
b = Eq(f, 0)
if b is S.true:
return domain
elif b is S.false:
return S.EmptySet
else:
raise NotImplementedError(filldedent('''
relationship between value and 0 is unknown: %s''' % b))
if symbol is None:
if len(free_symbols) == 1:
symbol = free_symbols.pop()
elif free_symbols:
raise ValueError(filldedent('''
The independent variable must be specified for a
multivariate equation.'''))
elif not isinstance(symbol, Symbol):
f, s, swap = recast_to_symbols([f], [symbol])
# the xreplace will be needed if a ConditionSet is returned
return solveset(f[0], s[0], domain).xreplace(swap)
# solveset should ignore assumptions on symbols
newsym = None
if domain.is_subset(S.Reals):
if symbol._assumptions_orig != {'real': True}:
newsym = Dummy('R', real=True)
elif domain.is_subset(S.Complexes):
if symbol._assumptions_orig != {'complex': True}:
newsym = Dummy('C', complex=True)
if newsym is not None:
rv = solveset(f.xreplace({symbol: newsym}), newsym, domain)
# try to use the original symbol if possible
try:
_rv = rv.xreplace({newsym: symbol})
except TypeError:
_rv = rv
if rv.dummy_eq(_rv):
rv = _rv
return rv
# Abs has its own handling method which avoids the
# rewriting property that the first piece of abs(x)
# is for x >= 0 and the 2nd piece for x < 0 -- solutions
# can look better if the 2nd condition is x <= 0. Since
# the solution is a set, duplication of results is not
# an issue, e.g. {y, -y} when y is 0 will be {0}
f, mask = _masked(f, Abs)
f = f.rewrite(Piecewise) # everything that's not an Abs
for d, e in mask:
# everything *in* an Abs
e = e.func(e.args[0].rewrite(Piecewise))
f = f.xreplace({d: e})
f = piecewise_fold(f)
return _solveset(f, symbol, domain, _check=True)
def solveset_real(f, symbol):
return solveset(f, symbol, S.Reals)
def solveset_complex(f, symbol):
return solveset(f, symbol, S.Complexes)
def _solveset_multi(eqs, syms, domains):
'''Basic implementation of a multivariate solveset.
For internal use (not ready for public consumption)'''
rep = {}
for sym, dom in zip(syms, domains):
if dom is S.Reals:
rep[sym] = Symbol(sym.name, real=True)
eqs = [eq.subs(rep) for eq in eqs]
syms = [sym.subs(rep) for sym in syms]
syms = tuple(syms)
if len(eqs) == 0:
return ProductSet(*domains)
if len(syms) == 1:
sym = syms[0]
domain = domains[0]
solsets = [solveset(eq, sym, domain) for eq in eqs]
solset = Intersection(*solsets)
return ImageSet(Lambda((sym,), (sym,)), solset).doit()
eqs = sorted(eqs, key=lambda eq: len(eq.free_symbols & set(syms)))
for n, eq in enumerate(eqs):
sols = []
all_handled = True
for sym in syms:
if sym not in eq.free_symbols:
continue
sol = solveset(eq, sym, domains[syms.index(sym)])
if isinstance(sol, FiniteSet):
i = syms.index(sym)
symsp = syms[:i] + syms[i+1:]
domainsp = domains[:i] + domains[i+1:]
eqsp = eqs[:n] + eqs[n+1:]
for s in sol:
eqsp_sub = [eq.subs(sym, s) for eq in eqsp]
sol_others = _solveset_multi(eqsp_sub, symsp, domainsp)
fun = Lambda((symsp,), symsp[:i] + (s,) + symsp[i:])
sols.append(ImageSet(fun, sol_others).doit())
else:
all_handled = False
if all_handled:
return Union(*sols)
def solvify(f, symbol, domain):
"""Solves an equation using solveset and returns the solution in accordance
with the `solve` output API.
Returns
=======
We classify the output based on the type of solution returned by `solveset`.
Solution | Output
----------------------------------------
FiniteSet | list
ImageSet, | list (if `f` is periodic)
Union |
Union | list (with FiniteSet)
EmptySet | empty list
Others | None
Raises
======
NotImplementedError
A ConditionSet is the input.
Examples
========
>>> from sympy.solvers.solveset import solvify
>>> from sympy.abc import x
>>> from sympy import S, tan, sin, exp
>>> solvify(x**2 - 9, x, S.Reals)
[-3, 3]
>>> solvify(sin(x) - 1, x, S.Reals)
[pi/2]
>>> solvify(tan(x), x, S.Reals)
[0]
>>> solvify(exp(x) - 1, x, S.Complexes)
>>> solvify(exp(x) - 1, x, S.Reals)
[0]
"""
solution_set = solveset(f, symbol, domain)
result = None
if solution_set is S.EmptySet:
result = []
elif isinstance(solution_set, ConditionSet):
raise NotImplementedError('solveset is unable to solve this equation.')
elif isinstance(solution_set, FiniteSet):
result = list(solution_set)
else:
period = periodicity(f, symbol)
if period is not None:
solutions = S.EmptySet
iter_solutions = ()
if isinstance(solution_set, ImageSet):
iter_solutions = (solution_set,)
elif isinstance(solution_set, Union):
if all(isinstance(i, ImageSet) for i in solution_set.args):
iter_solutions = solution_set.args
for solution in iter_solutions:
solutions += solution.intersect(Interval(0, period, False, True))
if isinstance(solutions, FiniteSet):
result = list(solutions)
else:
solution = solution_set.intersect(domain)
if isinstance(solution, Union):
# concerned about only FiniteSet with Union but not about ImageSet
# if required could be extend
if any(isinstance(i, FiniteSet) for i in solution.args):
result = [sol for soln in solution.args \
for sol in soln.args if isinstance(soln,FiniteSet)]
else:
return None
elif isinstance(solution, FiniteSet):
result += solution
return result
###############################################################################
################################ LINSOLVE #####################################
###############################################################################
def linear_coeffs(eq, *syms, dict=False):
"""Return a list whose elements are the coefficients of the
corresponding symbols in the sum of terms in ``eq``.
The additive constant is returned as the last element of the
list.
Raises
======
NonlinearError
The equation contains a nonlinear term
ValueError
duplicate or unordered symbols are passed
Parameters
==========
dict - (default False) when True, return coefficients as a
dictionary with coefficients keyed to syms that were present;
key 1 gives the constant term
Examples
========
>>> from sympy.solvers.solveset import linear_coeffs
>>> from sympy.abc import x, y, z
>>> linear_coeffs(3*x + 2*y - 1, x, y)
[3, 2, -1]
It is not necessary to expand the expression:
>>> linear_coeffs(x + y*(z*(x*3 + 2) + 3), x)
[3*y*z + 1, y*(2*z + 3)]
When nonlinear is detected, an error will be raised:
* even if they would cancel after expansion (so the
situation does not pass silently past the caller's
attention)
>>> eq = 1/x*(x - 1) + 1/x
>>> linear_coeffs(eq.expand(), x)
[0, 1]
>>> linear_coeffs(eq, x)
Traceback (most recent call last):
...
NonlinearError:
nonlinear in given generators
* when there are cross terms
>>> linear_coeffs(x*(y + 1), x, y)
Traceback (most recent call last):
...
NonlinearError:
symbol-dependent cross-terms encountered
* when there are terms that contain an expression
dependent on the symbols that is not linear
>>> linear_coeffs(x**2, x)
Traceback (most recent call last):
...
NonlinearError:
nonlinear in given generators
"""
eq = _sympify(eq)
if len(syms) == 1 and iterable(syms[0]) and not isinstance(syms[0], Basic):
raise ValueError('expecting unpacked symbols, *syms')
symset = set(syms)
if len(symset) != len(syms):
raise ValueError('duplicate symbols given')
try:
d, c = _linear_eq_to_dict([eq], symset)
d = d[0]
c = c[0]
except PolyNonlinearError as err:
raise NonlinearError(str(err))
if dict:
if c:
d[S.One] = c
return d
rv = [S.Zero]*(len(syms) + 1)
rv[-1] = c
for i, k in enumerate(syms):
if k not in d:
continue
rv[i] = d[k]
return rv
def linear_eq_to_matrix(equations, *symbols):
r"""
Converts a given System of Equations into Matrix form.
Here `equations` must be a linear system of equations in
`symbols`. Element ``M[i, j]`` corresponds to the coefficient
of the jth symbol in the ith equation.
The Matrix form corresponds to the augmented matrix form.
For example:
.. math:: 4x + 2y + 3z = 1
.. math:: 3x + y + z = -6
.. math:: 2x + 4y + 9z = 2
This system will return $A$ and $b$ as:
$$ A = \left[\begin{array}{ccc}
4 & 2 & 3 \\
3 & 1 & 1 \\
2 & 4 & 9
\end{array}\right] \ \ b = \left[\begin{array}{c}
1 \\ -6 \\ 2
\end{array}\right] $$
The only simplification performed is to convert
``Eq(a, b)`` $\Rightarrow a - b$.
Raises
======
NonlinearError
The equations contain a nonlinear term.
ValueError
The symbols are not given or are not unique.
Examples
========
>>> from sympy import linear_eq_to_matrix, symbols
>>> c, x, y, z = symbols('c, x, y, z')
The coefficients (numerical or symbolic) of the symbols will
be returned as matrices:
>>> eqns = [c*x + z - 1 - c, y + z, x - y]
>>> A, b = linear_eq_to_matrix(eqns, [x, y, z])
>>> A
Matrix([
[c, 0, 1],
[0, 1, 1],
[1, -1, 0]])
>>> b
Matrix([
[c + 1],
[ 0],
[ 0]])
This routine does not simplify expressions and will raise an error
if nonlinearity is encountered:
>>> eqns = [
... (x**2 - 3*x)/(x - 3) - 3,
... y**2 - 3*y - y*(y - 4) + x - 4]
>>> linear_eq_to_matrix(eqns, [x, y])
Traceback (most recent call last):
...
NonlinearError:
symbol-dependent term can be ignored using `strict=False`
Simplifying these equations will discard the removable singularity
in the first and reveal the linear structure of the second:
>>> [e.simplify() for e in eqns]
[x - 3, x + y - 4]
Any such simplification needed to eliminate nonlinear terms must
be done *before* calling this routine.
"""
if not symbols:
raise ValueError(filldedent('''
Symbols must be given, for which coefficients
are to be found.
'''))
# Check if 'symbols' is a set and raise an error if it is
if isinstance(symbols[0], set):
raise TypeError(
"Unordered 'set' type is not supported as input for symbols.")
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
if has_dups(symbols):
raise ValueError('Symbols must be unique')
equations = sympify(equations)
if isinstance(equations, MatrixBase):
equations = list(equations)
elif isinstance(equations, (Expr, Eq)):
equations = [equations]
elif not is_sequence(equations):
raise ValueError(filldedent('''
Equation(s) must be given as a sequence, Expr,
Eq or Matrix.
'''))
# construct the dictionaries
try:
eq, c = _linear_eq_to_dict(equations, symbols)
except PolyNonlinearError as err:
raise NonlinearError(str(err))
# prepare output matrices
n, m = shape = len(eq), len(symbols)
ix = dict(zip(symbols, range(m)))
A = zeros(*shape)
for row, d in enumerate(eq):
for k in d:
col = ix[k]
A[row, col] = d[k]
b = Matrix(n, 1, [-i for i in c])
return A, b
def linsolve(system, *symbols):
r"""
Solve system of $N$ linear equations with $M$ variables; both
underdetermined and overdetermined systems are supported.
The possible number of solutions is zero, one or infinite.
Zero solutions throws a ValueError, whereas infinite
solutions are represented parametrically in terms of the given
symbols. For unique solution a :class:`~.FiniteSet` of ordered tuples
is returned.
All standard input formats are supported:
For the given set of equations, the respective input types
are given below:
.. math:: 3x + 2y - z = 1
.. math:: 2x - 2y + 4z = -2
.. math:: 2x - y + 2z = 0
* Augmented matrix form, ``system`` given below:
$$ \text{system} = \left[{array}{cccc}
3 & 2 & -1 & 1\\
2 & -2 & 4 & -2\\
2 & -1 & 2 & 0
\end{array}\right] $$
::
system = Matrix([[3, 2, -1, 1], [2, -2, 4, -2], [2, -1, 2, 0]])
* List of equations form
::
system = [3x + 2y - z - 1, 2x - 2y + 4z + 2, 2x - y + 2z]
* Input $A$ and $b$ in matrix form (from $Ax = b$) are given as:
$$ A = \left[\begin{array}{ccc}
3 & 2 & -1 \\
2 & -2 & 4 \\
2 & -1 & 2
\end{array}\right] \ \ b = \left[\begin{array}{c}
1 \\ -2 \\ 0
\end{array}\right] $$
::
A = Matrix([[3, 2, -1], [2, -2, 4], [2, -1, 2]])
b = Matrix([[1], [-2], [0]])
system = (A, b)
Symbols can always be passed but are actually only needed
when 1) a system of equations is being passed and 2) the
system is passed as an underdetermined matrix and one wants
to control the name of the free variables in the result.
An error is raised if no symbols are used for case 1, but if
no symbols are provided for case 2, internally generated symbols
will be provided. When providing symbols for case 2, there should
be at least as many symbols are there are columns in matrix A.
The algorithm used here is Gauss-Jordan elimination, which
results, after elimination, in a row echelon form matrix.
Returns
=======
A FiniteSet containing an ordered tuple of values for the
unknowns for which the `system` has a solution. (Wrapping
the tuple in FiniteSet is used to maintain a consistent
output format throughout solveset.)
Returns EmptySet, if the linear system is inconsistent.
Raises
======
ValueError
The input is not valid.
The symbols are not given.
Examples
========
>>> from sympy import Matrix, linsolve, symbols
>>> x, y, z = symbols("x, y, z")
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> b = Matrix([3, 6, 9])
>>> A
Matrix([
[1, 2, 3],
[4, 5, 6],
[7, 8, 10]])
>>> b
Matrix([
[3],
[6],
[9]])
>>> linsolve((A, b), [x, y, z])
{(-1, 2, 0)}
* Parametric Solution: In case the system is underdetermined, the
function will return a parametric solution in terms of the given
symbols. Those that are free will be returned unchanged. e.g. in
the system below, `z` is returned as the solution for variable z;
it can take on any value.
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> b = Matrix([3, 6, 9])
>>> linsolve((A, b), x, y, z)
{(z - 1, 2 - 2*z, z)}
If no symbols are given, internally generated symbols will be used.
The ``tau0`` in the third position indicates (as before) that the third
variable -- whatever it is named -- can take on any value:
>>> linsolve((A, b))
{(tau0 - 1, 2 - 2*tau0, tau0)}
* List of equations as input
>>> Eqns = [3*x + 2*y - z - 1, 2*x - 2*y + 4*z + 2, - x + y/2 - z]
>>> linsolve(Eqns, x, y, z)
{(1, -2, -2)}
* Augmented matrix as input
>>> aug = Matrix([[2, 1, 3, 1], [2, 6, 8, 3], [6, 8, 18, 5]])
>>> aug
Matrix([
[2, 1, 3, 1],
[2, 6, 8, 3],
[6, 8, 18, 5]])
>>> linsolve(aug, x, y, z)
{(3/10, 2/5, 0)}
* Solve for symbolic coefficients
>>> a, b, c, d, e, f = symbols('a, b, c, d, e, f')
>>> eqns = [a*x + b*y - c, d*x + e*y - f]
>>> linsolve(eqns, x, y)
{((-b*f + c*e)/(a*e - b*d), (a*f - c*d)/(a*e - b*d))}
* A degenerate system returns solution as set of given
symbols.
>>> system = Matrix(([0, 0, 0], [0, 0, 0], [0, 0, 0]))
>>> linsolve(system, x, y)
{(x, y)}
* For an empty system linsolve returns empty set
>>> linsolve([], x)
EmptySet
* An error is raised if any nonlinearity is detected, even
if it could be removed with expansion
>>> linsolve([x*(1/x - 1)], x)
Traceback (most recent call last):
...
NonlinearError: nonlinear term: 1/x
>>> linsolve([x*(y + 1)], x, y)
Traceback (most recent call last):
...
NonlinearError: nonlinear cross-term: x*(y + 1)
>>> linsolve([x**2 - 1], x)
Traceback (most recent call last):
...
NonlinearError: nonlinear term: x**2
"""
if not system:
return S.EmptySet
# If second argument is an iterable
if symbols and hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
sym_gen = isinstance(symbols, GeneratorType)
dup_msg = 'duplicate symbols given'
b = None # if we don't get b the input was bad
# unpack system
if hasattr(system, '__iter__'):
# 1). (A, b)
if len(system) == 2 and isinstance(system[0], MatrixBase):
A, b = system
# 2). (eq1, eq2, ...)
if not isinstance(system[0], MatrixBase):
if sym_gen or not symbols:
raise ValueError(filldedent('''
When passing a system of equations, the explicit
symbols for which a solution is being sought must
be given as a sequence, too.
'''))
if len(set(symbols)) != len(symbols):
raise ValueError(dup_msg)
#
# Pass to the sparse solver implemented in polys. It is important
# that we do not attempt to convert the equations to a matrix
# because that would be very inefficient for large sparse systems
# of equations.
#
eqs = system
eqs = [sympify(eq) for eq in eqs]
try:
sol = _linsolve(eqs, symbols)
except PolyNonlinearError as exc:
# e.g. cos(x) contains an element of the set of generators
raise NonlinearError(str(exc))
if sol is None:
return S.EmptySet
sol = FiniteSet(Tuple(*(sol.get(sym, sym) for sym in symbols)))
return sol
elif isinstance(system, MatrixBase) and not (
symbols and not isinstance(symbols, GeneratorType) and
isinstance(symbols[0], MatrixBase)):
# 3). A augmented with b
A, b = system[:, :-1], system[:, -1:]
if b is None:
raise ValueError("Invalid arguments")
if sym_gen:
symbols = [next(symbols) for i in range(A.cols)]
symset = set(symbols)
if any(symset & (A.free_symbols | b.free_symbols)):
raise ValueError(filldedent('''
At least one of the symbols provided
already appears in the system to be solved.
One way to avoid this is to use Dummy symbols in
the generator, e.g. numbered_symbols('%s', cls=Dummy)
''' % symbols[0].name.rstrip('1234567890')))
elif len(symset) != len(symbols):
raise ValueError(dup_msg)
if not symbols:
symbols = [Dummy() for _ in range(A.cols)]
name = _uniquely_named_symbol('tau', (A, b),
compare=lambda i: str(i).rstrip('1234567890')).name
gen = numbered_symbols(name)
else:
gen = None
# This is just a wrapper for solve_lin_sys
eqs = []
rows = A.tolist()
for rowi, bi in zip(rows, b):
terms = [elem * sym for elem, sym in zip(rowi, symbols) if elem]
terms.append(-bi)
eqs.append(Add(*terms))
eqs, ring = sympy_eqs_to_ring(eqs, symbols)
sol = solve_lin_sys(eqs, ring, _raw=False)
if sol is None:
return S.EmptySet
#sol = {sym:val for sym, val in sol.items() if sym != val}
sol = FiniteSet(Tuple(*(sol.get(sym, sym) for sym in symbols)))
if gen is not None:
solsym = sol.free_symbols
rep = {sym: next(gen) for sym in symbols if sym in solsym}
sol = sol.subs(rep)
return sol
##############################################################################
# ------------------------------nonlinsolve ---------------------------------#
##############################################################################
def _return_conditionset(eqs, symbols):
# return conditionset
eqs = (Eq(lhs, 0) for lhs in eqs)
condition_set = ConditionSet(
Tuple(*symbols), And(*eqs), S.Complexes**len(symbols))
return condition_set
def substitution(system, symbols, result=[{}], known_symbols=[],
exclude=[], all_symbols=None):
r"""
Solves the `system` using substitution method. It is used in
:func:`~.nonlinsolve`. This will be called from :func:`~.nonlinsolve` when any
equation(s) is non polynomial equation.
Parameters
==========
system : list of equations
The target system of equations
symbols : list of symbols to be solved.
The variable(s) for which the system is solved
known_symbols : list of solved symbols
Values are known for these variable(s)
result : An empty list or list of dict
If No symbol values is known then empty list otherwise
symbol as keys and corresponding value in dict.
exclude : Set of expression.
Mostly denominator expression(s) of the equations of the system.
Final solution should not satisfy these expressions.
all_symbols : known_symbols + symbols(unsolved).
Returns
=======
A FiniteSet of ordered tuple of values of `all_symbols` for which the
`system` has solution. Order of values in the tuple is same as symbols
present in the parameter `all_symbols`. If parameter `all_symbols` is None
then same as symbols present in the parameter `symbols`.
Please note that general FiniteSet is unordered, the solution returned
here is not simply a FiniteSet of solutions, rather it is a FiniteSet of
ordered tuple, i.e. the first & only argument to FiniteSet is a tuple of
solutions, which is ordered, & hence the returned solution is ordered.
Also note that solution could also have been returned as an ordered tuple,
FiniteSet is just a wrapper `{}` around the tuple. It has no other
significance except for the fact it is just used to maintain a consistent
output format throughout the solveset.
Raises
======
ValueError
The input is not valid.
The symbols are not given.
AttributeError
The input symbols are not :class:`~.Symbol` type.
Examples
========
>>> from sympy import symbols, substitution
>>> x, y = symbols('x, y', real=True)
>>> substitution([x + y], [x], [{y: 1}], [y], set([]), [x, y])
{(-1, 1)}
* When you want a soln not satisfying $x + 1 = 0$
>>> substitution([x + y], [x], [{y: 1}], [y], set([x + 1]), [y, x])
EmptySet
>>> substitution([x + y], [x], [{y: 1}], [y], set([x - 1]), [y, x])
{(1, -1)}
>>> substitution([x + y - 1, y - x**2 + 5], [x, y])
{(-3, 4), (2, -1)}
* Returns both real and complex solution
>>> x, y, z = symbols('x, y, z')
>>> from sympy import exp, sin
>>> substitution([exp(x) - sin(y), y**2 - 4], [x, y])
{(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2),
(ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)}
>>> eqs = [z**2 + exp(2*x) - sin(y), -3 + exp(-y)]
>>> substitution(eqs, [y, z])
{(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3)))),
(ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers),
ImageSet(Lambda(_n, -sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers)),
(ImageSet(Lambda(_n, 2*_n*I*pi - log(3)), Integers),
ImageSet(Lambda(_n, sqrt(-exp(2*x) + sin(2*_n*I*pi - log(3)))), Integers))}
"""
if not system:
return S.EmptySet
for i, e in enumerate(system):
if isinstance(e, Eq):
system[i] = e.lhs - e.rhs
if not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise ValueError(filldedent(msg))
if not is_sequence(symbols):
msg = ('symbols should be given as a sequence, e.g. a list.'
'Not type %s: %s')
raise TypeError(filldedent(msg % (type(symbols), symbols)))
if not getattr(symbols[0], 'is_Symbol', False):
msg = ('Iterable of symbols must be given as '
'second argument, not type %s: %s')
raise ValueError(filldedent(msg % (type(symbols[0]), symbols[0])))
# By default `all_symbols` will be same as `symbols`
if all_symbols is None:
all_symbols = symbols
old_result = result
# storing complements and intersection for particular symbol
complements = {}
intersections = {}
# when total_solveset_call equals total_conditionset
# it means that solveset failed to solve all eqs.
total_conditionset = -1
total_solveset_call = -1
def _unsolved_syms(eq, sort=False):
"""Returns the unsolved symbol present
in the equation `eq`.
"""
free = eq.free_symbols
unsolved = (free - set(known_symbols)) & set(all_symbols)
if sort:
unsolved = list(unsolved)
unsolved.sort(key=default_sort_key)
return unsolved
# sort such that equation with the fewest potential symbols is first.
# means eq with less number of variable first in the list.
eqs_in_better_order = list(
ordered(system, lambda _: len(_unsolved_syms(_))))
def add_intersection_complement(result, intersection_dict, complement_dict):
# If solveset has returned some intersection/complement
# for any symbol, it will be added in the final solution.
final_result = []
for res in result:
res_copy = res
for key_res, value_res in res.items():
intersect_set, complement_set = None, None
for key_sym, value_sym in intersection_dict.items():
if key_sym == key_res:
intersect_set = value_sym
for key_sym, value_sym in complement_dict.items():
if key_sym == key_res:
complement_set = value_sym
if intersect_set or complement_set:
new_value = FiniteSet(value_res)
if intersect_set and intersect_set != S.Complexes:
new_value = Intersection(new_value, intersect_set)
if complement_set:
new_value = Complement(new_value, complement_set)
if new_value is S.EmptySet:
res_copy = None
break
elif new_value.is_FiniteSet and len(new_value) == 1:
res_copy[key_res] = set(new_value).pop()
else:
res_copy[key_res] = new_value
if res_copy is not None:
final_result.append(res_copy)
return final_result
def _extract_main_soln(sym, sol, soln_imageset):
"""Separate the Complements, Intersections, ImageSet lambda expr and
its base_set. This function returns the unmasked sol from different classes
of sets and also returns the appended ImageSet elements in a
soln_imageset dict: `{unmasked element: ImageSet}`.
"""
# if there is union, then need to check
# Complement, Intersection, Imageset.
# Order should not be changed.
if isinstance(sol, ConditionSet):
# extracts any solution in ConditionSet
sol = sol.base_set
if isinstance(sol, Complement):
# extract solution and complement
complements[sym] = sol.args[1]
sol = sol.args[0]
# complement will be added at the end
# using `add_intersection_complement` method
# if there is union of Imageset or other in soln.
# no testcase is written for this if block
if isinstance(sol, Union):
sol_args = sol.args
sol = S.EmptySet
# We need in sequence so append finteset elements
# and then imageset or other.
for sol_arg2 in sol_args:
if isinstance(sol_arg2, FiniteSet):
sol += sol_arg2
else:
# ImageSet, Intersection, complement then
# append them directly
sol += FiniteSet(sol_arg2)
if isinstance(sol, Intersection):
# Interval/Set will be at 0th index always
if sol.args[0] not in (S.Reals, S.Complexes):
# Sometimes solveset returns soln with intersection
# S.Reals or S.Complexes. We don't consider that
# intersection.
intersections[sym] = sol.args[0]
sol = sol.args[1]
# after intersection and complement Imageset should
# be checked.
if isinstance(sol, ImageSet):
soln_imagest = sol
expr2 = sol.lamda.expr
sol = FiniteSet(expr2)
soln_imageset[expr2] = soln_imagest
if not isinstance(sol, FiniteSet):
sol = FiniteSet(sol)
return sol, soln_imageset
def _check_exclude(rnew, imgset_yes):
rnew_ = rnew
if imgset_yes:
# replace all dummy variables (Imageset lambda variables)
# with zero before `checksol`. Considering fundamental soln
# for `checksol`.
rnew_copy = rnew.copy()
dummy_n = imgset_yes[0]
for key_res, value_res in rnew_copy.items():
rnew_copy[key_res] = value_res.subs(dummy_n, 0)
rnew_ = rnew_copy
# satisfy_exclude == true if it satisfies the expr of `exclude` list.
try:
# something like : `Mod(-log(3), 2*I*pi)` can't be
# simplified right now, so `checksol` returns `TypeError`.
# when this issue is fixed this try block should be
# removed. Mod(-log(3), 2*I*pi) == -log(3)
satisfy_exclude = any(
checksol(d, rnew_) for d in exclude)
except TypeError:
satisfy_exclude = None
return satisfy_exclude
def _restore_imgset(rnew, original_imageset, newresult):
restore_sym = set(rnew.keys()) & \
set(original_imageset.keys())
for key_sym in restore_sym:
img = original_imageset[key_sym]
rnew[key_sym] = img
if rnew not in newresult:
newresult.append(rnew)
def _append_eq(eq, result, res, delete_soln, n=None):
u = Dummy('u')
if n:
eq = eq.subs(n, 0)
satisfy = eq if eq in (True, False) else checksol(u, u, eq, minimal=True)
if satisfy is False:
delete_soln = True
res = {}
else:
result.append(res)
return result, res, delete_soln
def _append_new_soln(rnew, sym, sol, imgset_yes, soln_imageset,
original_imageset, newresult, eq=None):
"""If `rnew` (A dict <symbol: soln>) contains valid soln
append it to `newresult` list.
`imgset_yes` is (base, dummy_var) if there was imageset in previously
calculated result(otherwise empty tuple). `original_imageset` is dict
of imageset expr and imageset from this result.
`soln_imageset` dict of imageset expr and imageset of new soln.
"""
satisfy_exclude = _check_exclude(rnew, imgset_yes)
delete_soln = False
# soln should not satisfy expr present in `exclude` list.
if not satisfy_exclude:
local_n = None
# if it is imageset
if imgset_yes:
local_n = imgset_yes[0]
base = imgset_yes[1]
if sym and sol:
# when `sym` and `sol` is `None` means no new
# soln. In that case we will append rnew directly after
# substituting original imagesets in rnew values if present
# (second last line of this function using _restore_imgset)
dummy_list = list(sol.atoms(Dummy))
# use one dummy `n` which is in
# previous imageset
local_n_list = [
local_n for i in range(
0, len(dummy_list))]
dummy_zip = zip(dummy_list, local_n_list)
lam = Lambda(local_n, sol.subs(dummy_zip))
rnew[sym] = ImageSet(lam, base)
if eq is not None:
newresult, rnew, delete_soln = _append_eq(
eq, newresult, rnew, delete_soln, local_n)
elif eq is not None:
newresult, rnew, delete_soln = _append_eq(
eq, newresult, rnew, delete_soln)
elif sol in soln_imageset.keys():
rnew[sym] = soln_imageset[sol]
# restore original imageset
_restore_imgset(rnew, original_imageset, newresult)
else:
newresult.append(rnew)
elif satisfy_exclude:
delete_soln = True
rnew = {}
_restore_imgset(rnew, original_imageset, newresult)
return newresult, delete_soln
def _new_order_result(result, eq):
# separate first, second priority. `res` that makes `eq` value equals
# to zero, should be used first then other result(second priority).
# If it is not done then we may miss some soln.
first_priority = []
second_priority = []
for res in result:
if not any(isinstance(val, ImageSet) for val in res.values()):
if eq.subs(res) == 0:
first_priority.append(res)
else:
second_priority.append(res)
if first_priority or second_priority:
return first_priority + second_priority
return result
def _solve_using_known_values(result, solver):
"""Solves the system using already known solution
(result contains the dict <symbol: value>).
solver is :func:`~.solveset_complex` or :func:`~.solveset_real`.
"""
# stores imageset <expr: imageset(Lambda(n, expr), base)>.
soln_imageset = {}
total_solvest_call = 0
total_conditionst = 0
# sort equations so the one with the fewest potential
# symbols appears first
for index, eq in enumerate(eqs_in_better_order):
newresult = []
# if imageset, expr is used to solve for other symbol
imgset_yes = False
for res in result:
original_imageset = {}
got_symbol = set() # symbols solved in one iteration
# find the imageset and use its expr.
for k, v in res.items():
if isinstance(v, ImageSet):
res[k] = v.lamda.expr
original_imageset[k] = v
dummy_n = v.lamda.expr.atoms(Dummy).pop()
(base,) = v.base_sets
imgset_yes = (dummy_n, base)
assert not isinstance(v, FiniteSet) # if so, internal error
# update eq with everything that is known so far
eq2 = eq.subs(res).expand()
if imgset_yes and not eq2.has(imgset_yes[0]):
# The substituted equation simplified in such a way that
# it's no longer necessary to encapsulate a potential new
# solution in an ImageSet. (E.g. at the previous step some
# {n*2*pi} was found as partial solution for one of the
# unknowns, but its main solution expression n*2*pi has now
# been substituted in a trigonometric function.)
imgset_yes = False
unsolved_syms = _unsolved_syms(eq2, sort=True)
if not unsolved_syms:
if res:
newresult, delete_res = _append_new_soln(
res, None, None, imgset_yes, soln_imageset,
original_imageset, newresult, eq2)
if delete_res:
# `delete_res` is true, means substituting `res` in
# eq2 doesn't return `zero` or deleting the `res`
# (a soln) since it satisfies expr of `exclude`
# list.
result.remove(res)
continue # skip as it's independent of desired symbols
depen1, depen2 = eq2.as_independent(*unsolved_syms)
if (depen1.has(Abs) or depen2.has(Abs)) and solver == solveset_complex:
# Absolute values cannot be inverted in the
# complex domain
continue
soln_imageset = {}
for sym in unsolved_syms:
not_solvable = False
try:
soln = solver(eq2, sym)
total_solvest_call += 1
soln_new = S.EmptySet
if isinstance(soln, Complement):
# separate solution and complement
complements[sym] = soln.args[1]
soln = soln.args[0]
# complement will be added at the end
if isinstance(soln, Intersection):
# Interval will be at 0th index always
if soln.args[0] != Interval(-oo, oo):
# sometimes solveset returns soln
# with intersection S.Reals, to confirm that
# soln is in domain=S.Reals
intersections[sym] = soln.args[0]
soln_new += soln.args[1]
soln = soln_new if soln_new else soln
if index > 0 and solver == solveset_real:
# one symbol's real soln, another symbol may have
# corresponding complex soln.
if not isinstance(soln, (ImageSet, ConditionSet)):
soln += solveset_complex(eq2, sym) # might give ValueError with Abs
except (NotImplementedError, ValueError):
# If solveset is not able to solve equation `eq2`. Next
# time we may get soln using next equation `eq2`
continue
if isinstance(soln, ConditionSet):
if soln.base_set in (S.Reals, S.Complexes):
soln = S.EmptySet
# don't do `continue` we may get soln
# in terms of other symbol(s)
not_solvable = True
total_conditionst += 1
else:
soln = soln.base_set
if soln is not S.EmptySet:
soln, soln_imageset = _extract_main_soln(
sym, soln, soln_imageset)
for sol in soln:
# sol is not a `Union` since we checked it
# before this loop
sol, soln_imageset = _extract_main_soln(
sym, sol, soln_imageset)
sol = set(sol).pop() # XXX what if there are more solutions?
free = sol.free_symbols
if got_symbol and any(
ss in free for ss in got_symbol
):
# sol depends on previously solved symbols
# then continue
continue
rnew = res.copy()
# put each solution in res and append the new result
# in the new result list (solution for symbol `s`)
# along with old results.
for k, v in res.items():
if isinstance(v, Expr) and isinstance(sol, Expr):
# if any unsolved symbol is present
# Then subs known value
rnew[k] = v.subs(sym, sol)
# and add this new solution
if sol in soln_imageset.keys():
# replace all lambda variables with 0.
imgst = soln_imageset[sol]
rnew[sym] = imgst.lamda(
*[0 for i in range(0, len(
imgst.lamda.variables))])
else:
rnew[sym] = sol
newresult, delete_res = _append_new_soln(
rnew, sym, sol, imgset_yes, soln_imageset,
original_imageset, newresult)
if delete_res:
# deleting the `res` (a soln) since it satisfies
# eq of `exclude` list
result.remove(res)
# solution got for sym
if not not_solvable:
got_symbol.add(sym)
# next time use this new soln
if newresult:
result = newresult
return result, total_solvest_call, total_conditionst
new_result_real, solve_call1, cnd_call1 = _solve_using_known_values(
old_result, solveset_real)
new_result_complex, solve_call2, cnd_call2 = _solve_using_known_values(
old_result, solveset_complex)
# If total_solveset_call is equal to total_conditionset
# then solveset failed to solve all of the equations.
# In this case we return a ConditionSet here.
total_conditionset += (cnd_call1 + cnd_call2)
total_solveset_call += (solve_call1 + solve_call2)
if total_conditionset == total_solveset_call and total_solveset_call != -1:
return _return_conditionset(eqs_in_better_order, all_symbols)
# don't keep duplicate solutions
filtered_complex = []
for i in list(new_result_complex):
for j in list(new_result_real):
if i.keys() != j.keys():
continue
if all(a.dummy_eq(b) for a, b in zip(i.values(), j.values()) \
if not (isinstance(a, int) and isinstance(b, int))):
break
else:
filtered_complex.append(i)
# overall result
result = new_result_real + filtered_complex
result_all_variables = []
result_infinite = []
for res in result:
if not res:
# means {None : None}
continue
# If length < len(all_symbols) means infinite soln.
# Some or all the soln is dependent on 1 symbol.
# eg. {x: y+2} then final soln {x: y+2, y: y}
if len(res) < len(all_symbols):
solved_symbols = res.keys()
unsolved = list(filter(
lambda x: x not in solved_symbols, all_symbols))
for unsolved_sym in unsolved:
res[unsolved_sym] = unsolved_sym
result_infinite.append(res)
if res not in result_all_variables:
result_all_variables.append(res)
if result_infinite:
# we have general soln
# eg : [{x: -1, y : 1}, {x : -y, y: y}] then
# return [{x : -y, y : y}]
result_all_variables = result_infinite
if intersections or complements:
result_all_variables = add_intersection_complement(
result_all_variables, intersections, complements)
# convert to ordered tuple
result = S.EmptySet
for r in result_all_variables:
temp = [r[symb] for symb in all_symbols]
result += FiniteSet(tuple(temp))
return result
def _solveset_work(system, symbols):
soln = solveset(system[0], symbols[0])
if isinstance(soln, FiniteSet):
_soln = FiniteSet(*[(s,) for s in soln])
return _soln
else:
return FiniteSet(tuple(FiniteSet(soln)))
def _handle_positive_dimensional(polys, symbols, denominators):
from sympy.polys.polytools import groebner
# substitution method where new system is groebner basis of the system
_symbols = list(symbols)
_symbols.sort(key=default_sort_key)
basis = groebner(polys, _symbols, polys=True)
new_system = []
for poly_eq in basis:
new_system.append(poly_eq.as_expr())
result = [{}]
result = substitution(
new_system, symbols, result, [],
denominators)
return result
def _handle_zero_dimensional(polys, symbols, system):
# solve 0 dimensional poly system using `solve_poly_system`
result = solve_poly_system(polys, *symbols)
# May be some extra soln is added because
# we used `unrad` in `_separate_poly_nonpoly`, so
# need to check and remove if it is not a soln.
result_update = S.EmptySet
for res in result:
dict_sym_value = dict(list(zip(symbols, res)))
if all(checksol(eq, dict_sym_value) for eq in system):
result_update += FiniteSet(res)
return result_update
def _separate_poly_nonpoly(system, symbols):
polys = []
polys_expr = []
nonpolys = []
# unrad_changed stores a list of expressions containing
# radicals that were processed using unrad
# this is useful if solutions need to be checked later.
unrad_changed = []
denominators = set()
poly = None
for eq in system:
# Store denom expressions that contain symbols
denominators.update(_simple_dens(eq, symbols))
# Convert equality to expression
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs
# try to remove sqrt and rational power
without_radicals = unrad(simplify(eq), *symbols)
if without_radicals:
unrad_changed.append(eq)
eq_unrad, cov = without_radicals
if not cov:
eq = eq_unrad
if isinstance(eq, Expr):
eq = eq.as_numer_denom()[0]
poly = eq.as_poly(*symbols, extension=True)
elif simplify(eq).is_number:
continue
if poly is not None:
polys.append(poly)
polys_expr.append(poly.as_expr())
else:
nonpolys.append(eq)
return polys, polys_expr, nonpolys, denominators, unrad_changed
def _handle_poly(polys, symbols):
# _handle_poly(polys, symbols) -> (poly_sol, poly_eqs)
#
# We will return possible solution information to nonlinsolve as well as a
# new system of polynomial equations to be solved if we cannot solve
# everything directly here. The new system of polynomial equations will be
# a lex-order Groebner basis for the original system. The lex basis
# hopefully separate some of the variables and equations and give something
# easier for substitution to work with.
# The format for representing solution sets in nonlinsolve and substitution
# is a list of dicts. These are the special cases:
no_information = [{}] # No equations solved yet
no_solutions = [] # The system is inconsistent and has no solutions.
# If there is no need to attempt further solution of these equations then
# we return no equations:
no_equations = []
inexact = any(not p.domain.is_Exact for p in polys)
if inexact:
# The use of Groebner over RR is likely to result incorrectly in an
# inconsistent Groebner basis. So, convert any float coefficients to
# Rational before computing the Groebner basis.
polys = [poly(nsimplify(p, rational=True)) for p in polys]
# Compute a Groebner basis in grevlex order wrt the ordering given. We will
# try to convert this to lex order later. Usually it seems to be more
# efficient to compute a lex order basis by computing a grevlex basis and
# converting to lex with fglm.
basis = groebner(polys, symbols, order='grevlex', polys=False)
#
# No solutions (inconsistent equations)?
#
if 1 in basis:
# No solutions:
poly_sol = no_solutions
poly_eqs = no_equations
#
# Finite number of solutions (zero-dimensional case)
#
elif basis.is_zero_dimensional:
# Convert Groebner basis to lex ordering
basis = basis.fglm('lex')
# Convert polynomial coefficients back to float before calling
# solve_poly_system
if inexact:
basis = [nfloat(p) for p in basis]
# Solve the zero-dimensional case using solve_poly_system if possible.
# If some polynomials have factors that cannot be solved in radicals
# then this will fail. Using solve_poly_system(..., strict=True)
# ensures that we either get a complete solution set in radicals or
# UnsolvableFactorError will be raised.
try:
result = solve_poly_system(basis, *symbols, strict=True)
except UnsolvableFactorError:
# Failure... not fully solvable in radicals. Return the lex-order
# basis for substitution to handle.
poly_sol = no_information
poly_eqs = list(basis)
else:
# Success! We have a finite solution set and solve_poly_system has
# succeeded in finding all solutions. Return the solutions and also
# an empty list of remaining equations to be solved.
poly_sol = [dict(zip(symbols, res)) for res in result]
poly_eqs = no_equations
#
# Infinite families of solutions (positive-dimensional case)
#
else:
# In this case the grevlex basis cannot be converted to lex using the
# fglm method and also solve_poly_system cannot solve the equations. We
# would like to return a lex basis but since we can't use fglm we
# compute the lex basis directly here. The time required to recompute
# the basis is generally significantly less than the time required by
# substitution to solve the new system.
poly_sol = no_information
poly_eqs = list(groebner(polys, symbols, order='lex', polys=False))
if inexact:
poly_eqs = [nfloat(p) for p in poly_eqs]
return poly_sol, poly_eqs
def nonlinsolve(system, *symbols):
r"""
Solve system of $N$ nonlinear equations with $M$ variables, which means both
under and overdetermined systems are supported. Positive dimensional
system is also supported (A system with infinitely many solutions is said
to be positive-dimensional). In a positive dimensional system the solution will
be dependent on at least one symbol. Returns both real solution
and complex solution (if they exist).
Parameters
==========
system : list of equations
The target system of equations
symbols : list of Symbols
symbols should be given as a sequence eg. list
Returns
=======
A :class:`~.FiniteSet` of ordered tuple of values of `symbols` for which the `system`
has solution. Order of values in the tuple is same as symbols present in
the parameter `symbols`.
Please note that general :class:`~.FiniteSet` is unordered, the solution
returned here is not simply a :class:`~.FiniteSet` of solutions, rather it
is a :class:`~.FiniteSet` of ordered tuple, i.e. the first and only
argument to :class:`~.FiniteSet` is a tuple of solutions, which is
ordered, and, hence ,the returned solution is ordered.
Also note that solution could also have been returned as an ordered tuple,
FiniteSet is just a wrapper ``{}`` around the tuple. It has no other
significance except for the fact it is just used to maintain a consistent
output format throughout the solveset.
For the given set of equations, the respective input types
are given below:
.. math:: xy - 1 = 0
.. math:: 4x^2 + y^2 - 5 = 0
::
system = [x*y - 1, 4*x**2 + y**2 - 5]
symbols = [x, y]
Raises
======
ValueError
The input is not valid.
The symbols are not given.
AttributeError
The input symbols are not `Symbol` type.
Examples
========
>>> from sympy import symbols, nonlinsolve
>>> x, y, z = symbols('x, y, z', real=True)
>>> nonlinsolve([x*y - 1, 4*x**2 + y**2 - 5], [x, y])
{(-1, -1), (-1/2, -2), (1/2, 2), (1, 1)}
1. Positive dimensional system and complements:
>>> from sympy import pprint
>>> from sympy.polys.polytools import is_zero_dimensional
>>> a, b, c, d = symbols('a, b, c, d', extended_real=True)
>>> eq1 = a + b + c + d
>>> eq2 = a*b + b*c + c*d + d*a
>>> eq3 = a*b*c + b*c*d + c*d*a + d*a*b
>>> eq4 = a*b*c*d - 1
>>> system = [eq1, eq2, eq3, eq4]
>>> is_zero_dimensional(system)
False
>>> pprint(nonlinsolve(system, [a, b, c, d]), use_unicode=False)
-1 1 1 -1
{(---, -d, -, {d} \ {0}), (-, -d, ---, {d} \ {0})}
d d d d
>>> nonlinsolve([(x+y)**2 - 4, x + y - 2], [x, y])
{(2 - y, y)}
2. If some of the equations are non-polynomial then `nonlinsolve`
will call the ``substitution`` function and return real and complex solutions,
if present.
>>> from sympy import exp, sin
>>> nonlinsolve([exp(x) - sin(y), y**2 - 4], [x, y])
{(ImageSet(Lambda(_n, I*(2*_n*pi + pi) + log(sin(2))), Integers), -2),
(ImageSet(Lambda(_n, 2*_n*I*pi + log(sin(2))), Integers), 2)}
3. If system is non-linear polynomial and zero-dimensional then it
returns both solution (real and complex solutions, if present) using
:func:`~.solve_poly_system`:
>>> from sympy import sqrt
>>> nonlinsolve([x**2 - 2*y**2 -2, x*y - 2], [x, y])
{(-2, -1), (2, 1), (-sqrt(2)*I, sqrt(2)*I), (sqrt(2)*I, -sqrt(2)*I)}
4. ``nonlinsolve`` can solve some linear (zero or positive dimensional)
system (because it uses the :func:`sympy.polys.polytools.groebner` function to get the
groebner basis and then uses the ``substitution`` function basis as the
new `system`). But it is not recommended to solve linear system using
``nonlinsolve``, because :func:`~.linsolve` is better for general linear systems.
>>> nonlinsolve([x + 2*y -z - 3, x - y - 4*z + 9, y + z - 4], [x, y, z])
{(3*z - 5, 4 - z, z)}
5. System having polynomial equations and only real solution is
solved using :func:`~.solve_poly_system`:
>>> e1 = sqrt(x**2 + y**2) - 10
>>> e2 = sqrt(y**2 + (-x + 10)**2) - 3
>>> nonlinsolve((e1, e2), (x, y))
{(191/20, -3*sqrt(391)/20), (191/20, 3*sqrt(391)/20)}
>>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [x, y])
{(1, 2), (1 - sqrt(5), 2 + sqrt(5)), (1 + sqrt(5), 2 - sqrt(5))}
>>> nonlinsolve([x**2 + 2/y - 2, x + y - 3], [y, x])
{(2, 1), (2 - sqrt(5), 1 + sqrt(5)), (2 + sqrt(5), 1 - sqrt(5))}
6. It is better to use symbols instead of trigonometric functions or
:class:`~.Function`. For example, replace $\sin(x)$ with a symbol, replace
$f(x)$ with a symbol and so on. Get a solution from ``nonlinsolve`` and then
use :func:`~.solveset` to get the value of $x$.
How nonlinsolve is better than old solver ``_solve_system`` :
=============================================================
1. A positive dimensional system solver: nonlinsolve can return
solution for positive dimensional system. It finds the
Groebner Basis of the positive dimensional system(calling it as
basis) then we can start solving equation(having least number of
variable first in the basis) using solveset and substituting that
solved solutions into other equation(of basis) to get solution in
terms of minimum variables. Here the important thing is how we
are substituting the known values and in which equations.
2. Real and complex solutions: nonlinsolve returns both real
and complex solution. If all the equations in the system are polynomial
then using :func:`~.solve_poly_system` both real and complex solution is returned.
If all the equations in the system are not polynomial equation then goes to
``substitution`` method with this polynomial and non polynomial equation(s),
to solve for unsolved variables. Here to solve for particular variable
solveset_real and solveset_complex is used. For both real and complex
solution ``_solve_using_known_values`` is used inside ``substitution``
(``substitution`` will be called when any non-polynomial equation is present).
If a solution is valid its general solution is added to the final result.
3. :class:`~.Complement` and :class:`~.Intersection` will be added:
nonlinsolve maintains dict for complements and intersections. If solveset
find complements or/and intersections with any interval or set during the
execution of ``substitution`` function, then complement or/and
intersection for that variable is added before returning final solution.
"""
if not system:
return S.EmptySet
if not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise ValueError(filldedent(msg))
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
if not is_sequence(symbols) or not symbols:
msg = ('Symbols must be given, for which solution of the '
'system is to be found.')
raise IndexError(filldedent(msg))
symbols = list(map(_sympify, symbols))
system, symbols, swap = recast_to_symbols(system, symbols)
if swap:
soln = nonlinsolve(system, symbols)
return FiniteSet(*[tuple(i.xreplace(swap) for i in s) for s in soln])
if len(system) == 1 and len(symbols) == 1:
return _solveset_work(system, symbols)
# main code of def nonlinsolve() starts from here
polys, polys_expr, nonpolys, denominators, unrad_changed = \
_separate_poly_nonpoly(system, symbols)
poly_eqs = []
poly_sol = [{}]
if polys:
poly_sol, poly_eqs = _handle_poly(polys, symbols)
if poly_sol and poly_sol[0]:
poly_syms = set().union(*(eq.free_symbols for eq in polys))
unrad_syms = set().union(*(eq.free_symbols for eq in unrad_changed))
if unrad_syms == poly_syms and unrad_changed:
# if all the symbols have been solved by _handle_poly
# and unrad has been used then check solutions
poly_sol = [sol for sol in poly_sol if checksol(unrad_changed, sol)]
# Collect together the unsolved polynomials with the non-polynomial
# equations.
remaining = poly_eqs + nonpolys
# to_tuple converts a solution dictionary to a tuple containing the
# value for each symbol
to_tuple = lambda sol: tuple(sol[s] for s in symbols)
if not remaining:
# If there is nothing left to solve then return the solution from
# solve_poly_system directly.
return FiniteSet(*map(to_tuple, poly_sol))
else:
# Here we handle:
#
# 1. The Groebner basis if solve_poly_system failed.
# 2. The Groebner basis in the positive-dimensional case.
# 3. Any non-polynomial equations
#
# If solve_poly_system did succeed then we pass those solutions in as
# preliminary results.
subs_res = substitution(remaining, symbols, result=poly_sol, exclude=denominators)
if not isinstance(subs_res, FiniteSet):
return subs_res
# check solutions produced by substitution. Currently, checking is done for
# only those solutions which have non-Set variable values.
if unrad_changed:
result = [dict(zip(symbols, sol)) for sol in subs_res.args]
correct_sols = [sol for sol in result if any(isinstance(v, Set) for v in sol)
or checksol(unrad_changed, sol) != False]
return FiniteSet(*map(to_tuple, correct_sols))
else:
return subs_res
|