File size: 35,731 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
"""Tools for optimizing a linear function for a given simplex.

For the linear objective function ``f`` with linear constraints
expressed using `Le`, `Ge` or `Eq` can be found with ``lpmin`` or
``lpmax``. The symbols are **unbounded** unless specifically
constrained.

As an alternative, the matrices describing the objective and the
constraints, and an optional list of bounds can be passed to
``linprog`` which will solve for the minimization of ``C*x``
under constraints ``A*x <= b`` and/or ``Aeq*x = beq``, and
individual bounds for variables given as ``(lo, hi)``. The values
returned are **nonnegative** unless bounds are provided that
indicate otherwise.

Errors that might be raised are UnboundedLPError when there is no
finite solution for the system or InfeasibleLPError when the
constraints represent impossible conditions (i.e. a non-existant
 simplex).

Here is a simple 1-D system: minimize `x` given that ``x >= 1``.

    >>> from sympy.solvers.simplex import lpmin, linprog
    >>> from sympy.abc import x

    The function and a list with the constraint is passed directly
    to `lpmin`:

    >>> lpmin(x, [x >= 1])
    (1, {x: 1})

    For `linprog` the matrix for the objective is `[1]` and the
    uivariate constraint can be passed as a bound with None acting
    as infinity:

    >>> linprog([1], bounds=(1, None))
    (1, [1])

    Or the matrices, corresponding to ``x >= 1`` expressed as
    ``-x <= -1`` as required by the routine, can be passed:

    >>> linprog([1], [-1], [-1])
    (1, [1])

    If there is no limit for the objective, an error is raised.
    In this case there is a valid region of interest (simplex)
    but no limit to how small ``x`` can be:

    >>> lpmin(x, [])
    Traceback (most recent call last):
    ...
    sympy.solvers.simplex.UnboundedLPError:
    Objective function can assume arbitrarily large values!

    An error is raised if there is no possible solution:

    >>> lpmin(x,[x<=1,x>=2])
    Traceback (most recent call last):
    ...
    sympy.solvers.simplex.InfeasibleLPError:
    Inconsistent/False constraint
"""

from sympy.core import sympify
from sympy.core.exprtools import factor_terms
from sympy.core.relational import Le, Ge, Eq
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.sorting import ordered
from sympy.functions.elementary.complexes import sign
from sympy.matrices.dense import Matrix, zeros
from sympy.solvers.solveset import linear_eq_to_matrix
from sympy.utilities.iterables import numbered_symbols
from sympy.utilities.misc import filldedent


class UnboundedLPError(Exception):
    """
    A linear programing problem is said to be unbounded if its objective
    function can assume arbitrarily large values.

    Example
    =======

    Suppose you want to maximize
        2x
    subject to
        x >= 0

    There's no upper limit that 2x can take.
    """

    pass


class InfeasibleLPError(Exception):
    """
    A linear programing problem is considered infeasible if its
    constraint set is empty. That is, if the set of all vectors
    satisfying the contraints is empty, then the problem is infeasible.

    Example
    =======

    Suppose you want to maximize
        x
    subject to
        x >= 10
        x <= 9

    No x can satisfy those constraints.
    """

    pass


def _pivot(M, i, j):
    """
    The pivot element `M[i, j]` is inverted and the rest of the matrix
    modified and returned as a new matrix; original is left unmodified.

    Example
    =======

    >>> from sympy.matrices.dense import Matrix
    >>> from sympy.solvers.simplex import _pivot
    >>> from sympy import var
    >>> Matrix(3, 3, var('a:i'))
    Matrix([
    [a, b, c],
    [d, e, f],
    [g, h, i]])
    >>> _pivot(_, 1, 0)
    Matrix([
    [-a/d, -a*e/d + b, -a*f/d + c],
    [ 1/d,        e/d,        f/d],
    [-g/d,  h - e*g/d,  i - f*g/d]])
    """
    Mi, Mj, Mij = M[i, :], M[:, j], M[i, j]
    if Mij == 0:
        raise ZeroDivisionError(
            "Tried to pivot about zero-valued entry.")
    A = M - Mj * (Mi / Mij)
    A[i, :] = Mi / Mij
    A[:, j] = -Mj / Mij
    A[i, j] = 1 / Mij
    return A


def _choose_pivot_row(A, B, candidate_rows, pivot_col, Y):
    # Choose row with smallest ratio
    # If there are ties, pick using Bland's rule
    return min(candidate_rows, key=lambda i: (B[i] / A[i, pivot_col], Y[i]))


def _simplex(A, B, C, D=None, dual=False):
    """Return ``(o, x, y)`` obtained from the two-phase simplex method
    using Bland's rule: ``o`` is the minimum value of primal,
    ``Cx - D``, under constraints ``Ax <= B`` (with ``x >= 0``) and
    the maximum of the dual, ``y^{T}B - D``, under constraints
    ``A^{T}*y >= C^{T}`` (with ``y >= 0``). To compute the dual of
    the system, pass `dual=True` and ``(o, y, x)`` will be returned.

    Note: the nonnegative constraints for ``x`` and ``y`` supercede
    any values of ``A`` and ``B`` that are inconsistent with that
    assumption, so if a constraint of ``x >= -1`` is represented
    in ``A`` and ``B``, no value will be obtained that is negative; if
    a constraint of ``x <= -1`` is represented, an error will be
    raised since no solution is possible.

    This routine relies on the ability of determining whether an
    expression is 0 or not. This is guaranteed if the input contains
    only Float or Rational entries. It will raise a TypeError if
    a relationship does not evaluate to True or False.

    Examples
    ========

    >>> from sympy.solvers.simplex import _simplex
    >>> from sympy import Matrix

    Consider the simple minimization of ``f = x + y + 1`` under the
    constraint that ``y + 2*x >= 4``. This is the "standard form" of
    a minimization.

    In the nonnegative quadrant, this inequality describes a area above
    a triangle with vertices at (0, 4), (0, 0) and (2, 0). The minimum
    of ``f`` occurs at (2, 0). Define A, B, C, D for the standard
    minimization:

    >>> A = Matrix([[2, 1]])
    >>> B = Matrix([4])
    >>> C = Matrix([[1, 1]])
    >>> D = Matrix([-1])

    Confirm that this is the system of interest:

    >>> from sympy.abc import x, y
    >>> X = Matrix([x, y])
    >>> (C*X - D)[0]
    x + y + 1
    >>> [i >= j for i, j in zip(A*X, B)]
    [2*x + y >= 4]

    Since `_simplex` will do a minimization for constraints given as
    ``A*x <= B``, the signs of ``A`` and ``B`` must be negated since
    the currently correspond to a greater-than inequality:

    >>> _simplex(-A, -B, C, D)
    (3, [2, 0], [1/2])

    The dual of minimizing ``f`` is maximizing ``F = c*y - d`` for
    ``a*y <= b`` where ``a``, ``b``, ``c``, ``d`` are derived from the
    transpose of the matrix representation of the standard minimization:

    >>> tr = lambda a, b, c, d: [i.T for i in (a, c, b, d)]
    >>> a, b, c, d = tr(A, B, C, D)

    This time ``a*x <= b`` is the expected inequality for the `_simplex`
    method, but to maximize ``F``, the sign of ``c`` and ``d`` must be
    changed (so that minimizing the negative will give the negative of
    the maximum of ``F``):

    >>> _simplex(a, b, -c, -d)
    (-3, [1/2], [2, 0])

    The negative of ``F`` and the min of ``f`` are the same. The dual
    point `[1/2]` is the value of ``y`` that minimized ``F = c*y - d``
    under constraints a*x <= b``:

    >>> y = Matrix(['y'])
    >>> (c*y - d)[0]
    4*y + 1
    >>> [i <= j for i, j in zip(a*y,b)]
    [2*y <= 1, y <= 1]

    In this 1-dimensional dual system, the more restrictive contraint is
    the first which limits ``y`` between 0 and 1/2 and the maximum of
    ``F`` is attained at the nonzero value, hence is ``4*(1/2) + 1 = 3``.

    In this case the values for ``x`` and ``y`` were the same when the
    dual representation was solved. This is not always the case (though
    the value of the function will be the same).

    >>> l = [[1, 1], [-1, 1], [0, 1], [-1, 0]], [5, 1, 2, -1], [[1, 1]], [-1]
    >>> A, B, C, D = [Matrix(i) for i in l]
    >>> _simplex(A, B, -C, -D)
    (-6, [3, 2], [1, 0, 0, 0])
    >>> _simplex(A, B, -C, -D, dual=True)  # [5, 0] != [3, 2]
    (-6, [1, 0, 0, 0], [5, 0])

    In both cases the function has the same value:

    >>> Matrix(C)*Matrix([3, 2]) == Matrix(C)*Matrix([5, 0])
    True

    See Also
    ========
    _lp - poses min/max problem in form compatible with _simplex
    lpmin - minimization which calls _lp
    lpmax - maximimzation which calls _lp

    References
    ==========

    .. [1] Thomas S. Ferguson, LINEAR PROGRAMMING: A Concise Introduction
           web.tecnico.ulisboa.pt/mcasquilho/acad/or/ftp/FergusonUCLA_lp.pdf

    """
    A, B, C, D = [Matrix(i) for i in (A, B, C, D or [0])]
    if dual:
        _o, d, p = _simplex(-A.T, C.T, B.T, -D)
        return -_o, d, p

    if A and B:
        M = Matrix([[A, B], [C, D]])
    else:
        if A or B:
            raise ValueError("must give A and B")
        # no constraints given
        M = Matrix([[C, D]])
    n = M.cols - 1
    m = M.rows - 1

    if not all(i.is_Float or i.is_Rational for i in M):
        # with literal Float and Rational we are guaranteed the
        # ability of determining whether an expression is 0 or not
        raise TypeError(filldedent("""
            Only rationals and floats are allowed.
            """
            )
        )

    # x variables have priority over y variables during Bland's rule
    # since False < True
    X = [(False, j) for j in range(n)]
    Y = [(True, i) for i in range(m)]

    # Phase 1: find a feasible solution or determine none exist

    ## keep track of last pivot row and column
    last = None

    while True:
        B = M[:-1, -1]
        A = M[:-1, :-1]
        if all(B[i] >= 0 for i in range(B.rows)):
            # We have found a feasible solution
            break

        # Find k: first row with a negative rightmost entry
        for k in range(B.rows):
            if B[k] < 0:
                break  # use current value of k below
        else:
            pass  # error will raise below

        # Choose pivot column, c
        piv_cols = [_ for _ in range(A.cols) if A[k, _] < 0]
        if not piv_cols:
            raise InfeasibleLPError(filldedent("""
                The constraint set is empty!"""))
        _, c = min((X[i], i) for i in piv_cols) # Bland's rule

        # Choose pivot row, r
        piv_rows = [_ for _ in range(A.rows) if A[_, c] > 0 and B[_] > 0]
        piv_rows.append(k)
        r = _choose_pivot_row(A, B, piv_rows, c, Y)

        # check for oscillation
        if (r, c) == last:
            # Not sure what to do here; it looks like there will be
            # oscillations; see o1 test added at this commit to
            # see a system with no solution and the o2 for one
            # with a solution. In the case of o2, the solution
            # from linprog is the same as the one from lpmin, but
            # the matrices created in the lpmin case are different
            # than those created without replacements in linprog and
            # the matrices in the linprog case lead to oscillations.
            # If the matrices could be re-written in linprog like
            # lpmin does, this behavior could be avoided and then
            # perhaps the oscillating case would only occur when
            # there is no solution. For now, the output is checked
            # before exit if oscillations were detected and an
            # error is raised there if the solution was invalid.
            #
            # cf section 6 of Ferguson for a non-cycling modification
            last = True
            break
        last = r, c

        M = _pivot(M, r, c)
        X[c], Y[r] = Y[r], X[c]

    # Phase 2: from a feasible solution, pivot to optimal
    while True:
        B = M[:-1, -1]
        A = M[:-1, :-1]
        C = M[-1, :-1]

        # Choose a pivot column, c
        piv_cols = []
        piv_cols = [_ for _ in range(n) if C[_] < 0]
        if not piv_cols:
            break
        _, c = min((X[i], i) for i in piv_cols)  # Bland's rule

        # Choose a pivot row, r
        piv_rows = [_ for _ in range(m) if A[_, c] > 0]
        if not piv_rows:
            raise UnboundedLPError(filldedent("""
                Objective function can assume
                arbitrarily large values!"""))
        r = _choose_pivot_row(A, B, piv_rows, c, Y)

        M = _pivot(M, r, c)
        X[c], Y[r] = Y[r], X[c]

    argmax = [None] * n
    argmin_dual = [None] * m

    for i, (v, n) in enumerate(X):
        if v == False:
            argmax[n] = 0
        else:
            argmin_dual[n] = M[-1, i]

    for i, (v, n) in enumerate(Y):
        if v == True:
            argmin_dual[n] = 0
        else:
            argmax[n] = M[i, -1]

    if last and not all(i >= 0 for i in argmax + argmin_dual):
        raise InfeasibleLPError(filldedent("""
            Oscillating system led to invalid solution.
            If you believe there was a valid solution, please
            report this as a bug."""))
    return -M[-1, -1], argmax, argmin_dual


## routines that use _simplex or support those that do


def _abcd(M, list=False):
    """return parts of M as matrices or lists

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.solvers.simplex import _abcd

    >>> m = Matrix(3, 3, range(9)); m
    Matrix([
    [0, 1, 2],
    [3, 4, 5],
    [6, 7, 8]])
    >>> a, b, c, d = _abcd(m)
    >>> a
    Matrix([
    [0, 1],
    [3, 4]])
    >>> b
    Matrix([
    [2],
    [5]])
    >>> c
    Matrix([[6, 7]])
    >>> d
    Matrix([[8]])

    The matrices can be returned as compact lists, too:

    >>> L = a, b, c, d = _abcd(m, list=True); L
    ([[0, 1], [3, 4]], [2, 5], [[6, 7]], [8])
    """

    def aslist(i):
        l = i.tolist()
        if len(l[0]) == 1:  # col vector
            return [i[0] for i in l]
        return l

    m = M[:-1, :-1], M[:-1, -1], M[-1, :-1], M[-1:, -1:]
    if not list:
        return m
    return tuple([aslist(i) for i in m])


def _m(a, b, c, d=None):
    """return Matrix([[a, b], [c, d]]) from matrices
    in Matrix or list form.

    Examples
    ========

    >>> from sympy import Matrix
    >>> from sympy.solvers.simplex import _abcd, _m
    >>> m = Matrix(3, 3, range(9))
    >>> L = _abcd(m, list=True); L
    ([[0, 1], [3, 4]], [2, 5], [[6, 7]], [8])
    >>> _abcd(m)
    (Matrix([
    [0, 1],
    [3, 4]]), Matrix([
    [2],
    [5]]), Matrix([[6, 7]]), Matrix([[8]]))
    >>> assert m == _m(*L) == _m(*_)
    """
    a, b, c, d = [Matrix(i) for i in (a, b, c, d or [0])]
    return Matrix([[a, b], [c, d]])


def _primal_dual(M, factor=True):
    """return primal and dual function and constraints
    assuming that ``M = Matrix([[A, b], [c, d]])`` and the
    function ``c*x - d`` is being minimized with ``Ax >= b``
    for nonnegative values of ``x``. The dual and its
    constraints will be for maximizing `b.T*y - d` subject
    to ``A.T*y <= c.T``.

    Examples
    ========

    >>> from sympy.solvers.simplex import _primal_dual, lpmin, lpmax
    >>> from sympy import Matrix

    The following matrix represents the primal task of
    minimizing x + y + 7 for y >= x + 1 and y >= -2*x + 3.
    The dual task seeks to maximize x + 3*y + 7 with
    2*y - x <= 1 and and x + y <= 1:

    >>> M = Matrix([
    ...     [-1, 1,  1],
    ...     [ 2, 1,  3],
    ...     [ 1, 1, -7]])
    >>> p, d = _primal_dual(M)

    The minimum of the primal and maximum of the dual are the same
    (though they occur at different points):

    >>> lpmin(*p)
    (28/3, {x1: 2/3, x2: 5/3})
    >>> lpmax(*d)
    (28/3, {y1: 1/3, y2: 2/3})

    If the equivalent (but canonical) inequalities are
    desired, leave `factor=True`, otherwise the unmodified
    inequalities for M will be returned.

    >>> m = Matrix([
    ... [-3, -2,  4, -2],
    ... [ 2,  0,  0, -2],
    ... [ 0,  1, -3,  0]])

    >>> _primal_dual(m, False)  # last condition is 2*x1 >= -2
    ((x2 - 3*x3,
        [-3*x1 - 2*x2 + 4*x3 >= -2, 2*x1 >= -2]),
    (-2*y1 - 2*y2,
        [-3*y1 + 2*y2 <= 0, -2*y1 <= 1, 4*y1 <= -3]))

    >>> _primal_dual(m)  # condition now x1 >= -1
    ((x2 - 3*x3,
        [-3*x1 - 2*x2 + 4*x3 >= -2, x1 >= -1]),
    (-2*y1 - 2*y2,
        [-3*y1 + 2*y2 <= 0, -2*y1 <= 1, 4*y1 <= -3]))

    If you pass the transpose of the matrix, the primal will be
    identified as the standard minimization problem and the
    dual as the standard maximization:

    >>> _primal_dual(m.T)
    ((-2*x1 - 2*x2,
        [-3*x1 + 2*x2 >= 0, -2*x1 >= 1, 4*x1 >= -3]),
    (y2 - 3*y3,
        [-3*y1 - 2*y2 + 4*y3 <= -2, y1 <= -1]))

    A matrix must have some size or else None will be returned for
    the functions:

    >>> _primal_dual(Matrix([[1, 2]]))
    ((x1 - 2, []), (-2, []))

    >>> _primal_dual(Matrix([]))
    ((None, []), (None, []))

    References
    ==========

    .. [1] David Galvin, Relations between Primal and Dual
           www3.nd.edu/~dgalvin1/30210/30210_F07/presentations/dual_opt.pdf
    """
    if not M:
        return (None, []), (None, [])
    if not hasattr(M, "shape"):
        if len(M) not in (3, 4):
            raise ValueError("expecting Matrix or 3 or 4 lists")
        M = _m(*M)
    m, n = [i - 1 for i in M.shape]
    A, b, c, d = _abcd(M)
    d = d[0]
    _ = lambda x: numbered_symbols(x, start=1)
    x = Matrix([i for i, j in zip(_("x"), range(n))])
    yT = Matrix([i for i, j in zip(_("y"), range(m))]).T

    def ineq(L, r, op):
        rv = []
        for r in (op(i, j) for i, j in zip(L, r)):
            if r == True:
                continue
            elif r == False:
                return [False]
            if factor:
                f = factor_terms(r)
                if f.lhs.is_Mul and f.rhs % f.lhs.args[0] == 0:
                    assert len(f.lhs.args) == 2, f.lhs
                    k = f.lhs.args[0]
                    r = r.func(sign(k) * f.lhs.args[1], f.rhs // abs(k))
            rv.append(r)
        return rv

    eq = lambda x, d: x[0] - d if x else -d
    F = eq(c * x, d)
    f = eq(yT * b, d)
    return (F, ineq(A * x, b, Ge)), (f, ineq(yT * A, c, Le))


def _rel_as_nonpos(constr, syms):
    """return `(np, d, aux)` where `np` is a list of nonpositive
    expressions that represent the given constraints (possibly
    rewritten in terms of auxilliary variables) expressible with
    nonnegative symbols, and `d` is a dictionary mapping a given
    symbols to an expression with an auxilliary variable. In some
    cases a symbol will be used as part of the change of variables,
    e.g. x: x - z1 instead of x: z1 - z2.

    If any constraint is False/empty, return None. All variables in
    ``constr`` are assumed to be unbounded unless explicitly indicated
    otherwise with a univariate constraint, e.g. ``x >= 0`` will
    restrict ``x`` to nonnegative values.

    The ``syms`` must be included so all symbols can be given an
    unbounded assumption if they are not otherwise bound with
    univariate conditions like ``x <= 3``.

    Examples
    ========

    >>> from sympy.solvers.simplex import _rel_as_nonpos
    >>> from sympy.abc import x, y
    >>> _rel_as_nonpos([x >= y, x >= 0, y >= 0], (x, y))
    ([-x + y], {}, [])
    >>> _rel_as_nonpos([x >= 3, x <= 5], [x])
    ([_z1 - 2], {x: _z1 + 3}, [_z1])
    >>> _rel_as_nonpos([x <= 5], [x])
    ([], {x: 5 - _z1}, [_z1])
    >>> _rel_as_nonpos([x >= 1], [x])
    ([], {x: _z1 + 1}, [_z1])
    """
    r = {}  # replacements to handle change of variables
    np = []  # nonpositive expressions
    aux = []  # auxilliary symbols added
    ui = numbered_symbols("z", start=1, cls=Dummy)  # auxilliary symbols
    univariate = {}  # {x: interval} for univariate constraints
    unbound = []  # symbols designated as unbound
    syms = set(syms)  # the expected syms of the system

    # separate out univariates
    for i in constr:
        if i == True:
            continue  # ignore
        if i == False:
            return  # no solution
        if i.has(S.Infinity, S.NegativeInfinity):
            raise ValueError("only finite bounds are permitted")
        if isinstance(i, (Le, Ge)):
            i = i.lts - i.gts
            freei = i.free_symbols
            if freei - syms:
                raise ValueError(
                    "unexpected symbol(s) in constraint: %s" % (freei - syms)
                )
            if len(freei) > 1:
                np.append(i)
            elif freei:
                x = freei.pop()
                if x in unbound:
                    continue  # will handle later
                ivl = Le(i, 0, evaluate=False).as_set()
                if x not in univariate:
                    univariate[x] = ivl
                else:
                    univariate[x] &= ivl
            elif i:
                return False
        else:
            raise TypeError(filldedent("""
                only equalities like Eq(x, y) or non-strict
                inequalities like x >= y are allowed in lp, not %s""" % i))

    # introduce auxilliary variables as needed for univariate
    # inequalities
    for x in syms:
        i = univariate.get(x, True)
        if not i:
            return None  # no solution possible
        if i == True:
            unbound.append(x)
            continue
        a, b = i.inf, i.sup
        if a.is_infinite:
            u = next(ui)
            r[x] = b - u
            aux.append(u)
        elif b.is_infinite:
            if a:
                u = next(ui)
                r[x] = a + u
                aux.append(u)
            else:
                # standard nonnegative relationship
                pass
        else:
            u = next(ui)
            aux.append(u)
            # shift so u = x - a => x = u + a
            r[x] = u + a
            # add constraint for u <= b - a
            # since when u = b-a then x = u + a = b - a + a = b:
            # the upper limit for x
            np.append(u - (b - a))

    # make change of variables for unbound variables
    for x in unbound:
        u = next(ui)
        r[x] = u - x  # reusing x
        aux.append(u)

    return np, r, aux


def _lp_matrices(objective, constraints):
    """return A, B, C, D, r, x+X, X for maximizing
    objective = Cx - D with constraints Ax <= B, introducing
    introducing auxilliary variables, X, as necessary to make
    replacements of symbols as given in r, {xi: expression with Xj},
    so all variables in x+X will take on nonnegative values.

    Every univariate condition creates a semi-infinite
    condition, e.g. a single ``x <= 3`` creates the
    interval ``[-oo, 3]`` while ``x <= 3`` and ``x >= 2``
    create an interval ``[2, 3]``. Variables not in a univariate
    expression will take on nonnegative values.
    """

    # sympify input and collect free symbols
    F = sympify(objective)
    np = [sympify(i) for i in constraints]
    syms = set.union(*[i.free_symbols for i in [F] + np], set())

    # change Eq(x, y) to x - y <= 0 and y - x <= 0
    for i in range(len(np)):
        if isinstance(np[i], Eq):
            np[i] = np[i].lhs - np[i].rhs <= 0
            np.append(-np[i].lhs <= 0)

    # convert constraints to nonpositive expressions
    _ = _rel_as_nonpos(np, syms)
    if _ is None:
        raise InfeasibleLPError(filldedent("""
            Inconsistent/False constraint"""))
    np, r, aux = _

    # do change of variables
    F = F.xreplace(r)
    np = [i.xreplace(r) for i in np]

    # convert to matrices
    xx = list(ordered(syms)) + aux
    A, B = linear_eq_to_matrix(np, xx)
    C, D = linear_eq_to_matrix([F], xx)
    return A, B, C, D, r, xx, aux


def _lp(min_max, f, constr):
    """Return the optimization (min or max) of ``f`` with the given
    constraints. All variables are unbounded unless constrained.

    If `min_max` is 'max' then the results corresponding to the
    maximization of ``f`` will be returned, else the minimization.
    The constraints can be given as Le, Ge or Eq expressions.

    Examples
    ========

    >>> from sympy.solvers.simplex import _lp as lp
    >>> from sympy import Eq
    >>> from sympy.abc import x, y, z
    >>> f = x + y - 2*z
    >>> c = [7*x + 4*y - 7*z <= 3, 3*x - y + 10*z <= 6]
    >>> c += [i >= 0 for i in (x, y, z)]
    >>> lp(min, f, c)
    (-6/5, {x: 0, y: 0, z: 3/5})

    By passing max, the maximum value for f under the constraints
    is returned (if possible):

    >>> lp(max, f, c)
    (3/4, {x: 0, y: 3/4, z: 0})

    Constraints that are equalities will require that the solution
    also satisfy them:

    >>> lp(max, f, c + [Eq(y - 9*x, 1)])
    (5/7, {x: 0, y: 1, z: 1/7})

    All symbols are reported, even if they are not in the objective
    function:

    >>> lp(min, x, [y + x >= 3, x >= 0])
    (0, {x: 0, y: 3})
    """
    # get the matrix components for the system expressed
    # in terms of only nonnegative variables
    A, B, C, D, r, xx, aux = _lp_matrices(f, constr)

    how = str(min_max).lower()
    if "max" in how:
        # _simplex minimizes for Ax <= B so we
        # have to change the sign of the function
        # and negate the optimal value returned
        _o, p, d = _simplex(A, B, -C, -D)
        o = -_o
    elif "min" in how:
        o, p, d = _simplex(A, B, C, D)
    else:
        raise ValueError("expecting min or max")

    # restore original variables and remove aux from p
    p = dict(zip(xx, p))
    if r:  # p has original symbols and auxilliary symbols
        # if r has x: x - z1 use values from p to update
        r = {k: v.xreplace(p) for k, v in r.items()}
        # then use the actual value of x (= x - z1) in p
        p.update(r)
        # don't show aux
        p = {k: p[k] for k in ordered(p) if k not in aux}

    # not returning dual since there may be extra constraints
    # when a variable has finite bounds
    return o, p


def lpmin(f, constr):
    """return minimum of linear equation ``f`` under
    linear constraints expressed using Ge, Le or Eq.

    All variables are unbounded unless constrained.

    Examples
    ========

    >>> from sympy.solvers.simplex import lpmin
    >>> from sympy import Eq
    >>> from sympy.abc import x, y
    >>> lpmin(x, [2*x - 3*y >= -1, Eq(x + 3*y, 2), x <= 2*y])
    (1/3, {x: 1/3, y: 5/9})

    Negative values for variables are permitted unless explicitly
    exluding, so minimizing ``x`` for ``x <= 3`` is an
    unbounded problem while the following has a bounded solution:

    >>> lpmin(x, [x >= 0, x <= 3])
    (0, {x: 0})

    Without indicating that ``x`` is nonnegative, there
    is no minimum for this objective:

    >>> lpmin(x, [x <= 3])
    Traceback (most recent call last):
    ...
    sympy.solvers.simplex.UnboundedLPError:
    Objective function can assume arbitrarily large values!

    See Also
    ========
    linprog, lpmax
    """
    return _lp(min, f, constr)


def lpmax(f, constr):
    """return maximum of linear equation ``f`` under
    linear constraints expressed using Ge, Le or Eq.

    All variables are unbounded unless constrained.

    Examples
    ========

    >>> from sympy.solvers.simplex import lpmax
    >>> from sympy import Eq
    >>> from sympy.abc import x, y
    >>> lpmax(x, [2*x - 3*y >= -1, Eq(x+ 3*y,2), x <= 2*y])
    (4/5, {x: 4/5, y: 2/5})

    Negative values for variables are permitted unless explicitly
    exluding:

    >>> lpmax(x, [x <= -1])
    (-1, {x: -1})

    If a non-negative constraint is added for x, there is no
    possible solution:

    >>> lpmax(x, [x <= -1, x >= 0])
    Traceback (most recent call last):
    ...
    sympy.solvers.simplex.InfeasibleLPError: inconsistent/False constraint

    See Also
    ========
    linprog, lpmin
    """
    return _lp(max, f, constr)


def _handle_bounds(bounds):
    # introduce auxilliary variables as needed for univariate
    # inequalities

    unbound = []
    R = [0] * len(bounds)  # a (growing) row of zeros

    def n():
        return len(R) - 1

    def Arow(inc=1):
        R.extend([0] * inc)
        return R[:]

    row = []
    for x, (a, b) in enumerate(bounds):
        if a is None and b is None:
            unbound.append(x)
        elif a is None:
            # r[x] = b - u
            A = Arow()
            A[x] = 1
            A[n()] = 1
            B = [b]
            row.append((A, B))
            A = [0] * len(A)
            A[x] = -1
            A[n()] = -1
            B = [-b]
            row.append((A, B))
        elif b is None:
            if a:
                # r[x] = a + u
                A = Arow()
                A[x] = 1
                A[n()] = -1
                B = [a]
                row.append((A, B))
                A = [0] * len(A)
                A[x] = -1
                A[n()] = 1
                B = [-a]
                row.append((A, B))
            else:
                # standard nonnegative relationship
                pass
        else:
            # r[x] = u + a
            A = Arow()
            A[x] = 1
            A[n()] = -1
            B = [a]
            row.append((A, B))
            A = [0] * len(A)
            A[x] = -1
            A[n()] = 1
            B = [-a]
            row.append((A, B))
            # u <= b - a
            A = [0] * len(A)
            A[x] = 0
            A[n()] = 1
            B = [b - a]
            row.append((A, B))

    # make change of variables for unbound variables
    for x in unbound:
        # r[x] = u - v
        A = Arow(2)
        B = [0]
        A[x] = 1
        A[n()] = 1
        A[n() - 1] = -1
        row.append((A, B))
        A = [0] * len(A)
        A[x] = -1
        A[n()] = -1
        A[n() - 1] = 1
        row.append((A, B))

    return Matrix([r+[0]*(len(R) - len(r)) for r,_ in row]
        ), Matrix([i[1] for i in row])


def linprog(c, A=None, b=None, A_eq=None, b_eq=None, bounds=None):
    """Return the minimization of ``c*x`` with the given
    constraints ``A*x <= b`` and ``A_eq*x = b_eq``. Unless bounds
    are given, variables will have nonnegative values in the solution.

    If ``A`` is not given, then the dimension of the system will
    be determined by the length of ``C``.

    By default, all variables will be nonnegative. If ``bounds``
    is given as a single tuple, ``(lo, hi)``, then all variables
    will be constrained to be between ``lo`` and ``hi``. Use
    None for a ``lo`` or ``hi`` if it is unconstrained in the
    negative or positive direction, respectively, e.g.
    ``(None, 0)`` indicates nonpositive values. To set
    individual ranges, pass a list with length equal to the
    number of columns in ``A``, each element being a tuple; if
    only a few variables take on non-default values they can be
    passed as a dictionary with keys giving the corresponding
    column to which the variable is assigned, e.g. ``bounds={2:
    (1, 4)}`` would limit the 3rd variable to have a value in
    range ``[1, 4]``.

    Examples
    ========

    >>> from sympy.solvers.simplex import linprog
    >>> from sympy import symbols, Eq, linear_eq_to_matrix as M, Matrix
    >>> x = x1, x2, x3, x4 = symbols('x1:5')
    >>> X = Matrix(x)
    >>> c, d = M(5*x2 + x3 + 4*x4 - x1, x)
    >>> a, b = M([5*x2 + 2*x3 + 5*x4 - (x1 + 5)], x)
    >>> aeq, beq = M([Eq(3*x2 + x4, 2), Eq(-x1 + x3 + 2*x4, 1)], x)
    >>> constr = [i <= j for i,j in zip(a*X, b)]
    >>> constr += [Eq(i, j) for i,j in zip(aeq*X, beq)]
    >>> linprog(c, a, b, aeq, beq)
    (9/2, [0, 1/2, 0, 1/2])
    >>> assert all(i.subs(dict(zip(x, _[1]))) for i in constr)

    See Also
    ========
    lpmin, lpmax
    """

    ## the objective
    C = Matrix(c)
    if C.rows != 1 and C.cols == 1:
        C = C.T
    if C.rows != 1:
        raise ValueError("C must be a single row.")

    ## the inequalities
    if not A:
        if b:
            raise ValueError("A and b must both be given")
        # the governing equations will be simple constraints
        # on variables
        A, b = zeros(0, C.cols), zeros(C.cols, 1)
    else:
        A, b = [Matrix(i) for i in (A, b)]

    if A.cols != C.cols:
        raise ValueError("number of columns in A and C must match")

    ## the equalities
    if A_eq is None:
        if not b_eq is None:
            raise ValueError("A_eq and b_eq must both be given")
    else:
        A_eq, b_eq = [Matrix(i) for i in (A_eq, b_eq)]
        # if x == y then x <= y and x >= y (-x <= -y)
        A = A.col_join(A_eq)
        A = A.col_join(-A_eq)
        b = b.col_join(b_eq)
        b = b.col_join(-b_eq)

    if not (bounds is None or bounds == {} or bounds == (0, None)):
        ## the bounds are interpreted
        if type(bounds) is tuple and len(bounds) == 2:
            bounds = [bounds] * A.cols
        elif len(bounds) == A.cols and all(
                type(i) is tuple and len(i) == 2 for i in bounds):
            pass # individual bounds
        elif type(bounds) is dict and all(
                type(i) is tuple and len(i) == 2
                for i in bounds.values()):
            # sparse bounds
            db = bounds
            bounds = [(0, None)] * A.cols
            while db:
                i, j = db.popitem()
                bounds[i] = j  # IndexError if out-of-bounds indices
        else:
            raise ValueError("unexpected bounds %s" % bounds)
        A_, b_ = _handle_bounds(bounds)
        aux = A_.cols - A.cols
        if A:
            A = Matrix([[A, zeros(A.rows, aux)], [A_]])
            b = b.col_join(b_)
        else:
            A = A_
            b = b_
        C = C.row_join(zeros(1, aux))
    else:
        aux = -A.cols  # set so -aux will give all cols below

    o, p, d = _simplex(A, b, C)
    return o, p[:-aux]  # don't include aux values

def show_linprog(c, A=None, b=None, A_eq=None, b_eq=None, bounds=None):
    from sympy import symbols
    ## the objective
    C = Matrix(c)
    if C.rows != 1 and C.cols == 1:
        C = C.T
    if C.rows != 1:
        raise ValueError("C must be a single row.")

    ## the inequalities
    if not A:
        if b:
            raise ValueError("A and b must both be given")
        # the governing equations will be simple constraints
        # on variables
        A, b = zeros(0, C.cols), zeros(C.cols, 1)
    else:
        A, b = [Matrix(i) for i in (A, b)]

    if A.cols != C.cols:
        raise ValueError("number of columns in A and C must match")

    ## the equalities
    if A_eq is None:
        if not b_eq is None:
            raise ValueError("A_eq and b_eq must both be given")
    else:
        A_eq, b_eq = [Matrix(i) for i in (A_eq, b_eq)]

    if not (bounds is None or bounds == {} or bounds == (0, None)):
        ## the bounds are interpreted
        if type(bounds) is tuple and len(bounds) == 2:
            bounds = [bounds] * A.cols
        elif len(bounds) == A.cols and all(
                type(i) is tuple and len(i) == 2 for i in bounds):
            pass # individual bounds
        elif type(bounds) is dict and all(
                type(i) is tuple and len(i) == 2
                for i in bounds.values()):
            # sparse bounds
            db = bounds
            bounds = [(0, None)] * A.cols
            while db:
                i, j = db.popitem()
                bounds[i] = j  # IndexError if out-of-bounds indices
        else:
            raise ValueError("unexpected bounds %s" % bounds)

    x = Matrix(symbols('x1:%s' % (A.cols+1)))
    f,c = (C*x)[0], [i<=j for i,j in zip(A*x, b)] + [Eq(i,j) for i,j in zip(A_eq*x,b_eq)]
    for i, (lo, hi) in enumerate(bounds):
        if lo is None and hi is None:
            continue
        if lo is None:
            c.append(x[i]<=hi)
        elif hi is None:
            c.append(x[i]>=lo)
        else:
            c.append(x[i]>=lo)
            c.append(x[i]<=hi)
    return f,c