File size: 35,023 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
"""
This module contains pdsolve() and different helper functions that it
uses. It is heavily inspired by the ode module and hence the basic
infrastructure remains the same.

**Functions in this module**

    These are the user functions in this module:

    - pdsolve()     - Solves PDE's
    - classify_pde() - Classifies PDEs into possible hints for dsolve().
    - pde_separate() - Separate variables in partial differential equation either by
                       additive or multiplicative separation approach.

    These are the helper functions in this module:

    - pde_separate_add() - Helper function for searching additive separable solutions.
    - pde_separate_mul() - Helper function for searching multiplicative
                           separable solutions.

**Currently implemented solver methods**

The following methods are implemented for solving partial differential
equations.  See the docstrings of the various pde_hint() functions for
more information on each (run help(pde)):

  - 1st order linear homogeneous partial differential equations
    with constant coefficients.
  - 1st order linear general partial differential equations
    with constant coefficients.
  - 1st order linear partial differential equations with
    variable coefficients.

"""
from functools import reduce

from itertools import combinations_with_replacement
from sympy.simplify import simplify  # type: ignore
from sympy.core import Add, S
from sympy.core.function import Function, expand, AppliedUndef, Subs
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Wild, symbols
from sympy.functions import exp
from sympy.integrals.integrals import Integral, integrate
from sympy.utilities.iterables import has_dups, is_sequence
from sympy.utilities.misc import filldedent

from sympy.solvers.deutils import _preprocess, ode_order, _desolve
from sympy.solvers.solvers import solve
from sympy.simplify.radsimp import collect

import operator


allhints = (
    "1st_linear_constant_coeff_homogeneous",
    "1st_linear_constant_coeff",
    "1st_linear_constant_coeff_Integral",
    "1st_linear_variable_coeff"
    )


def pdsolve(eq, func=None, hint='default', dict=False, solvefun=None, **kwargs):
    """
    Solves any (supported) kind of partial differential equation.

    **Usage**

        pdsolve(eq, f(x,y), hint) -> Solve partial differential equation
        eq for function f(x,y), using method hint.

    **Details**

        ``eq`` can be any supported partial differential equation (see
            the pde docstring for supported methods).  This can either
            be an Equality, or an expression, which is assumed to be
            equal to 0.

        ``f(x,y)`` is a function of two variables whose derivatives in that
            variable make up the partial differential equation. In many
            cases it is not necessary to provide this; it will be autodetected
            (and an error raised if it could not be detected).

        ``hint`` is the solving method that you want pdsolve to use.  Use
            classify_pde(eq, f(x,y)) to get all of the possible hints for
            a PDE.  The default hint, 'default', will use whatever hint
            is returned first by classify_pde().  See Hints below for
            more options that you can use for hint.

        ``solvefun`` is the convention used for arbitrary functions returned
            by the PDE solver. If not set by the user, it is set by default
            to be F.

    **Hints**

        Aside from the various solving methods, there are also some
        meta-hints that you can pass to pdsolve():

        "default":
                This uses whatever hint is returned first by
                classify_pde(). This is the default argument to
                pdsolve().

        "all":
                To make pdsolve apply all relevant classification hints,
                use pdsolve(PDE, func, hint="all").  This will return a
                dictionary of hint:solution terms.  If a hint causes
                pdsolve to raise the NotImplementedError, value of that
                hint's key will be the exception object raised.  The
                dictionary will also include some special keys:

                - order: The order of the PDE.  See also ode_order() in
                  deutils.py
                - default: The solution that would be returned by
                  default.  This is the one produced by the hint that
                  appears first in the tuple returned by classify_pde().

        "all_Integral":
                This is the same as "all", except if a hint also has a
                corresponding "_Integral" hint, it only returns the
                "_Integral" hint.  This is useful if "all" causes
                pdsolve() to hang because of a difficult or impossible
                integral.  This meta-hint will also be much faster than
                "all", because integrate() is an expensive routine.

        See also the classify_pde() docstring for more info on hints,
        and the pde docstring for a list of all supported hints.

    **Tips**
        - You can declare the derivative of an unknown function this way:

            >>> from sympy import Function, Derivative
            >>> from sympy.abc import x, y # x and y are the independent variables
            >>> f = Function("f")(x, y) # f is a function of x and y
            >>> # fx will be the partial derivative of f with respect to x
            >>> fx = Derivative(f, x)
            >>> # fy will be the partial derivative of f with respect to y
            >>> fy = Derivative(f, y)

        - See test_pde.py for many tests, which serves also as a set of
          examples for how to use pdsolve().
        - pdsolve always returns an Equality class (except for the case
          when the hint is "all" or "all_Integral"). Note that it is not possible
          to get an explicit solution for f(x, y) as in the case of ODE's
        - Do help(pde.pde_hintname) to get help more information on a
          specific hint


    Examples
    ========

    >>> from sympy.solvers.pde import pdsolve
    >>> from sympy import Function, Eq
    >>> from sympy.abc import x, y
    >>> f = Function('f')
    >>> u = f(x, y)
    >>> ux = u.diff(x)
    >>> uy = u.diff(y)
    >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
    >>> pdsolve(eq)
    Eq(f(x, y), F(3*x - 2*y)*exp(-2*x/13 - 3*y/13))

    """

    if not solvefun:
        solvefun = Function('F')

    # See the docstring of _desolve for more details.
    hints = _desolve(eq, func=func, hint=hint, simplify=True,
                     type='pde', **kwargs)
    eq = hints.pop('eq', False)
    all_ = hints.pop('all', False)

    if all_:
        # TODO : 'best' hint should be implemented when adequate
        # number of hints are added.
        pdedict = {}
        failed_hints = {}
        gethints = classify_pde(eq, dict=True)
        pdedict.update({'order': gethints['order'],
                        'default': gethints['default']})
        for hint in hints:
            try:
                rv = _helper_simplify(eq, hint, hints[hint]['func'],
                    hints[hint]['order'], hints[hint][hint], solvefun)
            except NotImplementedError as detail:
                failed_hints[hint] = detail
            else:
                pdedict[hint] = rv
        pdedict.update(failed_hints)
        return pdedict

    else:
        return _helper_simplify(eq, hints['hint'], hints['func'],
                                hints['order'], hints[hints['hint']], solvefun)


def _helper_simplify(eq, hint, func, order, match, solvefun):
    """Helper function of pdsolve that calls the respective
    pde functions to solve for the partial differential
    equations. This minimizes the computation in
    calling _desolve multiple times.
    """

    if hint.endswith("_Integral"):
        solvefunc = globals()[
            "pde_" + hint[:-len("_Integral")]]
    else:
        solvefunc = globals()["pde_" + hint]
    return _handle_Integral(solvefunc(eq, func, order,
        match, solvefun), func, order, hint)


def _handle_Integral(expr, func, order, hint):
    r"""
    Converts a solution with integrals in it into an actual solution.

    Simplifies the integral mainly using doit()
    """
    if hint.endswith("_Integral"):
        return expr

    elif hint == "1st_linear_constant_coeff":
        return simplify(expr.doit())

    else:
        return expr


def classify_pde(eq, func=None, dict=False, *, prep=True, **kwargs):
    """
    Returns a tuple of possible pdsolve() classifications for a PDE.

    The tuple is ordered so that first item is the classification that
    pdsolve() uses to solve the PDE by default.  In general,
    classifications near the beginning of the list will produce
    better solutions faster than those near the end, though there are
    always exceptions.  To make pdsolve use a different classification,
    use pdsolve(PDE, func, hint=<classification>).  See also the pdsolve()
    docstring for different meta-hints you can use.

    If ``dict`` is true, classify_pde() will return a dictionary of
    hint:match expression terms. This is intended for internal use by
    pdsolve().  Note that because dictionaries are ordered arbitrarily,
    this will most likely not be in the same order as the tuple.

    You can get help on different hints by doing help(pde.pde_hintname),
    where hintname is the name of the hint without "_Integral".

    See sympy.pde.allhints or the sympy.pde docstring for a list of all
    supported hints that can be returned from classify_pde.


    Examples
    ========

    >>> from sympy.solvers.pde import classify_pde
    >>> from sympy import Function, Eq
    >>> from sympy.abc import x, y
    >>> f = Function('f')
    >>> u = f(x, y)
    >>> ux = u.diff(x)
    >>> uy = u.diff(y)
    >>> eq = Eq(1 + (2*(ux/u)) + (3*(uy/u)), 0)
    >>> classify_pde(eq)
    ('1st_linear_constant_coeff_homogeneous',)
    """

    if func and len(func.args) != 2:
        raise NotImplementedError("Right now only partial "
            "differential equations of two variables are supported")

    if prep or func is None:
        prep, func_ = _preprocess(eq, func)
        if func is None:
            func = func_

    if isinstance(eq, Equality):
        if eq.rhs != 0:
            return classify_pde(eq.lhs - eq.rhs, func)
        eq = eq.lhs

    f = func.func
    x = func.args[0]
    y = func.args[1]
    fx = f(x,y).diff(x)
    fy = f(x,y).diff(y)

    # TODO : For now pde.py uses support offered by the ode_order function
    # to find the order with respect to a multi-variable function. An
    # improvement could be to classify the order of the PDE on the basis of
    # individual variables.
    order = ode_order(eq, f(x,y))

    # hint:matchdict or hint:(tuple of matchdicts)
    # Also will contain "default":<default hint> and "order":order items.
    matching_hints = {'order': order}

    if not order:
        if dict:
            matching_hints["default"] = None
            return matching_hints
        return ()

    eq = expand(eq)

    a = Wild('a', exclude = [f(x,y)])
    b = Wild('b', exclude = [f(x,y), fx, fy, x, y])
    c = Wild('c', exclude = [f(x,y), fx, fy, x, y])
    d = Wild('d', exclude = [f(x,y), fx, fy, x, y])
    e = Wild('e', exclude = [f(x,y), fx, fy])
    n = Wild('n', exclude = [x, y])
    # Try removing the smallest power of f(x,y)
    # from the highest partial derivatives of f(x,y)
    reduced_eq = eq
    if eq.is_Add:
        power = None
        for i in set(combinations_with_replacement((x,y), order)):
            coeff = eq.coeff(f(x,y).diff(*i))
            if coeff == 1:
                continue
            match = coeff.match(a*f(x,y)**n)
            if match and match[a]:
                if power is None or match[n] < power:
                    power = match[n]
        if power:
            den = f(x,y)**power
            reduced_eq = Add(*[arg/den for arg in eq.args])

    if order == 1:
        reduced_eq = collect(reduced_eq, f(x, y))
        r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e)
        if r:
            if not r[e]:
                ## Linear first-order homogeneous partial-differential
                ## equation with constant coefficients
                r.update({'b': b, 'c': c, 'd': d})
                matching_hints["1st_linear_constant_coeff_homogeneous"] = r
            elif r[b]**2 + r[c]**2 != 0:
                ## Linear first-order general partial-differential
                ## equation with constant coefficients
                r.update({'b': b, 'c': c, 'd': d, 'e': e})
                matching_hints["1st_linear_constant_coeff"] = r
                matching_hints["1st_linear_constant_coeff_Integral"] = r

        else:
            b = Wild('b', exclude=[f(x, y), fx, fy])
            c = Wild('c', exclude=[f(x, y), fx, fy])
            d = Wild('d', exclude=[f(x, y), fx, fy])
            r = reduced_eq.match(b*fx + c*fy + d*f(x,y) + e)
            if r:
                r.update({'b': b, 'c': c, 'd': d, 'e': e})
                matching_hints["1st_linear_variable_coeff"] = r

    # Order keys based on allhints.
    rettuple = tuple(i for i in allhints if i in matching_hints)

    if dict:
        # Dictionaries are ordered arbitrarily, so make note of which
        # hint would come first for pdsolve().  Use an ordered dict in Py 3.
        matching_hints["default"] = None
        matching_hints["ordered_hints"] = rettuple
        for i in allhints:
            if i in matching_hints:
                matching_hints["default"] = i
                break
        return matching_hints
    return rettuple


def checkpdesol(pde, sol, func=None, solve_for_func=True):
    """
    Checks if the given solution satisfies the partial differential
    equation.

    pde is the partial differential equation which can be given in the
    form of an equation or an expression. sol is the solution for which
    the pde is to be checked. This can also be given in an equation or
    an expression form. If the function is not provided, the helper
    function _preprocess from deutils is used to identify the function.

    If a sequence of solutions is passed, the same sort of container will be
    used to return the result for each solution.

    The following methods are currently being implemented to check if the
    solution satisfies the PDE:

        1. Directly substitute the solution in the PDE and check. If the
           solution has not been solved for f, then it will solve for f
           provided solve_for_func has not been set to False.

    If the solution satisfies the PDE, then a tuple (True, 0) is returned.
    Otherwise a tuple (False, expr) where expr is the value obtained
    after substituting the solution in the PDE. However if a known solution
    returns False, it may be due to the inability of doit() to simplify it to zero.

    Examples
    ========

    >>> from sympy import Function, symbols
    >>> from sympy.solvers.pde import checkpdesol, pdsolve
    >>> x, y = symbols('x y')
    >>> f = Function('f')
    >>> eq = 2*f(x,y) + 3*f(x,y).diff(x) + 4*f(x,y).diff(y)
    >>> sol = pdsolve(eq)
    >>> assert checkpdesol(eq, sol)[0]
    >>> eq = x*f(x,y) + f(x,y).diff(x)
    >>> checkpdesol(eq, sol)
    (False, (x*F(4*x - 3*y) - 6*F(4*x - 3*y)/25 + 4*Subs(Derivative(F(_xi_1), _xi_1), _xi_1, 4*x - 3*y))*exp(-6*x/25 - 8*y/25))
    """

    # Converting the pde into an equation
    if not isinstance(pde, Equality):
        pde = Eq(pde, 0)

    # If no function is given, try finding the function present.
    if func is None:
        try:
            _, func = _preprocess(pde.lhs)
        except ValueError:
            funcs = [s.atoms(AppliedUndef) for s in (
                sol if is_sequence(sol, set) else [sol])]
            funcs = set().union(funcs)
            if len(funcs) != 1:
                raise ValueError(
                    'must pass func arg to checkpdesol for this case.')
            func = funcs.pop()

    # If the given solution is in the form of a list or a set
    # then return a list or set of tuples.
    if is_sequence(sol, set):
        return type(sol)([checkpdesol(
            pde, i, func=func,
            solve_for_func=solve_for_func) for i in sol])

    # Convert solution into an equation
    if not isinstance(sol, Equality):
        sol = Eq(func, sol)
    elif sol.rhs == func:
        sol = sol.reversed

    # Try solving for the function
    solved = sol.lhs == func and not sol.rhs.has(func)
    if solve_for_func and not solved:
        solved = solve(sol, func)
        if solved:
            if len(solved) == 1:
                return checkpdesol(pde, Eq(func, solved[0]),
                    func=func, solve_for_func=False)
            else:
                return checkpdesol(pde, [Eq(func, t) for t in solved],
                    func=func, solve_for_func=False)

    # try direct substitution of the solution into the PDE and simplify
    if sol.lhs == func:
        pde = pde.lhs - pde.rhs
        s = simplify(pde.subs(func, sol.rhs).doit())
        return s is S.Zero, s

    raise NotImplementedError(filldedent('''
        Unable to test if %s is a solution to %s.''' % (sol, pde)))



def pde_1st_linear_constant_coeff_homogeneous(eq, func, order, match, solvefun):
    r"""
    Solves a first order linear homogeneous
    partial differential equation with constant coefficients.

    The general form of this partial differential equation is

    .. math:: a \frac{\partial f(x,y)}{\partial x}
              + b \frac{\partial f(x,y)}{\partial y} + c f(x,y) = 0

    where `a`, `b` and `c` are constants.

    The general solution is of the form:

    .. math::
        f(x, y) = F(- a y + b x ) e^{- \frac{c (a x + b y)}{a^2 + b^2}}

    and can be found in SymPy with ``pdsolve``::

        >>> from sympy.solvers import pdsolve
        >>> from sympy.abc import x, y, a, b, c
        >>> from sympy import Function, pprint
        >>> f = Function('f')
        >>> u = f(x,y)
        >>> ux = u.diff(x)
        >>> uy = u.diff(y)
        >>> genform = a*ux + b*uy + c*u
        >>> pprint(genform)
          d               d
        a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y)
          dx              dy

        >>> pprint(pdsolve(genform))
                                 -c*(a*x + b*y)
                                 ---------------
                                      2    2
                                     a  + b
        f(x, y) = F(-a*y + b*x)*e

    Examples
    ========

    >>> from sympy import pdsolve
    >>> from sympy import Function, pprint
    >>> from sympy.abc import x,y
    >>> f = Function('f')
    >>> pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y))
    Eq(f(x, y), F(x - y)*exp(-x/2 - y/2))
    >>> pprint(pdsolve(f(x,y) + f(x,y).diff(x) + f(x,y).diff(y)))
                          x   y
                        - - - -
                          2   2
    f(x, y) = F(x - y)*e

    References
    ==========

    - Viktor Grigoryan, "Partial Differential Equations"
      Math 124A - Fall 2010, pp.7

    """
    # TODO : For now homogeneous first order linear PDE's having
    # two variables are implemented. Once there is support for
    # solving systems of ODE's, this can be extended to n variables.

    f = func.func
    x = func.args[0]
    y = func.args[1]
    b = match[match['b']]
    c = match[match['c']]
    d = match[match['d']]
    return Eq(f(x,y), exp(-S(d)/(b**2 + c**2)*(b*x + c*y))*solvefun(c*x - b*y))


def pde_1st_linear_constant_coeff(eq, func, order, match, solvefun):
    r"""
    Solves a first order linear partial differential equation
    with constant coefficients.

    The general form of this partial differential equation is

    .. math:: a \frac{\partial f(x,y)}{\partial x}
              + b \frac{\partial f(x,y)}{\partial y}
              + c f(x,y) = G(x,y)

    where `a`, `b` and `c` are constants and `G(x, y)` can be an arbitrary
    function in `x` and `y`.

    The general solution of the PDE is:

    .. math::
        f(x, y) = \left. \left[F(\eta) + \frac{1}{a^2 + b^2}
        \int\limits^{a x + b y} G\left(\frac{a \xi + b \eta}{a^2 + b^2},
        \frac{- a \eta + b \xi}{a^2 + b^2} \right)
        e^{\frac{c \xi}{a^2 + b^2}}\, d\xi\right]
        e^{- \frac{c \xi}{a^2 + b^2}}
        \right|_{\substack{\eta=- a y + b x\\ \xi=a x + b y }}\, ,

    where `F(\eta)` is an arbitrary single-valued function. The solution
    can be found in SymPy with ``pdsolve``::

        >>> from sympy.solvers import pdsolve
        >>> from sympy.abc import x, y, a, b, c
        >>> from sympy import Function, pprint
        >>> f = Function('f')
        >>> G = Function('G')
        >>> u = f(x, y)
        >>> ux = u.diff(x)
        >>> uy = u.diff(y)
        >>> genform = a*ux + b*uy + c*u - G(x,y)
        >>> pprint(genform)
          d               d
        a*--(f(x, y)) + b*--(f(x, y)) + c*f(x, y) - G(x, y)
          dx              dy
        >>> pprint(pdsolve(genform, hint='1st_linear_constant_coeff_Integral'))
                  //          a*x + b*y                                             \         \|
                  ||              /                                                 |         ||
                  ||             |                                                  |         ||
                  ||             |                                      c*xi        |         ||
                  ||             |                                     -------      |         ||
                  ||             |                                      2    2      |         ||
                  ||             |      /a*xi + b*eta  -a*eta + b*xi\  a  + b       |         ||
                  ||             |     G|------------, -------------|*e        d(xi)|         ||
                  ||             |      |   2    2         2    2   |               |         ||
                  ||             |      \  a  + b         a  + b    /               |  -c*xi  ||
                  ||             |                                                  |  -------||
                  ||            /                                                   |   2    2||
                  ||                                                                |  a  + b ||
        f(x, y) = ||F(eta) + -------------------------------------------------------|*e       ||
                  ||                                  2    2                        |         ||
                  \\                                 a  + b                         /         /|eta=-a*y + b*x, xi=a*x + b*y

    Examples
    ========

    >>> from sympy.solvers.pde import pdsolve
    >>> from sympy import Function, pprint, exp
    >>> from sympy.abc import x,y
    >>> f = Function('f')
    >>> eq = -2*f(x,y).diff(x) + 4*f(x,y).diff(y) + 5*f(x,y) - exp(x + 3*y)
    >>> pdsolve(eq)
    Eq(f(x, y), (F(4*x + 2*y)*exp(x/2) + exp(x + 4*y)/15)*exp(-y))

    References
    ==========

    - Viktor Grigoryan, "Partial Differential Equations"
      Math 124A - Fall 2010, pp.7

    """

    # TODO : For now homogeneous first order linear PDE's having
    # two variables are implemented. Once there is support for
    # solving systems of ODE's, this can be extended to n variables.
    xi, eta = symbols("xi eta")
    f = func.func
    x = func.args[0]
    y = func.args[1]
    b = match[match['b']]
    c = match[match['c']]
    d = match[match['d']]
    e = -match[match['e']]
    expterm = exp(-S(d)/(b**2 + c**2)*xi)
    functerm = solvefun(eta)
    solvedict = solve((b*x + c*y - xi, c*x - b*y - eta), x, y)
    # Integral should remain as it is in terms of xi,
    # doit() should be done in _handle_Integral.
    genterm = (1/S(b**2 + c**2))*Integral(
        (1/expterm*e).subs(solvedict), (xi, b*x + c*y))
    return Eq(f(x,y), Subs(expterm*(functerm + genterm),
        (eta, xi), (c*x - b*y, b*x + c*y)))


def pde_1st_linear_variable_coeff(eq, func, order, match, solvefun):
    r"""
    Solves a first order linear partial differential equation
    with variable coefficients. The general form of this partial
    differential equation is

    .. math:: a(x, y) \frac{\partial f(x, y)}{\partial x}
                + b(x, y) \frac{\partial f(x, y)}{\partial y}
                + c(x, y) f(x, y) = G(x, y)

    where `a(x, y)`, `b(x, y)`, `c(x, y)` and `G(x, y)` are arbitrary
    functions in `x` and `y`. This PDE is converted into an ODE by
    making the following transformation:

    1. `\xi` as `x`

    2. `\eta` as the constant in the solution to the differential
       equation `\frac{dy}{dx} = -\frac{b}{a}`

    Making the previous substitutions reduces it to the linear ODE

    .. math:: a(\xi, \eta)\frac{du}{d\xi} + c(\xi, \eta)u - G(\xi, \eta) = 0

    which can be solved using ``dsolve``.

    >>> from sympy.abc import x, y
    >>> from sympy import Function, pprint
    >>> a, b, c, G, f= [Function(i) for i in ['a', 'b', 'c', 'G', 'f']]
    >>> u = f(x,y)
    >>> ux = u.diff(x)
    >>> uy = u.diff(y)
    >>> genform = a(x, y)*u + b(x, y)*ux + c(x, y)*uy - G(x,y)
    >>> pprint(genform)
                                         d                     d
    -G(x, y) + a(x, y)*f(x, y) + b(x, y)*--(f(x, y)) + c(x, y)*--(f(x, y))
                                         dx                    dy


    Examples
    ========

    >>> from sympy.solvers.pde import pdsolve
    >>> from sympy import Function, pprint
    >>> from sympy.abc import x,y
    >>> f = Function('f')
    >>> eq =  x*(u.diff(x)) - y*(u.diff(y)) + y**2*u - y**2
    >>> pdsolve(eq)
    Eq(f(x, y), F(x*y)*exp(y**2/2) + 1)

    References
    ==========

    - Viktor Grigoryan, "Partial Differential Equations"
      Math 124A - Fall 2010, pp.7

    """
    from sympy.solvers.ode import dsolve

    xi, eta = symbols("xi eta")
    f = func.func
    x = func.args[0]
    y = func.args[1]
    b = match[match['b']]
    c = match[match['c']]
    d = match[match['d']]
    e = -match[match['e']]


    if not d:
         # To deal with cases like b*ux = e or c*uy = e
         if not (b and c):
            if c:
                try:
                    tsol = integrate(e/c, y)
                except NotImplementedError:
                    raise NotImplementedError("Unable to find a solution"
                        " due to inability of integrate")
                else:
                    return Eq(f(x,y), solvefun(x) + tsol)
            if b:
                try:
                    tsol = integrate(e/b, x)
                except NotImplementedError:
                    raise NotImplementedError("Unable to find a solution"
                        " due to inability of integrate")
                else:
                    return Eq(f(x,y), solvefun(y) + tsol)

    if not c:
        # To deal with cases when c is 0, a simpler method is used.
        # The PDE reduces to b*(u.diff(x)) + d*u = e, which is a linear ODE in x
        plode = f(x).diff(x)*b + d*f(x) - e
        sol = dsolve(plode, f(x))
        syms = sol.free_symbols - plode.free_symbols - {x, y}
        rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, y)
        return Eq(f(x, y), rhs)

    if not b:
        # To deal with cases when b is 0, a simpler method is used.
        # The PDE reduces to c*(u.diff(y)) + d*u = e, which is a linear ODE in y
        plode = f(y).diff(y)*c + d*f(y) - e
        sol = dsolve(plode, f(y))
        syms = sol.free_symbols - plode.free_symbols - {x, y}
        rhs = _simplify_variable_coeff(sol.rhs, syms, solvefun, x)
        return Eq(f(x, y), rhs)

    dummy = Function('d')
    h = (c/b).subs(y, dummy(x))
    sol = dsolve(dummy(x).diff(x) - h, dummy(x))
    if isinstance(sol, list):
        sol = sol[0]
    solsym = sol.free_symbols - h.free_symbols - {x, y}
    if len(solsym) == 1:
        solsym = solsym.pop()
        etat = (solve(sol, solsym)[0]).subs(dummy(x), y)
        ysub = solve(eta - etat, y)[0]
        deq = (b*(f(x).diff(x)) + d*f(x) - e).subs(y, ysub)
        final = (dsolve(deq, f(x), hint='1st_linear')).rhs
        if isinstance(final, list):
            final = final[0]
        finsyms = final.free_symbols - deq.free_symbols - {x, y}
        rhs = _simplify_variable_coeff(final, finsyms, solvefun, etat)
        return Eq(f(x, y), rhs)

    else:
        raise NotImplementedError("Cannot solve the partial differential equation due"
            " to inability of constantsimp")


def _simplify_variable_coeff(sol, syms, func, funcarg):
    r"""
    Helper function to replace constants by functions in 1st_linear_variable_coeff
    """
    eta = Symbol("eta")
    if len(syms) == 1:
        sym = syms.pop()
        final = sol.subs(sym, func(funcarg))

    else:
        for sym in syms:
            final = sol.subs(sym, func(funcarg))

    return simplify(final.subs(eta, funcarg))


def pde_separate(eq, fun, sep, strategy='mul'):
    """Separate variables in partial differential equation either by additive
    or multiplicative separation approach. It tries to rewrite an equation so
    that one of the specified variables occurs on a different side of the
    equation than the others.

    :param eq: Partial differential equation

    :param fun: Original function F(x, y, z)

    :param sep: List of separated functions [X(x), u(y, z)]

    :param strategy: Separation strategy. You can choose between additive
        separation ('add') and multiplicative separation ('mul') which is
        default.

    Examples
    ========

    >>> from sympy import E, Eq, Function, pde_separate, Derivative as D
    >>> from sympy.abc import x, t
    >>> u, X, T = map(Function, 'uXT')

    >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t))
    >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='add')
    [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)]

    >>> eq = Eq(D(u(x, t), x, 2), D(u(x, t), t, 2))
    >>> pde_separate(eq, u(x, t), [X(x), T(t)], strategy='mul')
    [Derivative(X(x), (x, 2))/X(x), Derivative(T(t), (t, 2))/T(t)]

    See Also
    ========
    pde_separate_add, pde_separate_mul
    """

    do_add = False
    if strategy == 'add':
        do_add = True
    elif strategy == 'mul':
        do_add = False
    else:
        raise ValueError('Unknown strategy: %s' % strategy)

    if isinstance(eq, Equality):
        if eq.rhs != 0:
            return pde_separate(Eq(eq.lhs - eq.rhs, 0), fun, sep, strategy)
    else:
        return pde_separate(Eq(eq, 0), fun, sep, strategy)

    if eq.rhs != 0:
        raise ValueError("Value should be 0")

    # Handle arguments
    orig_args = list(fun.args)
    subs_args = [arg for s in sep for arg in s.args]

    if do_add:
        functions = reduce(operator.add, sep)
    else:
        functions = reduce(operator.mul, sep)

    # Check whether variables match
    if len(subs_args) != len(orig_args):
        raise ValueError("Variable counts do not match")
    # Check for duplicate arguments like  [X(x), u(x, y)]
    if has_dups(subs_args):
        raise ValueError("Duplicate substitution arguments detected")
    # Check whether the variables match
    if set(orig_args) != set(subs_args):
        raise ValueError("Arguments do not match")

    # Substitute original function with separated...
    result = eq.lhs.subs(fun, functions).doit()

    # Divide by terms when doing multiplicative separation
    if not do_add:
        eq = 0
        for i in result.args:
            eq += i/functions
        result = eq

    svar = subs_args[0]
    dvar = subs_args[1:]
    return _separate(result, svar, dvar)


def pde_separate_add(eq, fun, sep):
    """
    Helper function for searching additive separable solutions.

    Consider an equation of two independent variables x, y and a dependent
    variable w, we look for the product of two functions depending on different
    arguments:

    `w(x, y, z) = X(x) + y(y, z)`

    Examples
    ========

    >>> from sympy import E, Eq, Function, pde_separate_add, Derivative as D
    >>> from sympy.abc import x, t
    >>> u, X, T = map(Function, 'uXT')

    >>> eq = Eq(D(u(x, t), x), E**(u(x, t))*D(u(x, t), t))
    >>> pde_separate_add(eq, u(x, t), [X(x), T(t)])
    [exp(-X(x))*Derivative(X(x), x), exp(T(t))*Derivative(T(t), t)]

    """
    return pde_separate(eq, fun, sep, strategy='add')


def pde_separate_mul(eq, fun, sep):
    """
    Helper function for searching multiplicative separable solutions.

    Consider an equation of two independent variables x, y and a dependent
    variable w, we look for the product of two functions depending on different
    arguments:

    `w(x, y, z) = X(x)*u(y, z)`

    Examples
    ========

    >>> from sympy import Function, Eq, pde_separate_mul, Derivative as D
    >>> from sympy.abc import x, y
    >>> u, X, Y = map(Function, 'uXY')

    >>> eq = Eq(D(u(x, y), x, 2), D(u(x, y), y, 2))
    >>> pde_separate_mul(eq, u(x, y), [X(x), Y(y)])
    [Derivative(X(x), (x, 2))/X(x), Derivative(Y(y), (y, 2))/Y(y)]

    """
    return pde_separate(eq, fun, sep, strategy='mul')


def _separate(eq, dep, others):
    """Separate expression into two parts based on dependencies of variables."""

    # FIRST PASS
    # Extract derivatives depending our separable variable...
    terms = set()
    for term in eq.args:
        if term.is_Mul:
            for i in term.args:
                if i.is_Derivative and not i.has(*others):
                    terms.add(term)
                    continue
        elif term.is_Derivative and not term.has(*others):
            terms.add(term)
    # Find the factor that we need to divide by
    div = set()
    for term in terms:
        ext, sep = term.expand().as_independent(dep)
        # Failed?
        if sep.has(*others):
            return None
        div.add(ext)
    # FIXME: Find lcm() of all the divisors and divide with it, instead of
    # current hack :(
    # https://github.com/sympy/sympy/issues/4597
    if len(div) > 0:
        # double sum required or some tests will fail
        eq = Add(*[simplify(Add(*[term/i for i in div])) for term in eq.args])
    # SECOND PASS - separate the derivatives
    div = set()
    lhs = rhs = 0
    for term in eq.args:
        # Check, whether we have already term with independent variable...
        if not term.has(*others):
            lhs += term
            continue
        # ...otherwise, try to separate
        temp, sep = term.expand().as_independent(dep)
        # Failed?
        if sep.has(*others):
            return None
        # Extract the divisors
        div.add(sep)
        rhs -= term.expand()
    # Do the division
    fulldiv = reduce(operator.add, div)
    lhs = simplify(lhs/fulldiv).expand()
    rhs = simplify(rhs/fulldiv).expand()
    # ...and check whether we were successful :)
    if lhs.has(*others) or rhs.has(dep):
        return None
    return [lhs, rhs]