Spaces:
Sleeping
Sleeping
File size: 71,467 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 |
from sympy.core import Add, Mul, S
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.numbers import I
from sympy.core.relational import Eq, Equality
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Dummy, Symbol
from sympy.core.function import (expand_mul, expand, Derivative,
AppliedUndef, Function, Subs)
from sympy.functions import (exp, im, cos, sin, re, Piecewise,
piecewise_fold, sqrt, log)
from sympy.functions.combinatorial.factorials import factorial
from sympy.matrices import zeros, Matrix, NonSquareMatrixError, MatrixBase, eye
from sympy.polys import Poly, together
from sympy.simplify import collect, radsimp, signsimp # type: ignore
from sympy.simplify.powsimp import powdenest, powsimp
from sympy.simplify.ratsimp import ratsimp
from sympy.simplify.simplify import simplify
from sympy.sets.sets import FiniteSet
from sympy.solvers.deutils import ode_order
from sympy.solvers.solveset import NonlinearError, solveset
from sympy.utilities.iterables import (connected_components, iterable,
strongly_connected_components)
from sympy.utilities.misc import filldedent
from sympy.integrals.integrals import Integral, integrate
def _get_func_order(eqs, funcs):
return {func: max(ode_order(eq, func) for eq in eqs) for func in funcs}
class ODEOrderError(ValueError):
"""Raised by linear_ode_to_matrix if the system has the wrong order"""
pass
class ODENonlinearError(NonlinearError):
"""Raised by linear_ode_to_matrix if the system is nonlinear"""
pass
def _simpsol(soleq):
lhs = soleq.lhs
sol = soleq.rhs
sol = powsimp(sol)
gens = list(sol.atoms(exp))
p = Poly(sol, *gens, expand=False)
gens = [factor_terms(g) for g in gens]
if not gens:
gens = p.gens
syms = [Symbol('C1'), Symbol('C2')]
terms = []
for coeff, monom in zip(p.coeffs(), p.monoms()):
coeff = piecewise_fold(coeff)
if isinstance(coeff, Piecewise):
coeff = Piecewise(*((ratsimp(coef).collect(syms), cond) for coef, cond in coeff.args))
else:
coeff = ratsimp(coeff).collect(syms)
monom = Mul(*(g ** i for g, i in zip(gens, monom)))
terms.append(coeff * monom)
return Eq(lhs, Add(*terms))
def _solsimp(e, t):
no_t, has_t = powsimp(expand_mul(e)).as_independent(t)
no_t = ratsimp(no_t)
has_t = has_t.replace(exp, lambda a: exp(factor_terms(a)))
return no_t + has_t
def simpsol(sol, wrt1, wrt2, doit=True):
"""Simplify solutions from dsolve_system."""
# The parameter sol is the solution as returned by dsolve (list of Eq).
#
# The parameters wrt1 and wrt2 are lists of symbols to be collected for
# with those in wrt1 being collected for first. This allows for collecting
# on any factors involving the independent variable before collecting on
# the integration constants or vice versa using e.g.:
#
# sol = simpsol(sol, [t], [C1, C2]) # t first, constants after
# sol = simpsol(sol, [C1, C2], [t]) # constants first, t after
#
# If doit=True (default) then simpsol will begin by evaluating any
# unevaluated integrals. Since many integrals will appear multiple times
# in the solutions this is done intelligently by computing each integral
# only once.
#
# The strategy is to first perform simple cancellation with factor_terms
# and then multiply out all brackets with expand_mul. This gives an Add
# with many terms.
#
# We split each term into two multiplicative factors dep and coeff where
# all factors that involve wrt1 are in dep and any constant factors are in
# coeff e.g.
# sqrt(2)*C1*exp(t) -> ( exp(t), sqrt(2)*C1 )
#
# The dep factors are simplified using powsimp to combine expanded
# exponential factors e.g.
# exp(a*t)*exp(b*t) -> exp(t*(a+b))
#
# We then collect coefficients for all terms having the same (simplified)
# dep. The coefficients are then simplified using together and ratsimp and
# lastly by recursively applying the same transformation to the
# coefficients to collect on wrt2.
#
# Finally the result is recombined into an Add and signsimp is used to
# normalise any minus signs.
def simprhs(rhs, rep, wrt1, wrt2):
"""Simplify the rhs of an ODE solution"""
if rep:
rhs = rhs.subs(rep)
rhs = factor_terms(rhs)
rhs = simp_coeff_dep(rhs, wrt1, wrt2)
rhs = signsimp(rhs)
return rhs
def simp_coeff_dep(expr, wrt1, wrt2=None):
"""Split rhs into terms, split terms into dep and coeff and collect on dep"""
add_dep_terms = lambda e: e.is_Add and e.has(*wrt1)
expandable = lambda e: e.is_Mul and any(map(add_dep_terms, e.args))
expand_func = lambda e: expand_mul(e, deep=False)
expand_mul_mod = lambda e: e.replace(expandable, expand_func)
terms = Add.make_args(expand_mul_mod(expr))
dc = {}
for term in terms:
coeff, dep = term.as_independent(*wrt1, as_Add=False)
# Collect together the coefficients for terms that have the same
# dependence on wrt1 (after dep is normalised using simpdep).
dep = simpdep(dep, wrt1)
# See if the dependence on t cancels out...
if dep is not S.One:
dep2 = factor_terms(dep)
if not dep2.has(*wrt1):
coeff *= dep2
dep = S.One
if dep not in dc:
dc[dep] = coeff
else:
dc[dep] += coeff
# Apply the method recursively to the coefficients but this time
# collecting on wrt2 rather than wrt2.
termpairs = ((simpcoeff(c, wrt2), d) for d, c in dc.items())
if wrt2 is not None:
termpairs = ((simp_coeff_dep(c, wrt2), d) for c, d in termpairs)
return Add(*(c * d for c, d in termpairs))
def simpdep(term, wrt1):
"""Normalise factors involving t with powsimp and recombine exp"""
def canonicalise(a):
# Using factor_terms here isn't quite right because it leads to things
# like exp(t*(1+t)) that we don't want. We do want to cancel factors
# and pull out a common denominator but ideally the numerator would be
# expressed as a standard form polynomial in t so we expand_mul
# and collect afterwards.
a = factor_terms(a)
num, den = a.as_numer_denom()
num = expand_mul(num)
num = collect(num, wrt1)
return num / den
term = powsimp(term)
rep = {e: exp(canonicalise(e.args[0])) for e in term.atoms(exp)}
term = term.subs(rep)
return term
def simpcoeff(coeff, wrt2):
"""Bring to a common fraction and cancel with ratsimp"""
coeff = together(coeff)
if coeff.is_polynomial():
# Calling ratsimp can be expensive. The main reason is to simplify
# sums of terms with irrational denominators so we limit ourselves
# to the case where the expression is polynomial in any symbols.
# Maybe there's a better approach...
coeff = ratsimp(radsimp(coeff))
# collect on secondary variables first and any remaining symbols after
if wrt2 is not None:
syms = list(wrt2) + list(ordered(coeff.free_symbols - set(wrt2)))
else:
syms = list(ordered(coeff.free_symbols))
coeff = collect(coeff, syms)
coeff = together(coeff)
return coeff
# There are often repeated integrals. Collect unique integrals and
# evaluate each once and then substitute into the final result to replace
# all occurrences in each of the solution equations.
if doit:
integrals = set().union(*(s.atoms(Integral) for s in sol))
rep = {i: factor_terms(i).doit() for i in integrals}
else:
rep = {}
sol = [Eq(s.lhs, simprhs(s.rhs, rep, wrt1, wrt2)) for s in sol]
return sol
def linodesolve_type(A, t, b=None):
r"""
Helper function that determines the type of the system of ODEs for solving with :obj:`sympy.solvers.ode.systems.linodesolve()`
Explanation
===========
This function takes in the coefficient matrix and/or the non-homogeneous term
and returns the type of the equation that can be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`.
If the system is constant coefficient homogeneous, then "type1" is returned
If the system is constant coefficient non-homogeneous, then "type2" is returned
If the system is non-constant coefficient homogeneous, then "type3" is returned
If the system is non-constant coefficient non-homogeneous, then "type4" is returned
If the system has a non-constant coefficient matrix which can be factorized into constant
coefficient matrix, then "type5" or "type6" is returned for when the system is homogeneous or
non-homogeneous respectively.
Note that, if the system of ODEs is of "type3" or "type4", then along with the type,
the commutative antiderivative of the coefficient matrix is also returned.
If the system cannot be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`, then
NotImplementedError is raised.
Parameters
==========
A : Matrix
Coefficient matrix of the system of ODEs
b : Matrix or None
Non-homogeneous term of the system. The default value is None.
If this argument is None, then the system is assumed to be homogeneous.
Examples
========
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import linodesolve_type
>>> t = symbols("t")
>>> A = Matrix([[1, 1], [2, 3]])
>>> b = Matrix([t, 1])
>>> linodesolve_type(A, t)
{'antiderivative': None, 'type_of_equation': 'type1'}
>>> linodesolve_type(A, t, b=b)
{'antiderivative': None, 'type_of_equation': 'type2'}
>>> A_t = Matrix([[1, t], [-t, 1]])
>>> linodesolve_type(A_t, t)
{'antiderivative': Matrix([
[ t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type3'}
>>> linodesolve_type(A_t, t, b=b)
{'antiderivative': Matrix([
[ t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type4'}
>>> A_non_commutative = Matrix([[1, t], [t, -1]])
>>> linodesolve_type(A_non_commutative, t)
Traceback (most recent call last):
...
NotImplementedError:
The system does not have a commutative antiderivative, it cannot be
solved by linodesolve.
Returns
=======
Dict
Raises
======
NotImplementedError
When the coefficient matrix does not have a commutative antiderivative
See Also
========
linodesolve: Function for which linodesolve_type gets the information
"""
match = {}
is_non_constant = not _matrix_is_constant(A, t)
is_non_homogeneous = not (b is None or b.is_zero_matrix)
type = "type{}".format(int("{}{}".format(int(is_non_constant), int(is_non_homogeneous)), 2) + 1)
B = None
match.update({"type_of_equation": type, "antiderivative": B})
if is_non_constant:
B, is_commuting = _is_commutative_anti_derivative(A, t)
if not is_commuting:
raise NotImplementedError(filldedent('''
The system does not have a commutative antiderivative, it cannot be solved
by linodesolve.
'''))
match['antiderivative'] = B
match.update(_first_order_type5_6_subs(A, t, b=b))
return match
def _first_order_type5_6_subs(A, t, b=None):
match = {}
factor_terms = _factor_matrix(A, t)
is_homogeneous = b is None or b.is_zero_matrix
if factor_terms is not None:
t_ = Symbol("{}_".format(t))
F_t = integrate(factor_terms[0], t)
inverse = solveset(Eq(t_, F_t), t)
# Note: A simple way to check if a function is invertible
# or not.
if isinstance(inverse, FiniteSet) and not inverse.has(Piecewise)\
and len(inverse) == 1:
A = factor_terms[1]
if not is_homogeneous:
b = b / factor_terms[0]
b = b.subs(t, list(inverse)[0])
type = "type{}".format(5 + (not is_homogeneous))
match.update({'func_coeff': A, 'tau': F_t,
't_': t_, 'type_of_equation': type, 'rhs': b})
return match
def linear_ode_to_matrix(eqs, funcs, t, order):
r"""
Convert a linear system of ODEs to matrix form
Explanation
===========
Express a system of linear ordinary differential equations as a single
matrix differential equation [1]. For example the system $x' = x + y + 1$
and $y' = x - y$ can be represented as
.. math:: A_1 X' = A_0 X + b
where $A_1$ and $A_0$ are $2 \times 2$ matrices and $b$, $X$ and $X'$ are
$2 \times 1$ matrices with $X = [x, y]^T$.
Higher-order systems are represented with additional matrices e.g. a
second-order system would look like
.. math:: A_2 X'' = A_1 X' + A_0 X + b
Examples
========
>>> from sympy import Function, Symbol, Matrix, Eq
>>> from sympy.solvers.ode.systems import linear_ode_to_matrix
>>> t = Symbol('t')
>>> x = Function('x')
>>> y = Function('y')
We can create a system of linear ODEs like
>>> eqs = [
... Eq(x(t).diff(t), x(t) + y(t) + 1),
... Eq(y(t).diff(t), x(t) - y(t)),
... ]
>>> funcs = [x(t), y(t)]
>>> order = 1 # 1st order system
Now ``linear_ode_to_matrix`` can represent this as a matrix
differential equation.
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, order)
>>> A1
Matrix([
[1, 0],
[0, 1]])
>>> A0
Matrix([
[1, 1],
[1, -1]])
>>> b
Matrix([
[1],
[0]])
The original equations can be recovered from these matrices:
>>> eqs_mat = Matrix([eq.lhs - eq.rhs for eq in eqs])
>>> X = Matrix(funcs)
>>> A1 * X.diff(t) - A0 * X - b == eqs_mat
True
If the system of equations has a maximum order greater than the
order of the system specified, a ODEOrderError exception is raised.
>>> eqs = [Eq(x(t).diff(t, 2), x(t).diff(t) + x(t)), Eq(y(t).diff(t), y(t) + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
...
ODEOrderError: Cannot represent system in 1-order form
If the system of equations is nonlinear, then ODENonlinearError is
raised.
>>> eqs = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), y(t)**2 + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
...
ODENonlinearError: The system of ODEs is nonlinear.
Parameters
==========
eqs : list of SymPy expressions or equalities
The equations as expressions (assumed equal to zero).
funcs : list of applied functions
The dependent variables of the system of ODEs.
t : symbol
The independent variable.
order : int
The order of the system of ODEs.
Returns
=======
The tuple ``(As, b)`` where ``As`` is a tuple of matrices and ``b`` is the
the matrix representing the rhs of the matrix equation.
Raises
======
ODEOrderError
When the system of ODEs have an order greater than what was specified
ODENonlinearError
When the system of ODEs is nonlinear
See Also
========
linear_eq_to_matrix: for systems of linear algebraic equations.
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_differential_equation
"""
from sympy.solvers.solveset import linear_eq_to_matrix
if any(ode_order(eq, func) > order for eq in eqs for func in funcs):
msg = "Cannot represent system in {}-order form"
raise ODEOrderError(msg.format(order))
As = []
for o in range(order, -1, -1):
# Work from the highest derivative down
syms = [func.diff(t, o) for func in funcs]
# Ai is the matrix for X(t).diff(t, o)
# eqs is minus the remainder of the equations.
try:
Ai, b = linear_eq_to_matrix(eqs, syms)
except NonlinearError:
raise ODENonlinearError("The system of ODEs is nonlinear.")
Ai = Ai.applyfunc(expand_mul)
As.append(Ai if o == order else -Ai)
if o:
eqs = [-eq for eq in b]
else:
rhs = b
return As, rhs
def matrix_exp(A, t):
r"""
Matrix exponential $\exp(A*t)$ for the matrix ``A`` and scalar ``t``.
Explanation
===========
This functions returns the $\exp(A*t)$ by doing a simple
matrix multiplication:
.. math:: \exp(A*t) = P * expJ * P^{-1}
where $expJ$ is $\exp(J*t)$. $J$ is the Jordan normal
form of $A$ and $P$ is matrix such that:
.. math:: A = P * J * P^{-1}
The matrix exponential $\exp(A*t)$ appears in the solution of linear
differential equations. For example if $x$ is a vector and $A$ is a matrix
then the initial value problem
.. math:: \frac{dx(t)}{dt} = A \times x(t), x(0) = x0
has the unique solution
.. math:: x(t) = \exp(A t) x0
Examples
========
>>> from sympy import Symbol, Matrix, pprint
>>> from sympy.solvers.ode.systems import matrix_exp
>>> t = Symbol('t')
We will consider a 2x2 matrix for comupting the exponential
>>> A = Matrix([[2, -5], [2, -4]])
>>> pprint(A)
[2 -5]
[ ]
[2 -4]
Now, exp(A*t) is given as follows:
>>> pprint(matrix_exp(A, t))
[ -t -t -t ]
[3*e *sin(t) + e *cos(t) -5*e *sin(t) ]
[ ]
[ -t -t -t ]
[ 2*e *sin(t) - 3*e *sin(t) + e *cos(t)]
Parameters
==========
A : Matrix
The matrix $A$ in the expression $\exp(A*t)$
t : Symbol
The independent variable
See Also
========
matrix_exp_jordan_form: For exponential of Jordan normal form
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_normal_form
.. [2] https://en.wikipedia.org/wiki/Matrix_exponential
"""
P, expJ = matrix_exp_jordan_form(A, t)
return P * expJ * P.inv()
def matrix_exp_jordan_form(A, t):
r"""
Matrix exponential $\exp(A*t)$ for the matrix *A* and scalar *t*.
Explanation
===========
Returns the Jordan form of the $\exp(A*t)$ along with the matrix $P$ such that:
.. math::
\exp(A*t) = P * expJ * P^{-1}
Examples
========
>>> from sympy import Matrix, Symbol
>>> from sympy.solvers.ode.systems import matrix_exp, matrix_exp_jordan_form
>>> t = Symbol('t')
We will consider a 2x2 defective matrix. This shows that our method
works even for defective matrices.
>>> A = Matrix([[1, 1], [0, 1]])
It can be observed that this function gives us the Jordan normal form
and the required invertible matrix P.
>>> P, expJ = matrix_exp_jordan_form(A, t)
Here, it is shown that P and expJ returned by this function is correct
as they satisfy the formula: P * expJ * P_inverse = exp(A*t).
>>> P * expJ * P.inv() == matrix_exp(A, t)
True
Parameters
==========
A : Matrix
The matrix $A$ in the expression $\exp(A*t)$
t : Symbol
The independent variable
References
==========
.. [1] https://en.wikipedia.org/wiki/Defective_matrix
.. [2] https://en.wikipedia.org/wiki/Jordan_matrix
.. [3] https://en.wikipedia.org/wiki/Jordan_normal_form
"""
N, M = A.shape
if N != M:
raise ValueError('Needed square matrix but got shape (%s, %s)' % (N, M))
elif A.has(t):
raise ValueError('Matrix A should not depend on t')
def jordan_chains(A):
'''Chains from Jordan normal form analogous to M.eigenvects().
Returns a dict with eignevalues as keys like:
{e1: [[v111,v112,...], [v121, v122,...]], e2:...}
where vijk is the kth vector in the jth chain for eigenvalue i.
'''
P, blocks = A.jordan_cells()
basis = [P[:,i] for i in range(P.shape[1])]
n = 0
chains = {}
for b in blocks:
eigval = b[0, 0]
size = b.shape[0]
if eigval not in chains:
chains[eigval] = []
chains[eigval].append(basis[n:n+size])
n += size
return chains
eigenchains = jordan_chains(A)
# Needed for consistency across Python versions
eigenchains_iter = sorted(eigenchains.items(), key=default_sort_key)
isreal = not A.has(I)
blocks = []
vectors = []
seen_conjugate = set()
for e, chains in eigenchains_iter:
for chain in chains:
n = len(chain)
if isreal and e != e.conjugate() and e.conjugate() in eigenchains:
if e in seen_conjugate:
continue
seen_conjugate.add(e.conjugate())
exprt = exp(re(e) * t)
imrt = im(e) * t
imblock = Matrix([[cos(imrt), sin(imrt)],
[-sin(imrt), cos(imrt)]])
expJblock2 = Matrix(n, n, lambda i,j:
imblock * t**(j-i) / factorial(j-i) if j >= i
else zeros(2, 2))
expJblock = Matrix(2*n, 2*n, lambda i,j: expJblock2[i//2,j//2][i%2,j%2])
blocks.append(exprt * expJblock)
for i in range(n):
vectors.append(re(chain[i]))
vectors.append(im(chain[i]))
else:
vectors.extend(chain)
fun = lambda i,j: t**(j-i)/factorial(j-i) if j >= i else 0
expJblock = Matrix(n, n, fun)
blocks.append(exp(e * t) * expJblock)
expJ = Matrix.diag(*blocks)
P = Matrix(N, N, lambda i,j: vectors[j][i])
return P, expJ
# Note: To add a docstring example with tau
def linodesolve(A, t, b=None, B=None, type="auto", doit=False,
tau=None):
r"""
System of n equations linear first-order differential equations
Explanation
===========
This solver solves the system of ODEs of the following form:
.. math::
X'(t) = A(t) X(t) + b(t)
Here, $A(t)$ is the coefficient matrix, $X(t)$ is the vector of n independent variables,
$b(t)$ is the non-homogeneous term and $X'(t)$ is the derivative of $X(t)$
Depending on the properties of $A(t)$ and $b(t)$, this solver evaluates the solution
differently.
When $A(t)$ is constant coefficient matrix and $b(t)$ is zero vector i.e. system is homogeneous,
the system is "type1". The solution is:
.. math::
X(t) = \exp(A t) C
Here, $C$ is a vector of constants and $A$ is the constant coefficient matrix.
When $A(t)$ is constant coefficient matrix and $b(t)$ is non-zero i.e. system is non-homogeneous,
the system is "type2". The solution is:
.. math::
X(t) = e^{A t} ( \int e^{- A t} b \,dt + C)
When $A(t)$ is coefficient matrix such that its commutative with its antiderivative $B(t)$ and
$b(t)$ is a zero vector i.e. system is homogeneous, the system is "type3". The solution is:
.. math::
X(t) = \exp(B(t)) C
When $A(t)$ is commutative with its antiderivative $B(t)$ and $b(t)$ is non-zero i.e. system is
non-homogeneous, the system is "type4". The solution is:
.. math::
X(t) = e^{B(t)} ( \int e^{-B(t)} b(t) \,dt + C)
When $A(t)$ is a coefficient matrix such that it can be factorized into a scalar and a constant
coefficient matrix:
.. math::
A(t) = f(t) * A
Where $f(t)$ is a scalar expression in the independent variable $t$ and $A$ is a constant matrix,
then we can do the following substitutions:
.. math::
tau = \int f(t) dt, X(t) = Y(tau), b(t) = b(f^{-1}(tau))
Here, the substitution for the non-homogeneous term is done only when its non-zero.
Using these substitutions, our original system becomes:
.. math::
Y'(tau) = A * Y(tau) + b(tau)/f(tau)
The above system can be easily solved using the solution for "type1" or "type2" depending
on the homogeneity of the system. After we get the solution for $Y(tau)$, we substitute the
solution for $tau$ as $t$ to get back $X(t)$
.. math::
X(t) = Y(tau)
Systems of "type5" and "type6" have a commutative antiderivative but we use this solution
because its faster to compute.
The final solution is the general solution for all the four equations since a constant coefficient
matrix is always commutative with its antidervative.
An additional feature of this function is, if someone wants to substitute for value of the independent
variable, they can pass the substitution `tau` and the solution will have the independent variable
substituted with the passed expression(`tau`).
Parameters
==========
A : Matrix
Coefficient matrix of the system of linear first order ODEs.
t : Symbol
Independent variable in the system of ODEs.
b : Matrix or None
Non-homogeneous term in the system of ODEs. If None is passed,
a homogeneous system of ODEs is assumed.
B : Matrix or None
Antiderivative of the coefficient matrix. If the antiderivative
is not passed and the solution requires the term, then the solver
would compute it internally.
type : String
Type of the system of ODEs passed. Depending on the type, the
solution is evaluated. The type values allowed and the corresponding
system it solves are: "type1" for constant coefficient homogeneous
"type2" for constant coefficient non-homogeneous, "type3" for non-constant
coefficient homogeneous, "type4" for non-constant coefficient non-homogeneous,
"type5" and "type6" for non-constant coefficient homogeneous and non-homogeneous
systems respectively where the coefficient matrix can be factorized to a constant
coefficient matrix.
The default value is "auto" which will let the solver decide the correct type of
the system passed.
doit : Boolean
Evaluate the solution if True, default value is False
tau: Expression
Used to substitute for the value of `t` after we get the solution of the system.
Examples
========
To solve the system of ODEs using this function directly, several things must be
done in the right order. Wrong inputs to the function will lead to incorrect results.
>>> from sympy import symbols, Function, Eq
>>> from sympy.solvers.ode.systems import canonical_odes, linear_ode_to_matrix, linodesolve, linodesolve_type
>>> from sympy.solvers.ode.subscheck import checkodesol
>>> f, g = symbols("f, g", cls=Function)
>>> x, a = symbols("x, a")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - f(x), a*g(x) + 1), Eq(g(x).diff(x) + g(x), a*f(x))]
Here, it is important to note that before we derive the coefficient matrix, it is
important to get the system of ODEs into the desired form. For that we will use
:obj:`sympy.solvers.ode.systems.canonical_odes()`.
>>> eqs = canonical_odes(eqs, funcs, x)
>>> eqs
[[Eq(Derivative(f(x), x), a*g(x) + f(x) + 1), Eq(Derivative(g(x), x), a*f(x) - g(x))]]
Now, we will use :obj:`sympy.solvers.ode.systems.linear_ode_to_matrix()` to get the coefficient matrix and the
non-homogeneous term if it is there.
>>> eqs = eqs[0]
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
We have the coefficient matrices and the non-homogeneous term ready. Now, we can use
:obj:`sympy.solvers.ode.systems.linodesolve_type()` to get the information for the system of ODEs
to finally pass it to the solver.
>>> system_info = linodesolve_type(A, x, b=b)
>>> sol_vector = linodesolve(A, x, b=b, B=system_info['antiderivative'], type=system_info['type_of_equation'])
Now, we can prove if the solution is correct or not by using :obj:`sympy.solvers.ode.checkodesol()`
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol)
(True, [0, 0])
We can also use the doit method to evaluate the solutions passed by the function.
>>> sol_vector_evaluated = linodesolve(A, x, b=b, type="type2", doit=True)
Now, we will look at a system of ODEs which is non-constant.
>>> eqs = [Eq(f(x).diff(x), f(x) + x*g(x)), Eq(g(x).diff(x), -x*f(x) + g(x))]
The system defined above is already in the desired form, so we do not have to convert it.
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
A user can also pass the commutative antiderivative required for type3 and type4 system of ODEs.
Passing an incorrect one will lead to incorrect results. If the coefficient matrix is not commutative
with its antiderivative, then :obj:`sympy.solvers.ode.systems.linodesolve_type()` raises a NotImplementedError.
If it does have a commutative antiderivative, then the function just returns the information about the system.
>>> system_info = linodesolve_type(A, x, b=b)
Now, we can pass the antiderivative as an argument to get the solution. If the system information is not
passed, then the solver will compute the required arguments internally.
>>> sol_vector = linodesolve(A, x, b=b)
Once again, we can verify the solution obtained.
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol)
(True, [0, 0])
Returns
=======
List
Raises
======
ValueError
This error is raised when the coefficient matrix, non-homogeneous term
or the antiderivative, if passed, are not a matrix or
do not have correct dimensions
NonSquareMatrixError
When the coefficient matrix or its antiderivative, if passed is not a
square matrix
NotImplementedError
If the coefficient matrix does not have a commutative antiderivative
See Also
========
linear_ode_to_matrix: Coefficient matrix computation function
canonical_odes: System of ODEs representation change
linodesolve_type: Getting information about systems of ODEs to pass in this solver
"""
if not isinstance(A, MatrixBase):
raise ValueError(filldedent('''\
The coefficients of the system of ODEs should be of type Matrix
'''))
if not A.is_square:
raise NonSquareMatrixError(filldedent('''\
The coefficient matrix must be a square
'''))
if b is not None:
if not isinstance(b, MatrixBase):
raise ValueError(filldedent('''\
The non-homogeneous terms of the system of ODEs should be of type Matrix
'''))
if A.rows != b.rows:
raise ValueError(filldedent('''\
The system of ODEs should have the same number of non-homogeneous terms and the number of
equations
'''))
if B is not None:
if not isinstance(B, MatrixBase):
raise ValueError(filldedent('''\
The antiderivative of coefficients of the system of ODEs should be of type Matrix
'''))
if not B.is_square:
raise NonSquareMatrixError(filldedent('''\
The antiderivative of the coefficient matrix must be a square
'''))
if A.rows != B.rows:
raise ValueError(filldedent('''\
The coefficient matrix and its antiderivative should have same dimensions
'''))
if not any(type == "type{}".format(i) for i in range(1, 7)) and not type == "auto":
raise ValueError(filldedent('''\
The input type should be a valid one
'''))
n = A.rows
# constants = numbered_symbols(prefix='C', cls=Dummy, start=const_idx+1)
Cvect = Matrix([Dummy() for _ in range(n)])
if b is None and any(type == typ for typ in ["type2", "type4", "type6"]):
b = zeros(n, 1)
is_transformed = tau is not None
passed_type = type
if type == "auto":
system_info = linodesolve_type(A, t, b=b)
type = system_info["type_of_equation"]
B = system_info["antiderivative"]
if type in ("type5", "type6"):
is_transformed = True
if passed_type != "auto":
if tau is None:
system_info = _first_order_type5_6_subs(A, t, b=b)
if not system_info:
raise ValueError(filldedent('''
The system passed isn't {}.
'''.format(type)))
tau = system_info['tau']
t = system_info['t_']
A = system_info['A']
b = system_info['b']
intx_wrtt = lambda x: Integral(x, t) if x else 0
if type in ("type1", "type2", "type5", "type6"):
P, J = matrix_exp_jordan_form(A, t)
P = simplify(P)
if type in ("type1", "type5"):
sol_vector = P * (J * Cvect)
else:
Jinv = J.subs(t, -t)
sol_vector = P * J * ((Jinv * P.inv() * b).applyfunc(intx_wrtt) + Cvect)
else:
if B is None:
B, _ = _is_commutative_anti_derivative(A, t)
if type == "type3":
sol_vector = B.exp() * Cvect
else:
sol_vector = B.exp() * (((-B).exp() * b).applyfunc(intx_wrtt) + Cvect)
if is_transformed:
sol_vector = sol_vector.subs(t, tau)
gens = sol_vector.atoms(exp)
if type != "type1":
sol_vector = [expand_mul(s) for s in sol_vector]
sol_vector = [collect(s, ordered(gens), exact=True) for s in sol_vector]
if doit:
sol_vector = [s.doit() for s in sol_vector]
return sol_vector
def _matrix_is_constant(M, t):
"""Checks if the matrix M is independent of t or not."""
return all(coef.as_independent(t, as_Add=True)[1] == 0 for coef in M)
def canonical_odes(eqs, funcs, t):
r"""
Function that solves for highest order derivatives in a system
Explanation
===========
This function inputs a system of ODEs and based on the system,
the dependent variables and their highest order, returns the system
in the following form:
.. math::
X'(t) = A(t) X(t) + b(t)
Here, $X(t)$ is the vector of dependent variables of lower order, $A(t)$ is
the coefficient matrix, $b(t)$ is the non-homogeneous term and $X'(t)$ is the
vector of dependent variables in their respective highest order. We use the term
canonical form to imply the system of ODEs which is of the above form.
If the system passed has a non-linear term with multiple solutions, then a list of
systems is returned in its canonical form.
Parameters
==========
eqs : List
List of the ODEs
funcs : List
List of dependent variables
t : Symbol
Independent variable
Examples
========
>>> from sympy import symbols, Function, Eq, Derivative
>>> from sympy.solvers.ode.systems import canonical_odes
>>> f, g = symbols("f g", cls=Function)
>>> x, y = symbols("x y")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - 7*f(x), 12*g(x)), Eq(g(x).diff(x) + g(x), 20*f(x))]
>>> canonical_eqs = canonical_odes(eqs, funcs, x)
>>> canonical_eqs
[[Eq(Derivative(f(x), x), 7*f(x) + 12*g(x)), Eq(Derivative(g(x), x), 20*f(x) - g(x))]]
>>> system = [Eq(Derivative(f(x), x)**2 - 2*Derivative(f(x), x) + 1, 4), Eq(-y*f(x) + Derivative(g(x), x), 0)]
>>> canonical_system = canonical_odes(system, funcs, x)
>>> canonical_system
[[Eq(Derivative(f(x), x), -1), Eq(Derivative(g(x), x), y*f(x))], [Eq(Derivative(f(x), x), 3), Eq(Derivative(g(x), x), y*f(x))]]
Returns
=======
List
"""
from sympy.solvers.solvers import solve
order = _get_func_order(eqs, funcs)
canon_eqs = solve(eqs, *[func.diff(t, order[func]) for func in funcs], dict=True)
systems = []
for eq in canon_eqs:
system = [Eq(func.diff(t, order[func]), eq[func.diff(t, order[func])]) for func in funcs]
systems.append(system)
return systems
def _is_commutative_anti_derivative(A, t):
r"""
Helper function for determining if the Matrix passed is commutative with its antiderivative
Explanation
===========
This function checks if the Matrix $A$ passed is commutative with its antiderivative with respect
to the independent variable $t$.
.. math::
B(t) = \int A(t) dt
The function outputs two values, first one being the antiderivative $B(t)$, second one being a
boolean value, if True, then the matrix $A(t)$ passed is commutative with $B(t)$, else the matrix
passed isn't commutative with $B(t)$.
Parameters
==========
A : Matrix
The matrix which has to be checked
t : Symbol
Independent variable
Examples
========
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import _is_commutative_anti_derivative
>>> t = symbols("t")
>>> A = Matrix([[1, t], [-t, 1]])
>>> B, is_commuting = _is_commutative_anti_derivative(A, t)
>>> is_commuting
True
Returns
=======
Matrix, Boolean
"""
B = integrate(A, t)
is_commuting = (B*A - A*B).applyfunc(expand).applyfunc(factor_terms).is_zero_matrix
is_commuting = False if is_commuting is None else is_commuting
return B, is_commuting
def _factor_matrix(A, t):
term = None
for element in A:
temp_term = element.as_independent(t)[1]
if temp_term.has(t):
term = temp_term
break
if term is not None:
A_factored = (A/term).applyfunc(ratsimp)
can_factor = _matrix_is_constant(A_factored, t)
term = (term, A_factored) if can_factor else None
return term
def _is_second_order_type2(A, t):
term = _factor_matrix(A, t)
is_type2 = False
if term is not None:
term = 1/term[0]
is_type2 = term.is_polynomial()
if is_type2:
poly = Poly(term.expand(), t)
monoms = poly.monoms()
if monoms[0][0] in (2, 4):
cs = _get_poly_coeffs(poly, 4)
a, b, c, d, e = cs
a1 = powdenest(sqrt(a), force=True)
c1 = powdenest(sqrt(e), force=True)
b1 = powdenest(sqrt(c - 2*a1*c1), force=True)
is_type2 = (b == 2*a1*b1) and (d == 2*b1*c1)
term = a1*t**2 + b1*t + c1
else:
is_type2 = False
return is_type2, term
def _get_poly_coeffs(poly, order):
cs = [0 for _ in range(order+1)]
for c, m in zip(poly.coeffs(), poly.monoms()):
cs[-1-m[0]] = c
return cs
def _match_second_order_type(A1, A0, t, b=None):
r"""
Works only for second order system in its canonical form.
Type 0: Constant coefficient matrix, can be simply solved by
introducing dummy variables.
Type 1: When the substitution: $U = t*X' - X$ works for reducing
the second order system to first order system.
Type 2: When the system is of the form: $poly * X'' = A*X$ where
$poly$ is square of a quadratic polynomial with respect to
*t* and $A$ is a constant coefficient matrix.
"""
match = {"type_of_equation": "type0"}
n = A1.shape[0]
if _matrix_is_constant(A1, t) and _matrix_is_constant(A0, t):
return match
if (A1 + A0*t).applyfunc(expand_mul).is_zero_matrix:
match.update({"type_of_equation": "type1", "A1": A1})
elif A1.is_zero_matrix and (b is None or b.is_zero_matrix):
is_type2, term = _is_second_order_type2(A0, t)
if is_type2:
a, b, c = _get_poly_coeffs(Poly(term, t), 2)
A = (A0*(term**2).expand()).applyfunc(ratsimp) + (b**2/4 - a*c)*eye(n, n)
tau = integrate(1/term, t)
t_ = Symbol("{}_".format(t))
match.update({"type_of_equation": "type2", "A0": A,
"g(t)": sqrt(term), "tau": tau, "is_transformed": True,
"t_": t_})
return match
def _second_order_subs_type1(A, b, funcs, t):
r"""
For a linear, second order system of ODEs, a particular substitution.
A system of the below form can be reduced to a linear first order system of
ODEs:
.. math::
X'' = A(t) * (t*X' - X) + b(t)
By substituting:
.. math:: U = t*X' - X
To get the system:
.. math:: U' = t*(A(t)*U + b(t))
Where $U$ is the vector of dependent variables, $X$ is the vector of dependent
variables in `funcs` and $X'$ is the first order derivative of $X$ with respect to
$t$. It may or may not reduce the system into linear first order system of ODEs.
Then a check is made to determine if the system passed can be reduced or not, if
this substitution works, then the system is reduced and its solved for the new
substitution. After we get the solution for $U$:
.. math:: U = a(t)
We substitute and return the reduced system:
.. math::
a(t) = t*X' - X
Parameters
==========
A: Matrix
Coefficient matrix($A(t)*t$) of the second order system of this form.
b: Matrix
Non-homogeneous term($b(t)$) of the system of ODEs.
funcs: List
List of dependent variables
t: Symbol
Independent variable of the system of ODEs.
Returns
=======
List
"""
U = Matrix([t*func.diff(t) - func for func in funcs])
sol = linodesolve(A, t, t*b)
reduced_eqs = [Eq(u, s) for s, u in zip(sol, U)]
reduced_eqs = canonical_odes(reduced_eqs, funcs, t)[0]
return reduced_eqs
def _second_order_subs_type2(A, funcs, t_):
r"""
Returns a second order system based on the coefficient matrix passed.
Explanation
===========
This function returns a system of second order ODE of the following form:
.. math::
X'' = A * X
Here, $X$ is the vector of dependent variables, but a bit modified, $A$ is the
coefficient matrix passed.
Along with returning the second order system, this function also returns the new
dependent variables with the new independent variable `t_` passed.
Parameters
==========
A: Matrix
Coefficient matrix of the system
funcs: List
List of old dependent variables
t_: Symbol
New independent variable
Returns
=======
List, List
"""
func_names = [func.func.__name__ for func in funcs]
new_funcs = [Function(Dummy("{}_".format(name)))(t_) for name in func_names]
rhss = A * Matrix(new_funcs)
new_eqs = [Eq(func.diff(t_, 2), rhs) for func, rhs in zip(new_funcs, rhss)]
return new_eqs, new_funcs
def _is_euler_system(As, t):
return all(_matrix_is_constant((A*t**i).applyfunc(ratsimp), t) for i, A in enumerate(As))
def _classify_linear_system(eqs, funcs, t, is_canon=False):
r"""
Returns a dictionary with details of the eqs if the system passed is linear
and can be classified by this function else returns None
Explanation
===========
This function takes the eqs, converts it into a form Ax = b where x is a vector of terms
containing dependent variables and their derivatives till their maximum order. If it is
possible to convert eqs into Ax = b, then all the equations in eqs are linear otherwise
they are non-linear.
To check if the equations are constant coefficient, we need to check if all the terms in
A obtained above are constant or not.
To check if the equations are homogeneous or not, we need to check if b is a zero matrix
or not.
Parameters
==========
eqs: List
List of ODEs
funcs: List
List of dependent variables
t: Symbol
Independent variable of the equations in eqs
is_canon: Boolean
If True, then this function will not try to get the
system in canonical form. Default value is False
Returns
=======
match = {
'no_of_equation': len(eqs),
'eq': eqs,
'func': funcs,
'order': order,
'is_linear': is_linear,
'is_constant': is_constant,
'is_homogeneous': is_homogeneous,
}
Dict or list of Dicts or None
Dict with values for keys:
1. no_of_equation: Number of equations
2. eq: The set of equations
3. func: List of dependent variables
4. order: A dictionary that gives the order of the
dependent variable in eqs
5. is_linear: Boolean value indicating if the set of
equations are linear or not.
6. is_constant: Boolean value indicating if the set of
equations have constant coefficients or not.
7. is_homogeneous: Boolean value indicating if the set of
equations are homogeneous or not.
8. commutative_antiderivative: Antiderivative of the coefficient
matrix if the coefficient matrix is non-constant
and commutative with its antiderivative. This key
may or may not exist.
9. is_general: Boolean value indicating if the system of ODEs is
solvable using one of the general case solvers or not.
10. rhs: rhs of the non-homogeneous system of ODEs in Matrix form. This
key may or may not exist.
11. is_higher_order: True if the system passed has an order greater than 1.
This key may or may not exist.
12. is_second_order: True if the system passed is a second order ODE. This
key may or may not exist.
This Dict is the answer returned if the eqs are linear and constant
coefficient. Otherwise, None is returned.
"""
# Error for i == 0 can be added but isn't for now
# Check for len(funcs) == len(eqs)
if len(funcs) != len(eqs):
raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs)
# ValueError when functions have more than one arguments
for func in funcs:
if len(func.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
# Getting the func_dict and order using the helper
# function
order = _get_func_order(eqs, funcs)
system_order = max(order[func] for func in funcs)
is_higher_order = system_order > 1
is_second_order = system_order == 2 and all(order[func] == 2 for func in funcs)
# Not adding the check if the len(func.args) for
# every func in funcs is 1
# Linearity check
try:
canon_eqs = canonical_odes(eqs, funcs, t) if not is_canon else [eqs]
if len(canon_eqs) == 1:
As, b = linear_ode_to_matrix(canon_eqs[0], funcs, t, system_order)
else:
match = {
'is_implicit': True,
'canon_eqs': canon_eqs
}
return match
# When the system of ODEs is non-linear, an ODENonlinearError is raised.
# This function catches the error and None is returned.
except ODENonlinearError:
return None
is_linear = True
# Homogeneous check
is_homogeneous = True if b.is_zero_matrix else False
# Is general key is used to identify if the system of ODEs can be solved by
# one of the general case solvers or not.
match = {
'no_of_equation': len(eqs),
'eq': eqs,
'func': funcs,
'order': order,
'is_linear': is_linear,
'is_homogeneous': is_homogeneous,
'is_general': True
}
if not is_homogeneous:
match['rhs'] = b
is_constant = all(_matrix_is_constant(A_, t) for A_ in As)
# The match['is_linear'] check will be added in the future when this
# function becomes ready to deal with non-linear systems of ODEs
if not is_higher_order:
A = As[1]
match['func_coeff'] = A
# Constant coefficient check
is_constant = _matrix_is_constant(A, t)
match['is_constant'] = is_constant
try:
system_info = linodesolve_type(A, t, b=b)
except NotImplementedError:
return None
match.update(system_info)
antiderivative = match.pop("antiderivative")
if not is_constant:
match['commutative_antiderivative'] = antiderivative
return match
else:
match['type_of_equation'] = "type0"
if is_second_order:
A1, A0 = As[1:]
match_second_order = _match_second_order_type(A1, A0, t)
match.update(match_second_order)
match['is_second_order'] = True
# If system is constant, then no need to check if its in euler
# form or not. It will be easier and faster to directly proceed
# to solve it.
if match['type_of_equation'] == "type0" and not is_constant:
is_euler = _is_euler_system(As, t)
if is_euler:
t_ = Symbol('{}_'.format(t))
match.update({'is_transformed': True, 'type_of_equation': 'type1',
't_': t_})
else:
is_jordan = lambda M: M == Matrix.jordan_block(M.shape[0], M[0, 0])
terms = _factor_matrix(As[-1], t)
if all(A.is_zero_matrix for A in As[1:-1]) and terms is not None and not is_jordan(terms[1]):
P, J = terms[1].jordan_form()
match.update({'type_of_equation': 'type2', 'J': J,
'f(t)': terms[0], 'P': P, 'is_transformed': True})
if match['type_of_equation'] != 'type0' and is_second_order:
match.pop('is_second_order', None)
match['is_higher_order'] = is_higher_order
return match
def _preprocess_eqs(eqs):
processed_eqs = []
for eq in eqs:
processed_eqs.append(eq if isinstance(eq, Equality) else Eq(eq, 0))
return processed_eqs
def _eqs2dict(eqs, funcs):
eqsorig = {}
eqsmap = {}
funcset = set(funcs)
for eq in eqs:
f1, = eq.lhs.atoms(AppliedUndef)
f2s = (eq.rhs.atoms(AppliedUndef) - {f1}) & funcset
eqsmap[f1] = f2s
eqsorig[f1] = eq
return eqsmap, eqsorig
def _dict2graph(d):
nodes = list(d)
edges = [(f1, f2) for f1, f2s in d.items() for f2 in f2s]
G = (nodes, edges)
return G
def _is_type1(scc, t):
eqs, funcs = scc
try:
(A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 1)
except (ODENonlinearError, ODEOrderError):
return False
if _matrix_is_constant(A0, t) and b.is_zero_matrix:
return True
return False
def _combine_type1_subsystems(subsystem, funcs, t):
indices = [i for i, sys in enumerate(zip(subsystem, funcs)) if _is_type1(sys, t)]
remove = set()
for ip, i in enumerate(indices):
for j in indices[ip+1:]:
if any(eq2.has(funcs[i]) for eq2 in subsystem[j]):
subsystem[j] = subsystem[i] + subsystem[j]
remove.add(i)
subsystem = [sys for i, sys in enumerate(subsystem) if i not in remove]
return subsystem
def _component_division(eqs, funcs, t):
# Assuming that each eq in eqs is in canonical form,
# that is, [f(x).diff(x) = .., g(x).diff(x) = .., etc]
# and that the system passed is in its first order
eqsmap, eqsorig = _eqs2dict(eqs, funcs)
subsystems = []
for cc in connected_components(_dict2graph(eqsmap)):
eqsmap_c = {f: eqsmap[f] for f in cc}
sccs = strongly_connected_components(_dict2graph(eqsmap_c))
subsystem = [[eqsorig[f] for f in scc] for scc in sccs]
subsystem = _combine_type1_subsystems(subsystem, sccs, t)
subsystems.append(subsystem)
return subsystems
# Returns: List of equations
def _linear_ode_solver(match):
t = match['t']
funcs = match['func']
rhs = match.get('rhs', None)
tau = match.get('tau', None)
t = match['t_'] if 't_' in match else t
A = match['func_coeff']
# Note: To make B None when the matrix has constant
# coefficient
B = match.get('commutative_antiderivative', None)
type = match['type_of_equation']
sol_vector = linodesolve(A, t, b=rhs, B=B,
type=type, tau=tau)
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
return sol
def _select_equations(eqs, funcs, key=lambda x: x):
eq_dict = {e.lhs: e.rhs for e in eqs}
return [Eq(f, eq_dict[key(f)]) for f in funcs]
def _higher_order_ode_solver(match):
eqs = match["eq"]
funcs = match["func"]
t = match["t"]
sysorder = match['order']
type = match.get('type_of_equation', "type0")
is_second_order = match.get('is_second_order', False)
is_transformed = match.get('is_transformed', False)
is_euler = is_transformed and type == "type1"
is_higher_order_type2 = is_transformed and type == "type2" and 'P' in match
if is_second_order:
new_eqs, new_funcs = _second_order_to_first_order(eqs, funcs, t,
A1=match.get("A1", None), A0=match.get("A0", None),
b=match.get("rhs", None), type=type,
t_=match.get("t_", None))
else:
new_eqs, new_funcs = _higher_order_to_first_order(eqs, sysorder, t, funcs=funcs,
type=type, J=match.get('J', None),
f_t=match.get('f(t)', None),
P=match.get('P', None), b=match.get('rhs', None))
if is_transformed:
t = match.get('t_', t)
if not is_higher_order_type2:
new_eqs = _select_equations(new_eqs, [f.diff(t) for f in new_funcs])
sol = None
# NotImplementedError may be raised when the system may be actually
# solvable if it can be just divided into sub-systems
try:
if not is_higher_order_type2:
sol = _strong_component_solver(new_eqs, new_funcs, t)
except NotImplementedError:
sol = None
# Dividing the system only when it becomes essential
if sol is None:
try:
sol = _component_solver(new_eqs, new_funcs, t)
except NotImplementedError:
sol = None
if sol is None:
return sol
is_second_order_type2 = is_second_order and type == "type2"
underscores = '__' if is_transformed else '_'
sol = _select_equations(sol, funcs,
key=lambda x: Function(Dummy('{}{}0'.format(x.func.__name__, underscores)))(t))
if match.get("is_transformed", False):
if is_second_order_type2:
g_t = match["g(t)"]
tau = match["tau"]
sol = [Eq(s.lhs, s.rhs.subs(t, tau) * g_t) for s in sol]
elif is_euler:
t = match['t']
tau = match['t_']
sol = [s.subs(tau, log(t)) for s in sol]
elif is_higher_order_type2:
P = match['P']
sol_vector = P * Matrix([s.rhs for s in sol])
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
return sol
# Returns: List of equations or None
# If None is returned by this solver, then the system
# of ODEs cannot be solved directly by dsolve_system.
def _strong_component_solver(eqs, funcs, t):
from sympy.solvers.ode.ode import dsolve, constant_renumber
match = _classify_linear_system(eqs, funcs, t, is_canon=True)
sol = None
# Assuming that we can't get an implicit system
# since we are already canonical equations from
# dsolve_system
if match:
match['t'] = t
if match.get('is_higher_order', False):
sol = _higher_order_ode_solver(match)
elif match.get('is_linear', False):
sol = _linear_ode_solver(match)
# Note: For now, only linear systems are handled by this function
# hence, the match condition is added. This can be removed later.
if sol is None and len(eqs) == 1:
sol = dsolve(eqs[0], func=funcs[0])
variables = Tuple(eqs[0]).free_symbols
new_constants = [Dummy() for _ in range(ode_order(eqs[0], funcs[0]))]
sol = constant_renumber(sol, variables=variables, newconstants=new_constants)
sol = [sol]
# To add non-linear case here in future
return sol
def _get_funcs_from_canon(eqs):
return [eq.lhs.args[0] for eq in eqs]
# Returns: List of Equations(a solution)
def _weak_component_solver(wcc, t):
# We will divide the systems into sccs
# only when the wcc cannot be solved as
# a whole
eqs = []
for scc in wcc:
eqs += scc
funcs = _get_funcs_from_canon(eqs)
sol = _strong_component_solver(eqs, funcs, t)
if sol:
return sol
sol = []
for scc in wcc:
eqs = scc
funcs = _get_funcs_from_canon(eqs)
# Substituting solutions for the dependent
# variables solved in previous SCC, if any solved.
comp_eqs = [eq.subs({s.lhs: s.rhs for s in sol}) for eq in eqs]
scc_sol = _strong_component_solver(comp_eqs, funcs, t)
if scc_sol is None:
raise NotImplementedError(filldedent('''
The system of ODEs passed cannot be solved by dsolve_system.
'''))
# scc_sol: List of equations
# scc_sol is a solution
sol += scc_sol
return sol
# Returns: List of Equations(a solution)
def _component_solver(eqs, funcs, t):
components = _component_division(eqs, funcs, t)
sol = []
for wcc in components:
# wcc_sol: List of Equations
sol += _weak_component_solver(wcc, t)
# sol: List of Equations
return sol
def _second_order_to_first_order(eqs, funcs, t, type="auto", A1=None,
A0=None, b=None, t_=None):
r"""
Expects the system to be in second order and in canonical form
Explanation
===========
Reduces a second order system into a first order one depending on the type of second
order system.
1. "type0": If this is passed, then the system will be reduced to first order by
introducing dummy variables.
2. "type1": If this is passed, then a particular substitution will be used to reduce the
the system into first order.
3. "type2": If this is passed, then the system will be transformed with new dependent
variables and independent variables. This transformation is a part of solving
the corresponding system of ODEs.
`A1` and `A0` are the coefficient matrices from the system and it is assumed that the
second order system has the form given below:
.. math::
A2 * X'' = A1 * X' + A0 * X + b
Here, $A2$ is the coefficient matrix for the vector $X''$ and $b$ is the non-homogeneous
term.
Default value for `b` is None but if `A1` and `A0` are passed and `b` is not passed, then the
system will be assumed homogeneous.
"""
is_a1 = A1 is None
is_a0 = A0 is None
if (type == "type1" and is_a1) or (type == "type2" and is_a0)\
or (type == "auto" and (is_a1 or is_a0)):
(A2, A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 2)
if not A2.is_Identity:
raise ValueError(filldedent('''
The system must be in its canonical form.
'''))
if type == "auto":
match = _match_second_order_type(A1, A0, t)
type = match["type_of_equation"]
A1 = match.get("A1", None)
A0 = match.get("A0", None)
sys_order = dict.fromkeys(funcs, 2)
if type == "type1":
if b is None:
b = zeros(len(eqs))
eqs = _second_order_subs_type1(A1, b, funcs, t)
sys_order = dict.fromkeys(funcs, 1)
if type == "type2":
if t_ is None:
t_ = Symbol("{}_".format(t))
t = t_
eqs, funcs = _second_order_subs_type2(A0, funcs, t_)
sys_order = dict.fromkeys(funcs, 2)
return _higher_order_to_first_order(eqs, sys_order, t, funcs=funcs)
def _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order, b=None, P=None):
# Note: To add a test for this ValueError
if J is None or f_t is None or not _matrix_is_constant(J, t):
raise ValueError(filldedent('''
Correctly input for args 'A' and 'f_t' for Linear, Higher Order,
Type 2
'''))
if P is None and b is not None and not b.is_zero_matrix:
raise ValueError(filldedent('''
Provide the keyword 'P' for matrix P in A = P * J * P-1.
'''))
new_funcs = Matrix([Function(Dummy('{}__0'.format(f.func.__name__)))(t) for f in funcs])
new_eqs = new_funcs.diff(t, max_order) - f_t * J * new_funcs
if b is not None and not b.is_zero_matrix:
new_eqs -= P.inv() * b
new_eqs = canonical_odes(new_eqs, new_funcs, t)[0]
return new_eqs, new_funcs
def _higher_order_to_first_order(eqs, sys_order, t, funcs=None, type="type0", **kwargs):
if funcs is None:
funcs = sys_order.keys()
# Standard Cauchy Euler system
if type == "type1":
t_ = Symbol('{}_'.format(t))
new_funcs = [Function(Dummy('{}_'.format(f.func.__name__)))(t_) for f in funcs]
max_order = max(sys_order[func] for func in funcs)
subs_dict = dict(zip(funcs, new_funcs))
subs_dict[t] = exp(t_)
free_function = Function(Dummy())
def _get_coeffs_from_subs_expression(expr):
if isinstance(expr, Subs):
free_symbol = expr.args[1][0]
term = expr.args[0]
return {ode_order(term, free_symbol): 1}
if isinstance(expr, Mul):
coeff = expr.args[0]
order = list(_get_coeffs_from_subs_expression(expr.args[1]).keys())[0]
return {order: coeff}
if isinstance(expr, Add):
coeffs = {}
for arg in expr.args:
if isinstance(arg, Mul):
coeffs.update(_get_coeffs_from_subs_expression(arg))
else:
order = list(_get_coeffs_from_subs_expression(arg).keys())[0]
coeffs[order] = 1
return coeffs
for o in range(1, max_order + 1):
expr = free_function(log(t_)).diff(t_, o)*t_**o
coeff_dict = _get_coeffs_from_subs_expression(expr)
coeffs = [coeff_dict[order] if order in coeff_dict else 0 for order in range(o + 1)]
expr_to_subs = sum(free_function(t_).diff(t_, i) * c for i, c in
enumerate(coeffs)) / t**o
subs_dict.update({f.diff(t, o): expr_to_subs.subs(free_function(t_), nf)
for f, nf in zip(funcs, new_funcs)})
new_eqs = [eq.subs(subs_dict) for eq in eqs]
new_sys_order = {nf: sys_order[f] for f, nf in zip(funcs, new_funcs)}
new_eqs = canonical_odes(new_eqs, new_funcs, t_)[0]
return _higher_order_to_first_order(new_eqs, new_sys_order, t_, funcs=new_funcs)
# Systems of the form: X(n)(t) = f(t)*A*X + b
# where X(n)(t) is the nth derivative of the vector of dependent variables
# with respect to the independent variable and A is a constant matrix.
if type == "type2":
J = kwargs.get('J', None)
f_t = kwargs.get('f_t', None)
b = kwargs.get('b', None)
P = kwargs.get('P', None)
max_order = max(sys_order[func] for func in funcs)
return _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order, P=P, b=b)
# Note: To be changed to this after doit option is disabled for default cases
# new_sysorder = _get_func_order(new_eqs, new_funcs)
#
# return _higher_order_to_first_order(new_eqs, new_sysorder, t, funcs=new_funcs)
new_funcs = []
for prev_func in funcs:
func_name = prev_func.func.__name__
func = Function(Dummy('{}_0'.format(func_name)))(t)
new_funcs.append(func)
subs_dict = {prev_func: func}
new_eqs = []
for i in range(1, sys_order[prev_func]):
new_func = Function(Dummy('{}_{}'.format(func_name, i)))(t)
subs_dict[prev_func.diff(t, i)] = new_func
new_funcs.append(new_func)
prev_f = subs_dict[prev_func.diff(t, i-1)]
new_eq = Eq(prev_f.diff(t), new_func)
new_eqs.append(new_eq)
eqs = [eq.subs(subs_dict) for eq in eqs] + new_eqs
return eqs, new_funcs
def dsolve_system(eqs, funcs=None, t=None, ics=None, doit=False, simplify=True):
r"""
Solves any(supported) system of Ordinary Differential Equations
Explanation
===========
This function takes a system of ODEs as an input, determines if the
it is solvable by this function, and returns the solution if found any.
This function can handle:
1. Linear, First Order, Constant coefficient homogeneous system of ODEs
2. Linear, First Order, Constant coefficient non-homogeneous system of ODEs
3. Linear, First Order, non-constant coefficient homogeneous system of ODEs
4. Linear, First Order, non-constant coefficient non-homogeneous system of ODEs
5. Any implicit system which can be divided into system of ODEs which is of the above 4 forms
6. Any higher order linear system of ODEs that can be reduced to one of the 5 forms of systems described above.
The types of systems described above are not limited by the number of equations, i.e. this
function can solve the above types irrespective of the number of equations in the system passed.
But, the bigger the system, the more time it will take to solve the system.
This function returns a list of solutions. Each solution is a list of equations where LHS is
the dependent variable and RHS is an expression in terms of the independent variable.
Among the non constant coefficient types, not all the systems are solvable by this function. Only
those which have either a coefficient matrix with a commutative antiderivative or those systems which
may be divided further so that the divided systems may have coefficient matrix with commutative antiderivative.
Parameters
==========
eqs : List
system of ODEs to be solved
funcs : List or None
List of dependent variables that make up the system of ODEs
t : Symbol or None
Independent variable in the system of ODEs
ics : Dict or None
Set of initial boundary/conditions for the system of ODEs
doit : Boolean
Evaluate the solutions if True. Default value is True. Can be
set to false if the integral evaluation takes too much time and/or
is not required.
simplify: Boolean
Simplify the solutions for the systems. Default value is True.
Can be set to false if simplification takes too much time and/or
is not required.
Examples
========
>>> from sympy import symbols, Eq, Function
>>> from sympy.solvers.ode.systems import dsolve_system
>>> f, g = symbols("f g", cls=Function)
>>> x = symbols("x")
>>> eqs = [Eq(f(x).diff(x), g(x)), Eq(g(x).diff(x), f(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
You can also pass the initial conditions for the system of ODEs:
>>> dsolve_system(eqs, ics={f(0): 1, g(0): 0})
[[Eq(f(x), exp(x)/2 + exp(-x)/2), Eq(g(x), exp(x)/2 - exp(-x)/2)]]
Optionally, you can pass the dependent variables and the independent
variable for which the system is to be solved:
>>> funcs = [f(x), g(x)]
>>> dsolve_system(eqs, funcs=funcs, t=x)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
Lets look at an implicit system of ODEs:
>>> eqs = [Eq(f(x).diff(x)**2, g(x)**2), Eq(g(x).diff(x), g(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), C1 - C2*exp(x)), Eq(g(x), C2*exp(x))], [Eq(f(x), C1 + C2*exp(x)), Eq(g(x), C2*exp(x))]]
Returns
=======
List of List of Equations
Raises
======
NotImplementedError
When the system of ODEs is not solvable by this function.
ValueError
When the parameters passed are not in the required form.
"""
from sympy.solvers.ode.ode import solve_ics, _extract_funcs, constant_renumber
if not iterable(eqs):
raise ValueError(filldedent('''
List of equations should be passed. The input is not valid.
'''))
eqs = _preprocess_eqs(eqs)
if funcs is not None and not isinstance(funcs, list):
raise ValueError(filldedent('''
Input to the funcs should be a list of functions.
'''))
if funcs is None:
funcs = _extract_funcs(eqs)
if any(len(func.args) != 1 for func in funcs):
raise ValueError(filldedent('''
dsolve_system can solve a system of ODEs with only one independent
variable.
'''))
if len(eqs) != len(funcs):
raise ValueError(filldedent('''
Number of equations and number of functions do not match
'''))
if t is not None and not isinstance(t, Symbol):
raise ValueError(filldedent('''
The independent variable must be of type Symbol
'''))
if t is None:
t = list(list(eqs[0].atoms(Derivative))[0].atoms(Symbol))[0]
sols = []
canon_eqs = canonical_odes(eqs, funcs, t)
for canon_eq in canon_eqs:
try:
sol = _strong_component_solver(canon_eq, funcs, t)
except NotImplementedError:
sol = None
if sol is None:
sol = _component_solver(canon_eq, funcs, t)
sols.append(sol)
if sols:
final_sols = []
variables = Tuple(*eqs).free_symbols
for sol in sols:
sol = _select_equations(sol, funcs)
sol = constant_renumber(sol, variables=variables)
if ics:
constants = Tuple(*sol).free_symbols - variables
solved_constants = solve_ics(sol, funcs, constants, ics)
sol = [s.subs(solved_constants) for s in sol]
if simplify:
constants = Tuple(*sol).free_symbols - variables
sol = simpsol(sol, [t], constants, doit=doit)
final_sols.append(sol)
sols = final_sols
return sols
|