File size: 121,871 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
from __future__ import annotations

from sympy.core.add import Add
from sympy.core.assumptions import check_assumptions
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.mul import Mul
from sympy.core.numbers import Rational, int_valued
from sympy.core.intfunc import igcdex, ilcm, igcd, integer_nthroot, isqrt
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import _sympify
from sympy.external.gmpy import jacobi, remove, invert, iroot
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.ntheory.factor_ import divisors, factorint, perfect_power
from sympy.ntheory.generate import nextprime
from sympy.ntheory.primetest import is_square, isprime
from sympy.ntheory.modular import symmetric_residue
from sympy.ntheory.residue_ntheory import sqrt_mod, sqrt_mod_iter
from sympy.polys.polyerrors import GeneratorsNeeded
from sympy.polys.polytools import Poly, factor_list
from sympy.simplify.simplify import signsimp
from sympy.solvers.solveset import solveset_real
from sympy.utilities import numbered_symbols
from sympy.utilities.misc import as_int, filldedent
from sympy.utilities.iterables import (is_sequence, subsets, permute_signs,
                                       signed_permutations, ordered_partitions)


# these are imported with 'from sympy.solvers.diophantine import *
__all__ = ['diophantine', 'classify_diop']


class DiophantineSolutionSet(set):
    """
    Container for a set of solutions to a particular diophantine equation.

    The base representation is a set of tuples representing each of the solutions.

    Parameters
    ==========

    symbols : list
        List of free symbols in the original equation.
    parameters: list
        List of parameters to be used in the solution.

    Examples
    ========

    Adding solutions:

        >>> from sympy.solvers.diophantine.diophantine import DiophantineSolutionSet
        >>> from sympy.abc import x, y, t, u
        >>> s1 = DiophantineSolutionSet([x, y], [t, u])
        >>> s1
        set()
        >>> s1.add((2, 3))
        >>> s1.add((-1, u))
        >>> s1
        {(-1, u), (2, 3)}
        >>> s2 = DiophantineSolutionSet([x, y], [t, u])
        >>> s2.add((3, 4))
        >>> s1.update(*s2)
        >>> s1
        {(-1, u), (2, 3), (3, 4)}

    Conversion of solutions into dicts:

        >>> list(s1.dict_iterator())
        [{x: -1, y: u}, {x: 2, y: 3}, {x: 3, y: 4}]

    Substituting values:

        >>> s3 = DiophantineSolutionSet([x, y], [t, u])
        >>> s3.add((t**2, t + u))
        >>> s3
        {(t**2, t + u)}
        >>> s3.subs({t: 2, u: 3})
        {(4, 5)}
        >>> s3.subs(t, -1)
        {(1, u - 1)}
        >>> s3.subs(t, 3)
        {(9, u + 3)}

    Evaluation at specific values. Positional arguments are given in the same order as the parameters:

        >>> s3(-2, 3)
        {(4, 1)}
        >>> s3(5)
        {(25, u + 5)}
        >>> s3(None, 2)
        {(t**2, t + 2)}
    """

    def __init__(self, symbols_seq, parameters):
        super().__init__()

        if not is_sequence(symbols_seq):
            raise ValueError("Symbols must be given as a sequence.")

        if not is_sequence(parameters):
            raise ValueError("Parameters must be given as a sequence.")

        self.symbols = tuple(symbols_seq)
        self.parameters = tuple(parameters)

    def add(self, solution):
        if len(solution) != len(self.symbols):
            raise ValueError("Solution should have a length of %s, not %s" % (len(self.symbols), len(solution)))
        # make solution canonical wrt sign (i.e. no -x unless x is also present as an arg)
        args = set(solution)
        for i in range(len(solution)):
            x = solution[i]
            if not type(x) is int and (-x).is_Symbol and -x not in args:
                solution = [_.subs(-x, x) for _ in solution]
        super().add(Tuple(*solution))

    def update(self, *solutions):
        for solution in solutions:
            self.add(solution)

    def dict_iterator(self):
        for solution in ordered(self):
            yield dict(zip(self.symbols, solution))

    def subs(self, *args, **kwargs):
        result = DiophantineSolutionSet(self.symbols, self.parameters)
        for solution in self:
            result.add(solution.subs(*args, **kwargs))
        return result

    def __call__(self, *args):
        if len(args) > len(self.parameters):
            raise ValueError("Evaluation should have at most %s values, not %s" % (len(self.parameters), len(args)))
        rep = {p: v for p, v in zip(self.parameters, args) if v is not None}
        return self.subs(rep)


class DiophantineEquationType:
    """
    Internal representation of a particular diophantine equation type.

    Parameters
    ==========

    equation :
        The diophantine equation that is being solved.
    free_symbols : list (optional)
        The symbols being solved for.

    Attributes
    ==========

    total_degree :
        The maximum of the degrees of all terms in the equation
    homogeneous :
        Does the equation contain a term of degree 0
    homogeneous_order :
        Does the equation contain any coefficient that is in the symbols being solved for
    dimension :
        The number of symbols being solved for
    """
    name = None  # type: str

    def __init__(self, equation, free_symbols=None):
        self.equation = _sympify(equation).expand(force=True)

        if free_symbols is not None:
            self.free_symbols = free_symbols
        else:
            self.free_symbols = list(self.equation.free_symbols)
            self.free_symbols.sort(key=default_sort_key)

        if not self.free_symbols:
            raise ValueError('equation should have 1 or more free symbols')

        self.coeff = self.equation.as_coefficients_dict()
        if not all(int_valued(c) for c in self.coeff.values()):
            raise TypeError("Coefficients should be Integers")

        self.total_degree = Poly(self.equation).total_degree()
        self.homogeneous = 1 not in self.coeff
        self.homogeneous_order = not (set(self.coeff) & set(self.free_symbols))
        self.dimension = len(self.free_symbols)
        self._parameters = None

    def matches(self):
        """
        Determine whether the given equation can be matched to the particular equation type.
        """
        return False

    @property
    def n_parameters(self):
        return self.dimension

    @property
    def parameters(self):
        if self._parameters is None:
            self._parameters = symbols('t_:%i' % (self.n_parameters,), integer=True)
        return self._parameters

    def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
        raise NotImplementedError('No solver has been written for %s.' % self.name)

    def pre_solve(self, parameters=None):
        if not self.matches():
            raise ValueError("This equation does not match the %s equation type." % self.name)

        if parameters is not None:
            if len(parameters) != self.n_parameters:
                raise ValueError("Expected %s parameter(s) but got %s" % (self.n_parameters, len(parameters)))

        self._parameters = parameters


class Univariate(DiophantineEquationType):
    """
    Representation of a univariate diophantine equation.

    A univariate diophantine equation is an equation of the form
    `a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are
    integer constants and `x` is an integer variable.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import Univariate
    >>> from sympy.abc import x
    >>> Univariate((x - 2)*(x - 3)**2).solve() # solves equation (x - 2)*(x - 3)**2 == 0
    {(2,), (3,)}

    """

    name = 'univariate'

    def matches(self):
        return self.dimension == 1

    def solve(self, parameters=None, limit=None):
        self.pre_solve(parameters)

        result = DiophantineSolutionSet(self.free_symbols, parameters=self.parameters)
        for i in solveset_real(self.equation, self.free_symbols[0]).intersect(S.Integers):
            result.add((i,))
        return result


class Linear(DiophantineEquationType):
    """
    Representation of a linear diophantine equation.

    A linear diophantine equation is an equation of the form `a_{1}x_{1} +
    a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are
    integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import Linear
    >>> from sympy.abc import x, y, z
    >>> l1 = Linear(2*x - 3*y - 5)
    >>> l1.matches() # is this equation linear
    True
    >>> l1.solve() # solves equation 2*x - 3*y - 5 == 0
    {(3*t_0 - 5, 2*t_0 - 5)}

    Here x = -3*t_0 - 5 and y = -2*t_0 - 5

    >>> Linear(2*x - 3*y - 4*z -3).solve()
    {(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)}

    """

    name = 'linear'

    def matches(self):
        return self.total_degree == 1

    def solve(self, parameters=None, limit=None):
        self.pre_solve(parameters)

        coeff = self.coeff
        var = self.free_symbols

        if 1 in coeff:
            # negate coeff[] because input is of the form: ax + by + c ==  0
            #                              but is used as: ax + by     == -c
            c = -coeff[1]
        else:
            c = 0

        result = DiophantineSolutionSet(var, parameters=self.parameters)
        params = result.parameters

        if len(var) == 1:
            q, r = divmod(c, coeff[var[0]])
            if not r:
                result.add((q,))
            return result

        '''
        base_solution_linear() can solve diophantine equations of the form:

        a*x + b*y == c

        We break down multivariate linear diophantine equations into a
        series of bivariate linear diophantine equations which can then
        be solved individually by base_solution_linear().

        Consider the following:

        a_0*x_0 + a_1*x_1 + a_2*x_2 == c

        which can be re-written as:

        a_0*x_0 + g_0*y_0 == c

        where

        g_0 == gcd(a_1, a_2)

        and

        y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0

        This leaves us with two binary linear diophantine equations.
        For the first equation:

        a == a_0
        b == g_0
        c == c

        For the second:

        a == a_1/g_0
        b == a_2/g_0
        c == the solution we find for y_0 in the first equation.

        The arrays A and B are the arrays of integers used for
        'a' and 'b' in each of the n-1 bivariate equations we solve.
        '''

        A = [coeff[v] for v in var]
        B = []
        if len(var) > 2:
            B.append(igcd(A[-2], A[-1]))
            A[-2] = A[-2] // B[0]
            A[-1] = A[-1] // B[0]
            for i in range(len(A) - 3, 0, -1):
                gcd = igcd(B[0], A[i])
                B[0] = B[0] // gcd
                A[i] = A[i] // gcd
                B.insert(0, gcd)
        B.append(A[-1])

        '''
        Consider the trivariate linear equation:

        4*x_0 + 6*x_1 + 3*x_2 == 2

        This can be re-written as:

        4*x_0 + 3*y_0 == 2

        where

        y_0 == 2*x_1 + x_2
        (Note that gcd(3, 6) == 3)

        The complete integral solution to this equation is:

        x_0 ==  2 + 3*t_0
        y_0 == -2 - 4*t_0

        where 't_0' is any integer.

        Now that we have a solution for 'x_0', find 'x_1' and 'x_2':

        2*x_1 + x_2 == -2 - 4*t_0

        We can then solve for '-2' and '-4' independently,
        and combine the results:

        2*x_1a + x_2a == -2
        x_1a == 0 + t_0
        x_2a == -2 - 2*t_0

        2*x_1b + x_2b == -4*t_0
        x_1b == 0*t_0 + t_1
        x_2b == -4*t_0 - 2*t_1

        ==>

        x_1 == t_0 + t_1
        x_2 == -2 - 6*t_0 - 2*t_1

        where 't_0' and 't_1' are any integers.

        Note that:

        4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2

        for any integral values of 't_0', 't_1'; as required.

        This method is generalised for many variables, below.

        '''
        solutions = []
        for Ai, Bi in zip(A, B):
            tot_x, tot_y = [], []

            for arg in Add.make_args(c):
                if arg.is_Integer:
                    # example: 5 -> k = 5
                    k, p = arg, S.One
                    pnew = params[0]
                else:  # arg is a Mul or Symbol
                    # example: 3*t_1 -> k = 3
                    # example: t_0 -> k = 1
                    k, p = arg.as_coeff_Mul()
                    pnew = params[params.index(p) + 1]

                sol = sol_x, sol_y = base_solution_linear(k, Ai, Bi, pnew)

                if p is S.One:
                    if None in sol:
                        return result
                else:
                    # convert a + b*pnew -> a*p + b*pnew
                    if isinstance(sol_x, Add):
                        sol_x = sol_x.args[0]*p + sol_x.args[1]
                    if isinstance(sol_y, Add):
                        sol_y = sol_y.args[0]*p + sol_y.args[1]

                tot_x.append(sol_x)
                tot_y.append(sol_y)

            solutions.append(Add(*tot_x))
            c = Add(*tot_y)

        solutions.append(c)
        result.add(solutions)
        return result


class BinaryQuadratic(DiophantineEquationType):
    """
    Representation of a binary quadratic diophantine equation.

    A binary quadratic diophantine equation is an equation of the
    form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`, where `A, B, C, D, E,
    F` are integer constants and `x` and `y` are integer variables.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.solvers.diophantine.diophantine import BinaryQuadratic
    >>> b1 = BinaryQuadratic(x**3 + y**2 + 1)
    >>> b1.matches()
    False
    >>> b2 = BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2)
    >>> b2.matches()
    True
    >>> b2.solve()
    {(-1, -1)}

    References
    ==========

    .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online],
          Available: https://www.alpertron.com.ar/METHODS.HTM
    .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online],
          Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf

    """

    name = 'binary_quadratic'

    def matches(self):
        return self.total_degree == 2 and self.dimension == 2

    def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
        self.pre_solve(parameters)

        var = self.free_symbols
        coeff = self.coeff

        x, y = var

        A = coeff[x**2]
        B = coeff[x*y]
        C = coeff[y**2]
        D = coeff[x]
        E = coeff[y]
        F = coeff[S.One]

        A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)]

        # (1) Simple-Hyperbolic case: A = C = 0, B != 0
        # In this case equation can be converted to (Bx + E)(By + D) = DE - BF
        # We consider two cases; DE - BF = 0 and DE - BF != 0
        # More details, https://www.alpertron.com.ar/METHODS.HTM#SHyperb

        result = DiophantineSolutionSet(var, self.parameters)
        t, u = result.parameters

        discr = B**2 - 4*A*C
        if A == 0 and C == 0 and B != 0:

            if D*E - B*F == 0:
                q, r = divmod(E, B)
                if not r:
                    result.add((-q, t))
                q, r = divmod(D, B)
                if not r:
                    result.add((t, -q))
            else:
                div = divisors(D*E - B*F)
                div = div + [-term for term in div]
                for d in div:
                    x0, r = divmod(d - E, B)
                    if not r:
                        q, r = divmod(D*E - B*F, d)
                        if not r:
                            y0, r = divmod(q - D, B)
                            if not r:
                                result.add((x0, y0))

        # (2) Parabolic case: B**2 - 4*A*C = 0
        # There are two subcases to be considered in this case.
        # sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0
        # More Details, https://www.alpertron.com.ar/METHODS.HTM#Parabol

        elif discr == 0:

            if A == 0:
                s = BinaryQuadratic(self.equation, free_symbols=[y, x]).solve(parameters=[t, u])
                for soln in s:
                    result.add((soln[1], soln[0]))

            else:
                g = sign(A)*igcd(A, C)
                a = A // g
                c = C // g
                e = sign(B / A)

                sqa = isqrt(a)
                sqc = isqrt(c)
                _c = e*sqc*D - sqa*E
                if not _c:
                    z = Symbol("z", real=True)
                    eq = sqa*g*z**2 + D*z + sqa*F
                    roots = solveset_real(eq, z).intersect(S.Integers)
                    for root in roots:
                        ans = diop_solve(sqa*x + e*sqc*y - root)
                        result.add((ans[0], ans[1]))

                elif int_valued(c):
                    solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t \
                                        - (e*sqc*g*u**2 + E*u + e*sqc*F) // _c

                    solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \
                                        + (sqa*g*u**2 + D*u + sqa*F) // _c

                    for z0 in range(0, abs(_c)):
                        # Check if the coefficients of y and x obtained are integers or not
                        if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and
                            divisible(e*sqc*g*z0**2 + E*z0 + e*sqc*F, _c)):
                            result.add((solve_x(z0), solve_y(z0)))

        # (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper
        # by John P. Robertson.
        # https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf

        elif is_square(discr):
            if A != 0:
                r = sqrt(discr)
                u, v = symbols("u, v", integer=True)
                eq = _mexpand(
                    4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) +
                    2*A*4*A*E*(u - v) + 4*A*r*4*A*F)

                solution = diop_solve(eq, t)

                for s0, t0 in solution:

                    num = B*t0 + r*s0 + r*t0 - B*s0
                    x_0 = S(num) / (4*A*r)
                    y_0 = S(s0 - t0) / (2*r)
                    if isinstance(s0, Symbol) or isinstance(t0, Symbol):
                        if len(check_param(x_0, y_0, 4*A*r, parameters)) > 0:
                            ans = check_param(x_0, y_0, 4*A*r, parameters)
                            result.update(*ans)
                    elif x_0.is_Integer and y_0.is_Integer:
                        if is_solution_quad(var, coeff, x_0, y_0):
                            result.add((x_0, y_0))

            else:
                s = BinaryQuadratic(self.equation, free_symbols=var[::-1]).solve(parameters=[t, u])  # Interchange x and y
                while s:
                    result.add(s.pop()[::-1])  # and solution <--------+

        # (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0

        else:

            P, Q = _transformation_to_DN(var, coeff)
            D, N = _find_DN(var, coeff)
            solns_pell = diop_DN(D, N)

            if D < 0:
                for x0, y0 in solns_pell:
                    for x in [-x0, x0]:
                        for y in [-y0, y0]:
                            s = P*Matrix([x, y]) + Q
                            try:
                                result.add([as_int(_) for _ in s])
                            except ValueError:
                                pass
            else:
                # In this case equation can be transformed into a Pell equation

                solns_pell = set(solns_pell)
                solns_pell.update((-X, -Y) for X, Y in list(solns_pell))

                a = diop_DN(D, 1)
                T = a[0][0]
                U = a[0][1]

                if all(int_valued(_) for _ in P[:4] + Q[:2]):
                    for r, s in solns_pell:
                        _a = (r + s*sqrt(D))*(T + U*sqrt(D))**t
                        _b = (r - s*sqrt(D))*(T - U*sqrt(D))**t
                        x_n = _mexpand(S(_a + _b) / 2)
                        y_n = _mexpand(S(_a - _b) / (2*sqrt(D)))
                        s = P*Matrix([x_n, y_n]) + Q
                        result.add(s)

                else:
                    L = ilcm(*[_.q for _ in P[:4] + Q[:2]])

                    k = 1

                    T_k = T
                    U_k = U

                    while (T_k - 1) % L != 0 or U_k % L != 0:
                        T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T
                        k += 1

                    for X, Y in solns_pell:

                        for i in range(k):
                            if all(int_valued(_) for _ in P*Matrix([X, Y]) + Q):
                                _a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t
                                _b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t
                                Xt = S(_a + _b) / 2
                                Yt = S(_a - _b) / (2*sqrt(D))
                                s = P*Matrix([Xt, Yt]) + Q
                                result.add(s)

                            X, Y = X*T + D*U*Y, X*U + Y*T

        return result


class InhomogeneousTernaryQuadratic(DiophantineEquationType):
    """

    Representation of an inhomogeneous ternary quadratic.

    No solver is currently implemented for this equation type.

    """

    name = 'inhomogeneous_ternary_quadratic'

    def matches(self):
        if not (self.total_degree == 2 and self.dimension == 3):
            return False
        if not self.homogeneous:
            return False
        return not self.homogeneous_order


class HomogeneousTernaryQuadraticNormal(DiophantineEquationType):
    """
    Representation of a homogeneous ternary quadratic normal diophantine equation.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadraticNormal
    >>> HomogeneousTernaryQuadraticNormal(4*x**2 - 5*y**2 + z**2).solve()
    {(1, 2, 4)}

    """

    name = 'homogeneous_ternary_quadratic_normal'

    def matches(self):
        if not (self.total_degree == 2 and self.dimension == 3):
            return False
        if not self.homogeneous:
            return False
        if not self.homogeneous_order:
            return False

        nonzero = [k for k in self.coeff if self.coeff[k]]
        return len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols)

    def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
        self.pre_solve(parameters)

        var = self.free_symbols
        coeff = self.coeff

        x, y, z = var

        a = coeff[x**2]
        b = coeff[y**2]
        c = coeff[z**2]

        (sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \
            sqf_normal(a, b, c, steps=True)

        A = -a_2*c_2
        B = -b_2*c_2

        result = DiophantineSolutionSet(var, parameters=self.parameters)

        # If following two conditions are satisfied then there are no solutions
        if A < 0 and B < 0:
            return result

        if (
            sqrt_mod(-b_2*c_2, a_2) is None or
            sqrt_mod(-c_2*a_2, b_2) is None or
            sqrt_mod(-a_2*b_2, c_2) is None):
            return result

        z_0, x_0, y_0 = descent(A, B)

        z_0, q = _rational_pq(z_0, abs(c_2))
        x_0 *= q
        y_0 *= q

        x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0)

        # Holzer reduction
        if sign(a) == sign(b):
            x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2))
        elif sign(a) == sign(c):
            x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2))
        else:
            y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2))

        x_0 = reconstruct(b_1, c_1, x_0)
        y_0 = reconstruct(a_1, c_1, y_0)
        z_0 = reconstruct(a_1, b_1, z_0)

        sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c)

        x_0 = abs(x_0*sq_lcm // sqf_of_a)
        y_0 = abs(y_0*sq_lcm // sqf_of_b)
        z_0 = abs(z_0*sq_lcm // sqf_of_c)

        result.add(_remove_gcd(x_0, y_0, z_0))
        return result


class HomogeneousTernaryQuadratic(DiophantineEquationType):
    """
    Representation of a homogeneous ternary quadratic diophantine equation.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadratic
    >>> HomogeneousTernaryQuadratic(x**2 + y**2 - 3*z**2 + x*y).solve()
    {(-1, 2, 1)}
    >>> HomogeneousTernaryQuadratic(3*x**2 + y**2 - 3*z**2 + 5*x*y + y*z).solve()
    {(3, 12, 13)}

    """

    name = 'homogeneous_ternary_quadratic'

    def matches(self):
        if not (self.total_degree == 2 and self.dimension == 3):
            return False
        if not self.homogeneous:
            return False
        if not self.homogeneous_order:
            return False

        nonzero = [k for k in self.coeff if self.coeff[k]]
        return not (len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols))

    def solve(self, parameters=None, limit=None):
        self.pre_solve(parameters)

        _var = self.free_symbols
        coeff = self.coeff

        x, y, z = _var
        var = [x, y, z]

        # Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the
        # coefficients A, B, C are non-zero.
        # There are infinitely many solutions for the equation.
        # Ex: (0, 0, t), (0, t, 0), (t, 0, 0)
        # Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather
        # unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by
        # using methods for binary quadratic diophantine equations. Let's select the
        # solution which minimizes |x| + |z|

        result = DiophantineSolutionSet(var, parameters=self.parameters)

        def unpack_sol(sol):
            if len(sol) > 0:
                return list(sol)[0]
            return None, None, None

        if not any(coeff[i**2] for i in var):
            if coeff[x*z]:
                sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z)
                s = min(sols, key=lambda r: abs(r[0]) + abs(r[1]))
                result.add(_remove_gcd(s[0], -coeff[x*z], s[1]))
                return result

            var[0], var[1] = _var[1], _var[0]
            y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
            if x_0 is not None:
                result.add((x_0, y_0, z_0))
            return result

        if coeff[x**2] == 0:
            # If the coefficient of x is zero change the variables
            if coeff[y**2] == 0:
                var[0], var[2] = _var[2], _var[0]
                z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))

            else:
                var[0], var[1] = _var[1], _var[0]
                y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))

        else:
            if coeff[x*y] or coeff[x*z]:
                # Apply the transformation x --> X - (B*y + C*z)/(2*A)
                A = coeff[x**2]
                B = coeff[x*y]
                C = coeff[x*z]
                D = coeff[y**2]
                E = coeff[y*z]
                F = coeff[z**2]

                _coeff = {}

                _coeff[x**2] = 4*A**2
                _coeff[y**2] = 4*A*D - B**2
                _coeff[z**2] = 4*A*F - C**2
                _coeff[y*z] = 4*A*E - 2*B*C
                _coeff[x*y] = 0
                _coeff[x*z] = 0

                x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, _coeff))

                if x_0 is None:
                    return result

                p, q = _rational_pq(B*y_0 + C*z_0, 2*A)
                x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q

            elif coeff[z*y] != 0:
                if coeff[y**2] == 0:
                    if coeff[z**2] == 0:
                        # Equations of the form A*x**2 + E*yz = 0.
                        A = coeff[x**2]
                        E = coeff[y*z]

                        b, a = _rational_pq(-E, A)

                        x_0, y_0, z_0 = b, a, b

                    else:
                        # Ax**2 + E*y*z + F*z**2  = 0
                        var[0], var[2] = _var[2], _var[0]
                        z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))

                else:
                    # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero
                    var[0], var[1] = _var[1], _var[0]
                    y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))

            else:
                # Ax**2 + D*y**2 + F*z**2 = 0, C may be zero
                x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic_normal(var, coeff))

        if x_0 is None:
            return result

        result.add(_remove_gcd(x_0, y_0, z_0))
        return result


class InhomogeneousGeneralQuadratic(DiophantineEquationType):
    """

    Representation of an inhomogeneous general quadratic.

    No solver is currently implemented for this equation type.

    """

    name = 'inhomogeneous_general_quadratic'

    def matches(self):
        if not (self.total_degree == 2 and self.dimension >= 3):
            return False
        if not self.homogeneous_order:
            return True
        # there may be Pow keys like x**2 or Mul keys like x*y
        return any(k.is_Mul for k in self.coeff) and not self.homogeneous


class HomogeneousGeneralQuadratic(DiophantineEquationType):
    """

    Representation of a homogeneous general quadratic.

    No solver is currently implemented for this equation type.

    """

    name = 'homogeneous_general_quadratic'

    def matches(self):
        if not (self.total_degree == 2 and self.dimension >= 3):
            return False
        if not self.homogeneous_order:
            return False
        # there may be Pow keys like x**2 or Mul keys like x*y
        return any(k.is_Mul for k in self.coeff) and self.homogeneous


class GeneralSumOfSquares(DiophantineEquationType):
    r"""
    Representation of the diophantine equation

    `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.

    Details
    =======

    When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be
    no solutions. Refer [1]_ for more details.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import GeneralSumOfSquares
    >>> from sympy.abc import a, b, c, d, e
    >>> GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve()
    {(15, 22, 22, 24, 24)}

    By default only 1 solution is returned. Use the `limit` keyword for more:

    >>> sorted(GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve(limit=3))
    [(15, 22, 22, 24, 24), (16, 19, 24, 24, 24), (16, 20, 22, 23, 26)]

    References
    ==========

    .. [1] Representing an integer as a sum of three squares, [online],
        Available:
        https://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
    """

    name = 'general_sum_of_squares'

    def matches(self):
        if not (self.total_degree == 2 and self.dimension >= 3):
            return False
        if not self.homogeneous_order:
            return False
        if any(k.is_Mul for k in self.coeff):
            return False
        return all(self.coeff[k] == 1 for k in self.coeff if k != 1)

    def solve(self, parameters=None, limit=1):
        self.pre_solve(parameters)

        var = self.free_symbols
        k = -int(self.coeff[1])
        n = self.dimension

        result = DiophantineSolutionSet(var, parameters=self.parameters)

        if k < 0 or limit < 1:
            return result

        signs = [-1 if x.is_nonpositive else 1 for x in var]
        negs = signs.count(-1) != 0

        took = 0
        for t in sum_of_squares(k, n, zeros=True):
            if negs:
                result.add([signs[i]*j for i, j in enumerate(t)])
            else:
                result.add(t)
            took += 1
            if took == limit:
                break
        return result


class GeneralPythagorean(DiophantineEquationType):
    """
    Representation of the general pythagorean equation,
    `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import GeneralPythagorean
    >>> from sympy.abc import a, b, c, d, e, x, y, z, t
    >>> GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve()
    {(t_0**2 + t_1**2 - t_2**2, 2*t_0*t_2, 2*t_1*t_2, t_0**2 + t_1**2 + t_2**2)}
    >>> GeneralPythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2).solve(parameters=[x, y, z, t])
    {(-10*t**2 + 10*x**2 + 10*y**2 + 10*z**2, 15*t**2 + 15*x**2 + 15*y**2 + 15*z**2, 15*t*x, 12*t*y, 60*t*z)}
    """

    name = 'general_pythagorean'

    def matches(self):
        if not (self.total_degree == 2 and self.dimension >= 3):
            return False
        if not self.homogeneous_order:
            return False
        if any(k.is_Mul for k in self.coeff):
            return False
        if all(self.coeff[k] == 1 for k in self.coeff if k != 1):
            return False
        if not all(is_square(abs(self.coeff[k])) for k in self.coeff):
            return False
        # all but one has the same sign
        # e.g. 4*x**2 + y**2 - 4*z**2
        return abs(sum(sign(self.coeff[k]) for k in self.coeff)) == self.dimension - 2

    @property
    def n_parameters(self):
        return self.dimension - 1

    def solve(self, parameters=None, limit=1):
        self.pre_solve(parameters)

        coeff = self.coeff
        var = self.free_symbols
        n = self.dimension

        if sign(coeff[var[0] ** 2]) + sign(coeff[var[1] ** 2]) + sign(coeff[var[2] ** 2]) < 0:
            for key in coeff.keys():
                coeff[key] = -coeff[key]

        result = DiophantineSolutionSet(var, parameters=self.parameters)

        index = 0

        for i, v in enumerate(var):
            if sign(coeff[v ** 2]) == -1:
                index = i

        m = result.parameters

        ith = sum(m_i ** 2 for m_i in m)
        L = [ith - 2 * m[n - 2] ** 2]
        L.extend([2 * m[i] * m[n - 2] for i in range(n - 2)])
        sol = L[:index] + [ith] + L[index:]

        lcm = 1
        for i, v in enumerate(var):
            if i == index or (index > 0 and i == 0) or (index == 0 and i == 1):
                lcm = ilcm(lcm, sqrt(abs(coeff[v ** 2])))
            else:
                s = sqrt(coeff[v ** 2])
                lcm = ilcm(lcm, s if _odd(s) else s // 2)

        for i, v in enumerate(var):
            sol[i] = (lcm * sol[i]) / sqrt(abs(coeff[v ** 2]))

        result.add(sol)
        return result


class CubicThue(DiophantineEquationType):
    """
    Representation of a cubic Thue diophantine equation.

    A cubic Thue diophantine equation is a polynomial of the form
    `f(x, y) = r` of degree 3, where `x` and `y` are integers
    and `r` is a rational number.

    No solver is currently implemented for this equation type.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.solvers.diophantine.diophantine import CubicThue
    >>> c1 = CubicThue(x**3 + y**2 + 1)
    >>> c1.matches()
    True

    """

    name = 'cubic_thue'

    def matches(self):
        return self.total_degree == 3 and self.dimension == 2


class GeneralSumOfEvenPowers(DiophantineEquationType):
    """
    Representation of the diophantine equation

    `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`

    where `e` is an even, integer power.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import GeneralSumOfEvenPowers
    >>> from sympy.abc import a, b
    >>> GeneralSumOfEvenPowers(a**4 + b**4 - (2**4 + 3**4)).solve()
    {(2, 3)}

    """

    name = 'general_sum_of_even_powers'

    def matches(self):
        if not self.total_degree > 3:
            return False
        if self.total_degree % 2 != 0:
            return False
        if not all(k.is_Pow and k.exp == self.total_degree for k in self.coeff if k != 1):
            return False
        return all(self.coeff[k] == 1 for k in self.coeff if k != 1)

    def solve(self, parameters=None, limit=1):
        self.pre_solve(parameters)

        var = self.free_symbols
        coeff = self.coeff

        p = None
        for q in coeff.keys():
            if q.is_Pow and coeff[q]:
                p = q.exp

        k = len(var)
        n = -coeff[1]

        result = DiophantineSolutionSet(var, parameters=self.parameters)

        if n < 0 or limit < 1:
            return result

        sign = [-1 if x.is_nonpositive else 1 for x in var]
        negs = sign.count(-1) != 0

        took = 0
        for t in power_representation(n, p, k):
            if negs:
                result.add([sign[i]*j for i, j in enumerate(t)])
            else:
                result.add(t)
            took += 1
            if took == limit:
                break
        return result

# these types are known (but not necessarily handled)
# note that order is important here (in the current solver state)
all_diop_classes = [
    Linear,
    Univariate,
    BinaryQuadratic,
    InhomogeneousTernaryQuadratic,
    HomogeneousTernaryQuadraticNormal,
    HomogeneousTernaryQuadratic,
    InhomogeneousGeneralQuadratic,
    HomogeneousGeneralQuadratic,
    GeneralSumOfSquares,
    GeneralPythagorean,
    CubicThue,
    GeneralSumOfEvenPowers,
]

diop_known = {diop_class.name for diop_class in all_diop_classes}


def _remove_gcd(*x):
    try:
        g = igcd(*x)
    except ValueError:
        fx = list(filter(None, x))
        if len(fx) < 2:
            return x
        g = igcd(*[i.as_content_primitive()[0] for i in fx])
    except TypeError:
        raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)')
    if g == 1:
        return x
    return tuple([i//g for i in x])


def _rational_pq(a, b):
    # return `(numer, denom)` for a/b; sign in numer and gcd removed
    return _remove_gcd(sign(b)*a, abs(b))


def _nint_or_floor(p, q):
    # return nearest int to p/q; in case of tie return floor(p/q)
    w, r = divmod(p, q)
    if abs(r) <= abs(q)//2:
        return w
    return w + 1


def _odd(i):
    return i % 2 != 0


def _even(i):
    return i % 2 == 0


def diophantine(eq, param=symbols("t", integer=True), syms=None,
                permute=False):
    """
    Simplify the solution procedure of diophantine equation ``eq`` by
    converting it into a product of terms which should equal zero.

    Explanation
    ===========

    For example, when solving, `x^2 - y^2 = 0` this is treated as
    `(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved
    independently and combined. Each term is solved by calling
    ``diop_solve()``. (Although it is possible to call ``diop_solve()``
    directly, one must be careful to pass an equation in the correct
    form and to interpret the output correctly; ``diophantine()`` is
    the public-facing function to use in general.)

    Output of ``diophantine()`` is a set of tuples. The elements of the
    tuple are the solutions for each variable in the equation and
    are arranged according to the alphabetic ordering of the variables.
    e.g. For an equation with two variables, `a` and `b`, the first
    element of the tuple is the solution for `a` and the second for `b`.

    Usage
    =====

    ``diophantine(eq, t, syms)``: Solve the diophantine
    equation ``eq``.
    ``t`` is the optional parameter to be used by ``diop_solve()``.
    ``syms`` is an optional list of symbols which determines the
    order of the elements in the returned tuple.

    By default, only the base solution is returned. If ``permute`` is set to
    True then permutations of the base solution and/or permutations of the
    signs of the values will be returned when applicable.

    Details
    =======

    ``eq`` should be an expression which is assumed to be zero.
    ``t`` is the parameter to be used in the solution.

    Examples
    ========

    >>> from sympy import diophantine
    >>> from sympy.abc import a, b
    >>> eq = a**4 + b**4 - (2**4 + 3**4)
    >>> diophantine(eq)
    {(2, 3)}
    >>> diophantine(eq, permute=True)
    {(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}

    >>> from sympy.abc import x, y, z
    >>> diophantine(x**2 - y**2)
    {(t_0, -t_0), (t_0, t_0)}

    >>> diophantine(x*(2*x + 3*y - z))
    {(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
    >>> diophantine(x**2 + 3*x*y + 4*x)
    {(0, n1), (-3*t_0 - 4, t_0)}

    See Also
    ========

    diop_solve
    sympy.utilities.iterables.permute_signs
    sympy.utilities.iterables.signed_permutations
    """

    eq = _sympify(eq)

    if isinstance(eq, Eq):
        eq = eq.lhs - eq.rhs

    try:
        var = list(eq.expand(force=True).free_symbols)
        var.sort(key=default_sort_key)
        if syms:
            if not is_sequence(syms):
                raise TypeError(
                    'syms should be given as a sequence, e.g. a list')
            syms = [i for i in syms if i in var]
            if syms != var:
                dict_sym_index = dict(zip(syms, range(len(syms))))
                return {tuple([t[dict_sym_index[i]] for i in var])
                            for t in diophantine(eq, param, permute=permute)}
        n, d = eq.as_numer_denom()
        if n.is_number:
            return set()
        if not d.is_number:
            dsol = diophantine(d)
            good = diophantine(n) - dsol
            return {s for s in good if _mexpand(d.subs(zip(var, s)))}
        eq = factor_terms(n)
        assert not eq.is_number
        eq = eq.as_independent(*var, as_Add=False)[1]
        p = Poly(eq)
        assert not any(g.is_number for g in p.gens)
        eq = p.as_expr()
        assert eq.is_polynomial()
    except (GeneratorsNeeded, AssertionError):
        raise TypeError(filldedent('''
    Equation should be a polynomial with Rational coefficients.'''))

    # permute only sign
    do_permute_signs = False
    # permute sign and values
    do_permute_signs_var = False
    # permute few signs
    permute_few_signs = False
    try:
        # if we know that factoring should not be attempted, skip
        # the factoring step
        v, c, t = classify_diop(eq)

        # check for permute sign
        if permute:
            len_var = len(v)
            permute_signs_for = [
                GeneralSumOfSquares.name,
                GeneralSumOfEvenPowers.name]
            permute_signs_check = [
                HomogeneousTernaryQuadratic.name,
                HomogeneousTernaryQuadraticNormal.name,
                BinaryQuadratic.name]
            if t in permute_signs_for:
                do_permute_signs_var = True
            elif t in permute_signs_check:
                # if all the variables in eq have even powers
                # then do_permute_sign = True
                if len_var == 3:
                    var_mul = list(subsets(v, 2))
                    # here var_mul is like [(x, y), (x, z), (y, z)]
                    xy_coeff = True
                    x_coeff = True
                    var1_mul_var2 = (a[0]*a[1] for a in var_mul)
                    # if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then
                    # `xy_coeff` => True and do_permute_sign => False.
                    # Means no permuted solution.
                    for v1_mul_v2 in var1_mul_var2:
                        try:
                            coeff = c[v1_mul_v2]
                        except KeyError:
                            coeff = 0
                        xy_coeff = bool(xy_coeff) and bool(coeff)
                    var_mul = list(subsets(v, 1))
                    # here var_mul is like [(x,), (y, )]
                    for v1 in var_mul:
                        try:
                            coeff = c[v1[0]]
                        except KeyError:
                            coeff = 0
                        x_coeff = bool(x_coeff) and bool(coeff)
                    if not any((xy_coeff, x_coeff)):
                        # means only x**2, y**2, z**2, const is present
                        do_permute_signs = True
                    elif not x_coeff:
                        permute_few_signs = True
                elif len_var == 2:
                    var_mul = list(subsets(v, 2))
                    # here var_mul is like [(x, y)]
                    xy_coeff = True
                    x_coeff = True
                    var1_mul_var2 = (x[0]*x[1] for x in var_mul)
                    for v1_mul_v2 in var1_mul_var2:
                        try:
                            coeff = c[v1_mul_v2]
                        except KeyError:
                            coeff = 0
                        xy_coeff = bool(xy_coeff) and bool(coeff)
                    var_mul = list(subsets(v, 1))
                    # here var_mul is like [(x,), (y, )]
                    for v1 in var_mul:
                        try:
                            coeff = c[v1[0]]
                        except KeyError:
                            coeff = 0
                        x_coeff = bool(x_coeff) and bool(coeff)
                    if not any((xy_coeff, x_coeff)):
                        # means only x**2, y**2 and const is present
                        # so we can get more soln by permuting this soln.
                        do_permute_signs = True
                    elif not x_coeff:
                        # when coeff(x), coeff(y) is not present then signs of
                        #  x, y can be permuted such that their sign are same
                        # as sign of x*y.
                        # e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val)
                        # 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val)
                        permute_few_signs = True
        if t == 'general_sum_of_squares':
            # trying to factor such expressions will sometimes hang
            terms = [(eq, 1)]
        else:
            raise TypeError
    except (TypeError, NotImplementedError):
        fl = factor_list(eq)
        if fl[0].is_Rational and fl[0] != 1:
            return diophantine(eq/fl[0], param=param, syms=syms, permute=permute)
        terms = fl[1]

    sols = set()

    for term in terms:

        base, _ = term
        var_t, _, eq_type = classify_diop(base, _dict=False)
        _, base = signsimp(base, evaluate=False).as_coeff_Mul()
        solution = diop_solve(base, param)

        if eq_type in [
                Linear.name,
                HomogeneousTernaryQuadratic.name,
                HomogeneousTernaryQuadraticNormal.name,
                GeneralPythagorean.name]:
            sols.add(merge_solution(var, var_t, solution))

        elif eq_type in [
                BinaryQuadratic.name,
                GeneralSumOfSquares.name,
                GeneralSumOfEvenPowers.name,
                Univariate.name]:
            sols.update(merge_solution(var, var_t, sol) for sol in solution)

        else:
            raise NotImplementedError('unhandled type: %s' % eq_type)

    # remove null merge results
    if () in sols:
        sols.remove(())
    null = tuple([0]*len(var))
    # if there is no solution, return trivial solution
    if not sols and eq.subs(zip(var, null)).is_zero:
        sols.add(null)
    final_soln = set()
    for sol in sols:
        if all(int_valued(s) for s in sol):
            if do_permute_signs:
                permuted_sign = set(permute_signs(sol))
                final_soln.update(permuted_sign)
            elif permute_few_signs:
                lst = list(permute_signs(sol))
                lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst))
                permuted_sign = set(lst)
                final_soln.update(permuted_sign)
            elif do_permute_signs_var:
                permuted_sign_var = set(signed_permutations(sol))
                final_soln.update(permuted_sign_var)
            else:
                final_soln.add(sol)
        else:
                final_soln.add(sol)
    return final_soln


def merge_solution(var, var_t, solution):
    """
    This is used to construct the full solution from the solutions of sub
    equations.

    Explanation
    ===========

    For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`,
    solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are
    found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But
    we should introduce a value for z when we output the solution for the
    original equation. This function converts `(t, t)` into `(t, t, n_{1})`
    where `n_{1}` is an integer parameter.
    """
    sol = []

    if None in solution:
        return ()

    solution = iter(solution)
    params = numbered_symbols("n", integer=True, start=1)
    for v in var:
        if v in var_t:
            sol.append(next(solution))
        else:
            sol.append(next(params))

    for val, symb in zip(sol, var):
        if check_assumptions(val, **symb.assumptions0) is False:
            return ()

    return tuple(sol)


def _diop_solve(eq, params=None):
    for diop_type in all_diop_classes:
        if diop_type(eq).matches():
            return diop_type(eq).solve(parameters=params)


def diop_solve(eq, param=symbols("t", integer=True)):
    """
    Solves the diophantine equation ``eq``.

    Explanation
    ===========

    Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses
    ``classify_diop()`` to determine the type of the equation and calls
    the appropriate solver function.

    Use of ``diophantine()`` is recommended over other helper functions.
    ``diop_solve()`` can return either a set or a tuple depending on the
    nature of the equation.

    Usage
    =====

    ``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t``
    as a parameter if needed.

    Details
    =======

    ``eq`` should be an expression which is assumed to be zero.
    ``t`` is a parameter to be used in the solution.

    Examples
    ========

    >>> from sympy.solvers.diophantine import diop_solve
    >>> from sympy.abc import x, y, z, w
    >>> diop_solve(2*x + 3*y - 5)
    (3*t_0 - 5, 5 - 2*t_0)
    >>> diop_solve(4*x + 3*y - 4*z + 5)
    (t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
    >>> diop_solve(x + 3*y - 4*z + w - 6)
    (t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6)
    >>> diop_solve(x**2 + y**2 - 5)
    {(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)}


    See Also
    ========

    diophantine()
    """
    var, coeff, eq_type = classify_diop(eq, _dict=False)

    if eq_type == Linear.name:
        return diop_linear(eq, param)

    elif eq_type == BinaryQuadratic.name:
        return diop_quadratic(eq, param)

    elif eq_type == HomogeneousTernaryQuadratic.name:
        return diop_ternary_quadratic(eq, parameterize=True)

    elif eq_type == HomogeneousTernaryQuadraticNormal.name:
        return diop_ternary_quadratic_normal(eq, parameterize=True)

    elif eq_type == GeneralPythagorean.name:
        return diop_general_pythagorean(eq, param)

    elif eq_type == Univariate.name:
        return diop_univariate(eq)

    elif eq_type == GeneralSumOfSquares.name:
        return diop_general_sum_of_squares(eq, limit=S.Infinity)

    elif eq_type == GeneralSumOfEvenPowers.name:
        return diop_general_sum_of_even_powers(eq, limit=S.Infinity)

    if eq_type is not None and eq_type not in diop_known:
            raise ValueError(filldedent('''
    Although this type of equation was identified, it is not yet
    handled. It should, however, be listed in `diop_known` at the
    top of this file. Developers should see comments at the end of
    `classify_diop`.
            '''))  # pragma: no cover
    else:
        raise NotImplementedError(
            'No solver has been written for %s.' % eq_type)


def classify_diop(eq, _dict=True):
    # docstring supplied externally

    matched = False
    diop_type = None
    for diop_class in all_diop_classes:
        diop_type = diop_class(eq)
        if diop_type.matches():
            matched = True
            break

    if matched:
        return diop_type.free_symbols, dict(diop_type.coeff) if _dict else diop_type.coeff, diop_type.name

    # new diop type instructions
    # --------------------------
    # if this error raises and the equation *can* be classified,
    #  * it should be identified in the if-block above
    #  * the type should be added to the diop_known
    # if a solver can be written for it,
    #  * a dedicated handler should be written (e.g. diop_linear)
    #  * it should be passed to that handler in diop_solve
    raise NotImplementedError(filldedent('''
        This equation is not yet recognized or else has not been
        simplified sufficiently to put it in a form recognized by
        diop_classify().'''))


classify_diop.func_doc = (  # type: ignore
    '''
    Helper routine used by diop_solve() to find information about ``eq``.

    Explanation
    ===========

    Returns a tuple containing the type of the diophantine equation
    along with the variables (free symbols) and their coefficients.
    Variables are returned as a list and coefficients are returned
    as a dict with the key being the respective term and the constant
    term is keyed to 1. The type is one of the following:

    * %s

    Usage
    =====

    ``classify_diop(eq)``: Return variables, coefficients and type of the
    ``eq``.

    Details
    =======

    ``eq`` should be an expression which is assumed to be zero.
    ``_dict`` is for internal use: when True (default) a dict is returned,
    otherwise a defaultdict which supplies 0 for missing keys is returned.

    Examples
    ========

    >>> from sympy.solvers.diophantine import classify_diop
    >>> from sympy.abc import x, y, z, w, t
    >>> classify_diop(4*x + 6*y - 4)
    ([x, y], {1: -4, x: 4, y: 6}, 'linear')
    >>> classify_diop(x + 3*y -4*z + 5)
    ([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear')
    >>> classify_diop(x**2 + y**2 - x*y + x + 5)
    ([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic')
    ''' % ('\n    * '.join(sorted(diop_known))))


def diop_linear(eq, param=symbols("t", integer=True)):
    """
    Solves linear diophantine equations.

    A linear diophantine equation is an equation of the form `a_{1}x_{1} +
    a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are
    integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables.

    Usage
    =====

    ``diop_linear(eq)``: Returns a tuple containing solutions to the
    diophantine equation ``eq``. Values in the tuple is arranged in the same
    order as the sorted variables.

    Details
    =======

    ``eq`` is a linear diophantine equation which is assumed to be zero.
    ``param`` is the parameter to be used in the solution.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import diop_linear
    >>> from sympy.abc import x, y, z
    >>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0
    (3*t_0 - 5, 2*t_0 - 5)

    Here x = -3*t_0 - 5 and y = -2*t_0 - 5

    >>> diop_linear(2*x - 3*y - 4*z -3)
    (t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)

    See Also
    ========

    diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(),
    diop_general_sum_of_squares()
    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)

    if diop_type == Linear.name:
        parameters = None
        if param is not None:
            parameters = symbols('%s_0:%i' % (param, len(var)), integer=True)

        result = Linear(eq).solve(parameters=parameters)

        if param is None:
            result = result(*[0]*len(result.parameters))

        if len(result) > 0:
            return list(result)[0]
        else:
            return tuple([None]*len(result.parameters))


def base_solution_linear(c, a, b, t=None):
    """
    Return the base solution for the linear equation, `ax + by = c`.

    Explanation
    ===========

    Used by ``diop_linear()`` to find the base solution of a linear
    Diophantine equation. If ``t`` is given then the parametrized solution is
    returned.

    Usage
    =====

    ``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients
    in `ax + by = c` and ``t`` is the parameter to be used in the solution.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import base_solution_linear
    >>> from sympy.abc import t
    >>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5
    (-5, 5)
    >>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0
    (0, 0)
    >>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5
    (3*t - 5, 5 - 2*t)
    >>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0
    (7*t, -5*t)
    """
    a, b, c = _remove_gcd(a, b, c)

    if c == 0:
        if t is None:
            return (0, 0)
        if b < 0:
            t = -t
        return (b*t, -a*t)

    x0, y0, d = igcdex(abs(a), abs(b))
    x0 *= sign(a)
    y0 *= sign(b)
    if c % d:
        return (None, None)
    if t is None:
        return (c*x0, c*y0)
    if b < 0:
        t = -t
    return (c*x0 + b*t, c*y0 - a*t)


def diop_univariate(eq):
    """
    Solves a univariate diophantine equations.

    Explanation
    ===========

    A univariate diophantine equation is an equation of the form
    `a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are
    integer constants and `x` is an integer variable.

    Usage
    =====

    ``diop_univariate(eq)``: Returns a set containing solutions to the
    diophantine equation ``eq``.

    Details
    =======

    ``eq`` is a univariate diophantine equation which is assumed to be zero.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import diop_univariate
    >>> from sympy.abc import x
    >>> diop_univariate((x - 2)*(x - 3)**2) # solves equation (x - 2)*(x - 3)**2 == 0
    {(2,), (3,)}

    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)

    if diop_type == Univariate.name:
        return {(int(i),) for i in solveset_real(
            eq, var[0]).intersect(S.Integers)}


def divisible(a, b):
    """
    Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise.
    """
    return not a % b


def diop_quadratic(eq, param=symbols("t", integer=True)):
    """
    Solves quadratic diophantine equations.

    i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a
    set containing the tuples `(x, y)` which contains the solutions. If there
    are no solutions then `(None, None)` is returned.

    Usage
    =====

    ``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine
    equation. ``param`` is used to indicate the parameter to be used in the
    solution.

    Details
    =======

    ``eq`` should be an expression which is assumed to be zero.
    ``param`` is a parameter to be used in the solution.

    Examples
    ========

    >>> from sympy.abc import x, y, t
    >>> from sympy.solvers.diophantine.diophantine import diop_quadratic
    >>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t)
    {(-1, -1)}

    References
    ==========

    .. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online],
          Available: https://www.alpertron.com.ar/METHODS.HTM
    .. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online],
          Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf

    See Also
    ========

    diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(),
    diop_general_pythagorean()
    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)

    if diop_type == BinaryQuadratic.name:
        if param is not None:
            parameters = [param, Symbol("u", integer=True)]
        else:
            parameters = None
        return set(BinaryQuadratic(eq).solve(parameters=parameters))


def is_solution_quad(var, coeff, u, v):
    """
    Check whether `(u, v)` is solution to the quadratic binary diophantine
    equation with the variable list ``var`` and coefficient dictionary
    ``coeff``.

    Not intended for use by normal users.
    """
    reps = dict(zip(var, (u, v)))
    eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()])
    return _mexpand(eq) == 0


def diop_DN(D, N, t=symbols("t", integer=True)):
    """
    Solves the equation `x^2 - Dy^2 = N`.

    Explanation
    ===========

    Mainly concerned with the case `D > 0, D` is not a perfect square,
    which is the same as the generalized Pell equation. The LMM
    algorithm [1]_ is used to solve this equation.

    Returns one solution tuple, (`x, y)` for each class of the solutions.
    Other solutions of the class can be constructed according to the
    values of ``D`` and ``N``.

    Usage
    =====

    ``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and
    ``t`` is the parameter to be used in the solutions.

    Details
    =======

    ``D`` and ``N`` correspond to D and N in the equation.
    ``t`` is the parameter to be used in the solutions.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import diop_DN
    >>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4
    [(3, 1), (393, 109), (36, 10)]

    The output can be interpreted as follows: There are three fundamental
    solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109)
    and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means
    that `x = 3` and `y = 1`.

    >>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1
    [(49299, 1570)]

    See Also
    ========

    find_DN(), diop_bf_DN()

    References
    ==========

    .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
        Robertson, July 31, 2004, Pages 16 - 17. [online], Available:
        https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
    """
    if D < 0:
        if N == 0:
            return [(0, 0)]
        if N < 0:
            return []
        # N > 0:
        sol = []
        for d in divisors(square_factor(N), generator=True):
            for x, y in cornacchia(1, int(-D), int(N // d**2)):
                sol.append((d*x, d*y))
                if D == -1:
                    sol.append((d*y, d*x))
        return sol

    if D == 0:
        if N < 0:
            return []
        if N == 0:
            return [(0, t)]
        sN, _exact = integer_nthroot(N, 2)
        if _exact:
            return [(sN, t)]
        return []

    # D > 0
    sD, _exact = integer_nthroot(D, 2)
    if _exact:
        if N == 0:
            return [(sD*t, t)]

        sol = []
        for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1):
            try:
                sq, _exact = integer_nthroot(D*y**2 + N, 2)
            except ValueError:
                _exact = False
            if _exact:
                sol.append((sq, y))
        return sol

    if 1 < N**2 < D:
        # It is much faster to call `_special_diop_DN`.
        return _special_diop_DN(D, N)

    if N == 0:
        return [(0, 0)]

    sol = []
    if abs(N) == 1:
        pqa = PQa(0, 1, D)
        *_, prev_B, prev_G = next(pqa)
        for j, (*_, a, _, _B, _G) in enumerate(pqa):
            if a == 2*sD:
                break
            prev_B, prev_G = _B, _G
        if j % 2:
            if N == 1:
                sol.append((prev_G, prev_B))
            return sol
        if N == -1:
            return [(prev_G, prev_B)]
        for _ in range(j):
            *_, _B, _G = next(pqa)
        return [(_G, _B)]

    for f in divisors(square_factor(N), generator=True):
        m = N // f**2
        am = abs(m)
        for sqm in sqrt_mod(D, am, all_roots=True):
            z = symmetric_residue(sqm, am)
            pqa = PQa(z, am, D)
            *_, prev_B, prev_G = next(pqa)
            for _ in range(length(z, am, D) - 1):
                _, q, *_, _B, _G = next(pqa)
                if abs(q) == 1:
                    if prev_G**2 - D*prev_B**2 == m:
                        sol.append((f*prev_G, f*prev_B))
                    elif a := diop_DN(D, -1):
                        sol.append((f*(prev_G*a[0][0] + prev_B*D*a[0][1]),
                                    f*(prev_G*a[0][1] + prev_B*a[0][0])))
                    break
                prev_B, prev_G = _B, _G
    return sol


def _special_diop_DN(D, N):
    """
    Solves the equation `x^2 - Dy^2 = N` for the special case where
    `1 < N**2 < D` and `D` is not a perfect square.
    It is better to call `diop_DN` rather than this function, as
    the former checks the condition `1 < N**2 < D`, and calls the latter only
    if appropriate.

    Usage
    =====

    WARNING: Internal method. Do not call directly!

    ``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`.

    Details
    =======

    ``D`` and ``N`` correspond to D and N in the equation.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import _special_diop_DN
    >>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3
    [(7, 2), (137, 38)]

    The output can be interpreted as follows: There are two fundamental
    solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and
    (137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means
    that `x = 7` and `y = 2`.

    >>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20
    [(445, 9), (17625560, 356454), (698095554475, 14118073569)]

    See Also
    ========

    diop_DN()

    References
    ==========

    .. [1] Section 4.4.4 of the following book:
        Quadratic Diophantine Equations, T. Andreescu and D. Andrica,
        Springer, 2015.
    """

    # The following assertion was removed for efficiency, with the understanding
    #     that this method is not called directly. The parent method, `diop_DN`
    #     is responsible for performing the appropriate checks.
    #
    # assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1])

    sqrt_D = isqrt(D)
    F = {N // f**2: f for f in divisors(square_factor(abs(N)), generator=True)}
    P = 0
    Q = 1
    G0, G1 = 0, 1
    B0, B1 = 1, 0

    solutions = []
    while True:
        for _ in range(2):
            a = (P + sqrt_D) // Q
            P = a*Q - P
            Q = (D - P**2) // Q
            G0, G1 = G1, a*G1 + G0
            B0, B1 = B1, a*B1 + B0
            if (s := G1**2 - D*B1**2) in F:
                f = F[s]
                solutions.append((f*G1, f*B1))
        if Q == 1:
            break
    return solutions


def cornacchia(a:int, b:int, m:int) -> set[tuple[int, int]]:
    r"""
    Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`.

    Explanation
    ===========

    Uses the algorithm due to Cornacchia. The method only finds primitive
    solutions, i.e. ones with `\gcd(x, y) = 1`. So this method cannot be used to
    find the solutions of `x^2 + y^2 = 20` since the only solution to former is
    `(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the
    solutions with `x \leq y` are found. For more details, see the References.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import cornacchia
    >>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35
    {(2, 3), (4, 1)}
    >>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25
    {(4, 3)}

    References
    ===========

    .. [1] A. Nitaj, "L'algorithme de Cornacchia"
    .. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's
        method, [online], Available:
        http://www.numbertheory.org/php/cornacchia.html

    See Also
    ========

    sympy.utilities.iterables.signed_permutations
    """
    # Assume gcd(a, b) = gcd(a, m) = 1 and a, b > 0 but no error checking
    sols = set()
    for t in sqrt_mod_iter(-b*invert(a, m), m):
        if t < m // 2:
            continue
        u, r = m, t
        while (m1 := m - a*r**2) <= 0:
            u, r = r, u % r
        m1, _r = divmod(m1, b)
        if _r:
            continue
        s, _exact = iroot(m1, 2)
        if _exact:
            if a == b and r < s:
                r, s = s, r
            sols.add((int(r), int(s)))
    return sols


def PQa(P_0, Q_0, D):
    r"""
    Returns useful information needed to solve the Pell equation.

    Explanation
    ===========

    There are six sequences of integers defined related to the continued
    fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`},
    {`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns
    these values as a 6-tuple in the same order as mentioned above. Refer [1]_
    for more detailed information.

    Usage
    =====

    ``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding
    to `P_{0}`, `Q_{0}` and `D` in the continued fraction
    `\\frac{P_{0} + \sqrt{D}}{Q_{0}}`.
    Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import PQa
    >>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4
    >>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0)
    (13, 4, 3, 3, 1, -1)
    >>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1)
    (-1, 1, 1, 4, 1, 3)

    References
    ==========

    .. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P.
        Robertson, July 31, 2004, Pages 4 - 8. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
    """
    sqD = isqrt(D)
    A2 = B1 = 0
    A1 = B2 = 1
    G1 = Q_0
    G2 = -P_0
    P_i = P_0
    Q_i = Q_0

    while True:
        a_i = (P_i + sqD) // Q_i
        A1, A2 = a_i*A1 + A2, A1
        B1, B2 = a_i*B1 + B2, B1
        G1, G2 = a_i*G1 + G2, G1
        yield P_i, Q_i, a_i, A1, B1, G1

        P_i = a_i*Q_i - P_i
        Q_i = (D - P_i**2) // Q_i


def diop_bf_DN(D, N, t=symbols("t", integer=True)):
    r"""
    Uses brute force to solve the equation, `x^2 - Dy^2 = N`.

    Explanation
    ===========

    Mainly concerned with the generalized Pell equation which is the case when
    `D > 0, D` is not a perfect square. For more information on the case refer
    [1]_. Let `(t, u)` be the minimal positive solution of the equation
    `x^2 - Dy^2 = 1`. Then this method requires
    `\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small.

    Usage
    =====

    ``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in
    `x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions.

    Details
    =======

    ``D`` and ``N`` correspond to D and N in the equation.
    ``t`` is the parameter to be used in the solutions.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import diop_bf_DN
    >>> diop_bf_DN(13, -4)
    [(3, 1), (-3, 1), (36, 10)]
    >>> diop_bf_DN(986, 1)
    [(49299, 1570)]

    See Also
    ========

    diop_DN()

    References
    ==========

    .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
        Robertson, July 31, 2004, Page 15. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
    """
    D = as_int(D)
    N = as_int(N)

    sol = []
    a = diop_DN(D, 1)
    u = a[0][0]

    if N == 0:
        if D < 0:
            return [(0, 0)]
        if D == 0:
            return [(0, t)]
        sD, _exact = integer_nthroot(D, 2)
        if _exact:
            return [(sD*t, t), (-sD*t, t)]
        return [(0, 0)]

    if abs(N) == 1:
        return diop_DN(D, N)

    if N > 1:
        L1 = 0
        L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1
    else: # N < -1
        L1, _exact = integer_nthroot(-int(N/D), 2)
        if not _exact:
            L1 += 1
        L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1

    for y in range(L1, L2):
        try:
            x, _exact = integer_nthroot(N + D*y**2, 2)
        except ValueError:
            _exact = False
        if _exact:
            sol.append((x, y))
            if not equivalent(x, y, -x, y, D, N):
                sol.append((-x, y))

    return sol


def equivalent(u, v, r, s, D, N):
    """
    Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N`
    belongs to the same equivalence class and False otherwise.

    Explanation
    ===========

    Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same
    equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by
    `N`. See reference [1]_. No test is performed to test whether `(u, v)` and
    `(r, s)` are actually solutions to the equation. User should take care of
    this.

    Usage
    =====

    ``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions
    of the equation `x^2 - Dy^2 = N` and all parameters involved are integers.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import equivalent
    >>> equivalent(18, 5, -18, -5, 13, -1)
    True
    >>> equivalent(3, 1, -18, 393, 109, -4)
    False

    References
    ==========

    .. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
        Robertson, July 31, 2004, Page 12. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf

    """
    return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N)


def length(P, Q, D):
    r"""
    Returns the (length of aperiodic part + length of periodic part) of
    continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`.

    It is important to remember that this does NOT return the length of the
    periodic part but the sum of the lengths of the two parts as mentioned
    above.

    Usage
    =====

    ``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to
    the continued fraction `\\frac{P + \sqrt{D}}{Q}`.

    Details
    =======

    ``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction,
    `\\frac{P + \sqrt{D}}{Q}`.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import length
    >>> length(-2, 4, 5) # (-2 + sqrt(5))/4
    3
    >>> length(-5, 4, 17) # (-5 + sqrt(17))/4
    4

    See Also
    ========
    sympy.ntheory.continued_fraction.continued_fraction_periodic
    """
    from sympy.ntheory.continued_fraction import continued_fraction_periodic
    v = continued_fraction_periodic(P, Q, D)
    if isinstance(v[-1], list):
        rpt = len(v[-1])
        nonrpt = len(v) - 1
    else:
        rpt = 0
        nonrpt = len(v)
    return rpt + nonrpt


def transformation_to_DN(eq):
    """
    This function transforms general quadratic,
    `ax^2 + bxy + cy^2 + dx + ey + f = 0`
    to more easy to deal with `X^2 - DY^2 = N` form.

    Explanation
    ===========

    This is used to solve the general quadratic equation by transforming it to
    the latter form. Refer to [1]_ for more detailed information on the
    transformation. This function returns a tuple (A, B) where A is a 2 X 2
    matrix and B is a 2 X 1 matrix such that,

    Transpose([x y]) =  A * Transpose([X Y]) + B

    Usage
    =====

    ``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be
    transformed.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.solvers.diophantine.diophantine import transformation_to_DN
    >>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
    >>> A
    Matrix([
    [1/26, 3/26],
    [   0, 1/13]])
    >>> B
    Matrix([
    [-6/13],
    [-4/13]])

    A, B  returned are such that Transpose((x y)) =  A * Transpose((X Y)) + B.
    Substituting these values for `x` and `y` and a bit of simplifying work
    will give an equation of the form `x^2 - Dy^2 = N`.

    >>> from sympy.abc import X, Y
    >>> from sympy import Matrix, simplify
    >>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x
    >>> u
    X/26 + 3*Y/26 - 6/13
    >>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y
    >>> v
    Y/13 - 4/13

    Next we will substitute these formulas for `x` and `y` and do
    ``simplify()``.

    >>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v))))
    >>> eq
    X**2/676 - Y**2/52 + 17/13

    By multiplying the denominator appropriately, we can get a Pell equation
    in the standard form.

    >>> eq * 676
    X**2 - 13*Y**2 + 884

    If only the final equation is needed, ``find_DN()`` can be used.

    See Also
    ========

    find_DN()

    References
    ==========

    .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
           John P.Robertson, May 8, 2003, Page 7 - 11.
           https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
    """

    var, coeff, diop_type = classify_diop(eq, _dict=False)
    if diop_type == BinaryQuadratic.name:
        return _transformation_to_DN(var, coeff)


def _transformation_to_DN(var, coeff):

    x, y = var

    a = coeff[x**2]
    b = coeff[x*y]
    c = coeff[y**2]
    d = coeff[x]
    e = coeff[y]
    f = coeff[1]

    a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)]

    X, Y = symbols("X, Y", integer=True)

    if b:
        B, C = _rational_pq(2*a, b)
        A, T = _rational_pq(a, B**2)

        # eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B
        coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B}
        A_0, B_0 = _transformation_to_DN([X, Y], coeff)
        return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0

    if d:
        B, C = _rational_pq(2*a, d)
        A, T = _rational_pq(a, B**2)

        # eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2
        coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2}
        A_0, B_0 = _transformation_to_DN([X, Y], coeff)
        return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0])

    if e:
        B, C = _rational_pq(2*c, e)
        A, T = _rational_pq(c, B**2)

        # eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2
        coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2}
        A_0, B_0 = _transformation_to_DN([X, Y], coeff)
        return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B])

    # TODO: pre-simplification: Not necessary but may simplify
    # the equation.
    return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0])


def find_DN(eq):
    """
    This function returns a tuple, `(D, N)` of the simplified form,
    `x^2 - Dy^2 = N`, corresponding to the general quadratic,
    `ax^2 + bxy + cy^2 + dx + ey + f = 0`.

    Solving the general quadratic is then equivalent to solving the equation
    `X^2 - DY^2 = N` and transforming the solutions by using the transformation
    matrices returned by ``transformation_to_DN()``.

    Usage
    =====

    ``find_DN(eq)``: where ``eq`` is the quadratic to be transformed.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy.solvers.diophantine.diophantine import find_DN
    >>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
    (13, -884)

    Interpretation of the output is that we get `X^2 -13Y^2 = -884` after
    transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned
    by ``transformation_to_DN()``.

    See Also
    ========

    transformation_to_DN()

    References
    ==========

    .. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
           John P.Robertson, May 8, 2003, Page 7 - 11.
           https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)
    if diop_type == BinaryQuadratic.name:
        return _find_DN(var, coeff)


def _find_DN(var, coeff):

    x, y = var
    X, Y = symbols("X, Y", integer=True)
    A, B = _transformation_to_DN(var, coeff)

    u = (A*Matrix([X, Y]) + B)[0]
    v = (A*Matrix([X, Y]) + B)[1]
    eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1]

    simplified = _mexpand(eq.subs(zip((x, y), (u, v))))

    coeff = simplified.as_coefficients_dict()

    return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2]


def check_param(x, y, a, params):
    """
    If there is a number modulo ``a`` such that ``x`` and ``y`` are both
    integers, then return a parametric representation for ``x`` and ``y``
    else return (None, None).

    Here ``x`` and ``y`` are functions of ``t``.
    """
    from sympy.simplify.simplify import clear_coefficients

    if x.is_number and not x.is_Integer:
        return DiophantineSolutionSet([x, y], parameters=params)

    if y.is_number and not y.is_Integer:
        return DiophantineSolutionSet([x, y], parameters=params)

    m, n = symbols("m, n", integer=True)
    c, p = (m*x + n*y).as_content_primitive()
    if a % c.q:
        return DiophantineSolutionSet([x, y], parameters=params)

    # clear_coefficients(mx + b, R)[1] -> (R - b)/m
    eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1]
    junk, eq = eq.as_content_primitive()

    return _diop_solve(eq, params=params)


def diop_ternary_quadratic(eq, parameterize=False):
    """
    Solves the general quadratic ternary form,
    `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.

    Returns a tuple `(x, y, z)` which is a base solution for the above
    equation. If there are no solutions, `(None, None, None)` is returned.

    Usage
    =====

    ``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution
    to ``eq``.

    Details
    =======

    ``eq`` should be an homogeneous expression of degree two in three variables
    and it is assumed to be zero.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic
    >>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2)
    (1, 0, 1)
    >>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2)
    (1, 0, 2)
    >>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2)
    (28, 45, 105)
    >>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
    (9, 1, 5)
    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)

    if diop_type in (
            HomogeneousTernaryQuadratic.name,
            HomogeneousTernaryQuadraticNormal.name):
        sol = _diop_ternary_quadratic(var, coeff)
        if len(sol) > 0:
            x_0, y_0, z_0 = list(sol)[0]
        else:
            x_0, y_0, z_0 = None, None, None

        if parameterize:
            return _parametrize_ternary_quadratic(
                (x_0, y_0, z_0), var, coeff)
        return x_0, y_0, z_0


def _diop_ternary_quadratic(_var, coeff):
    eq = sum(i*coeff[i] for i in coeff)
    if HomogeneousTernaryQuadratic(eq).matches():
        return HomogeneousTernaryQuadratic(eq, free_symbols=_var).solve()
    elif HomogeneousTernaryQuadraticNormal(eq).matches():
        return HomogeneousTernaryQuadraticNormal(eq, free_symbols=_var).solve()


def transformation_to_normal(eq):
    """
    Returns the transformation Matrix that converts a general ternary
    quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`)
    to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is
    not used in solving ternary quadratics; it is only implemented for
    the sake of completeness.
    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)

    if diop_type in (
            "homogeneous_ternary_quadratic",
            "homogeneous_ternary_quadratic_normal"):
        return _transformation_to_normal(var, coeff)


def _transformation_to_normal(var, coeff):

    _var = list(var)  # copy
    x, y, z = var

    if not any(coeff[i**2] for i in var):
        # https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065
        a = coeff[x*y]
        b = coeff[y*z]
        c = coeff[x*z]
        swap = False
        if not a:  # b can't be 0 or else there aren't 3 vars
            swap = True
            a, b = b, a
        T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1)))
        if swap:
            T.row_swap(0, 1)
            T.col_swap(0, 1)
        return T

    if coeff[x**2] == 0:
        # If the coefficient of x is zero change the variables
        if coeff[y**2] == 0:
            _var[0], _var[2] = var[2], var[0]
            T = _transformation_to_normal(_var, coeff)
            T.row_swap(0, 2)
            T.col_swap(0, 2)
            return T

        _var[0], _var[1] = var[1], var[0]
        T = _transformation_to_normal(_var, coeff)
        T.row_swap(0, 1)
        T.col_swap(0, 1)
        return T

    # Apply the transformation x --> X - (B*Y + C*Z)/(2*A)
    if coeff[x*y] != 0 or coeff[x*z] != 0:
        A = coeff[x**2]
        B = coeff[x*y]
        C = coeff[x*z]
        D = coeff[y**2]
        E = coeff[y*z]
        F = coeff[z**2]

        _coeff = {}

        _coeff[x**2] = 4*A**2
        _coeff[y**2] = 4*A*D - B**2
        _coeff[z**2] = 4*A*F - C**2
        _coeff[y*z] = 4*A*E - 2*B*C
        _coeff[x*y] = 0
        _coeff[x*z] = 0

        T_0 = _transformation_to_normal(_var, _coeff)
        return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0

    elif coeff[y*z] != 0:
        if coeff[y**2] == 0:
            if coeff[z**2] == 0:
                # Equations of the form A*x**2 + E*yz = 0.
                # Apply transformation y -> Y + Z ans z -> Y - Z
                return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1])

            # Ax**2 + E*y*z + F*z**2  = 0
            _var[0], _var[2] = var[2], var[0]
            T = _transformation_to_normal(_var, coeff)
            T.row_swap(0, 2)
            T.col_swap(0, 2)
            return T

        # A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero
        _var[0], _var[1] = var[1], var[0]
        T = _transformation_to_normal(_var, coeff)
        T.row_swap(0, 1)
        T.col_swap(0, 1)
        return T

    return Matrix.eye(3)


def parametrize_ternary_quadratic(eq):
    """
    Returns the parametrized general solution for the ternary quadratic
    equation ``eq`` which has the form
    `ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.

    Examples
    ========

    >>> from sympy import Tuple, ordered
    >>> from sympy.abc import x, y, z
    >>> from sympy.solvers.diophantine.diophantine import parametrize_ternary_quadratic

    The parametrized solution may be returned with three parameters:

    >>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2)
    (p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)

    There might also be only two parameters:

    >>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2)
    (2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2)

    Notes
    =====

    Consider ``p`` and ``q`` in the previous 2-parameter
    solution and observe that more than one solution can be represented
    by a given pair of parameters. If `p` and ``q`` are not coprime, this is
    trivially true since the common factor will also be a common factor of the
    solution values. But it may also be true even when ``p`` and
    ``q`` are coprime:

    >>> sol = Tuple(*_)
    >>> p, q = ordered(sol.free_symbols)
    >>> sol.subs([(p, 3), (q, 2)])
    (6, 12, 12)
    >>> sol.subs([(q, 1), (p, 1)])
    (-1, 2, 2)
    >>> sol.subs([(q, 0), (p, 1)])
    (2, -4, 4)
    >>> sol.subs([(q, 1), (p, 0)])
    (-3, -6, 6)

    Except for sign and a common factor, these are equivalent to
    the solution of (1, 2, 2).

    References
    ==========

    .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
           London Mathematical Society Student Texts 41, Cambridge University
           Press, Cambridge, 1998.

    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)

    if diop_type in (
            "homogeneous_ternary_quadratic",
            "homogeneous_ternary_quadratic_normal"):
        x_0, y_0, z_0 = list(_diop_ternary_quadratic(var, coeff))[0]
        return _parametrize_ternary_quadratic(
            (x_0, y_0, z_0), var, coeff)


def _parametrize_ternary_quadratic(solution, _var, coeff):
    # called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0
    assert 1 not in coeff

    x_0, y_0, z_0 = solution

    v = list(_var)  # copy

    if x_0 is None:
        return (None, None, None)

    if solution.count(0) >= 2:
        # if there are 2 zeros the equation reduces
        # to k*X**2 == 0 where X is x, y, or z so X must
        # be zero, too. So there is only the trivial
        # solution.
        return (None, None, None)

    if x_0 == 0:
        v[0], v[1] = v[1], v[0]
        y_p, x_p, z_p = _parametrize_ternary_quadratic(
            (y_0, x_0, z_0), v, coeff)
        return x_p, y_p, z_p

    x, y, z = v
    r, p, q = symbols("r, p, q", integer=True)

    eq = sum(k*v for k, v in coeff.items())
    eq_1 = _mexpand(eq.subs(zip(
        (x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q))))
    A, B = eq_1.as_independent(r, as_Add=True)


    x = A*x_0
    y = (A*y_0 - _mexpand(B/r*p))
    z = (A*z_0 - _mexpand(B/r*q))

    return _remove_gcd(x, y, z)


def diop_ternary_quadratic_normal(eq, parameterize=False):
    """
    Solves the quadratic ternary diophantine equation,
    `ax^2 + by^2 + cz^2 = 0`.

    Explanation
    ===========

    Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the
    equation will be a quadratic binary or univariate equation. If solvable,
    returns a tuple `(x, y, z)` that satisfies the given equation. If the
    equation does not have integer solutions, `(None, None, None)` is returned.

    Usage
    =====

    ``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form
    `ax^2 + by^2 + cz^2 = 0`.

    Examples
    ========

    >>> from sympy.abc import x, y, z
    >>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic_normal
    >>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2)
    (1, 0, 1)
    >>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2)
    (1, 0, 2)
    >>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2)
    (4, 9, 1)
    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)
    if diop_type == HomogeneousTernaryQuadraticNormal.name:
        sol = _diop_ternary_quadratic_normal(var, coeff)
        if len(sol) > 0:
            x_0, y_0, z_0 = list(sol)[0]
        else:
            x_0, y_0, z_0 = None, None, None
        if parameterize:
            return _parametrize_ternary_quadratic(
                (x_0, y_0, z_0), var, coeff)
        return x_0, y_0, z_0


def _diop_ternary_quadratic_normal(var, coeff):
    eq = sum(i * coeff[i] for i in coeff)
    return HomogeneousTernaryQuadraticNormal(eq, free_symbols=var).solve()


def sqf_normal(a, b, c, steps=False):
    """
    Return `a', b', c'`, the coefficients of the square-free normal
    form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise
    prime.  If `steps` is True then also return three tuples:
    `sq`, `sqf`, and `(a', b', c')` where `sq` contains the square
    factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`;
    `sqf` contains the values of `a`, `b` and `c` after removing
    both the `gcd(a, b, c)` and the square factors.

    The solutions for `ax^2 + by^2 + cz^2 = 0` can be
    recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import sqf_normal
    >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)
    (11, 1, 5)
    >>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True)
    ((3, 1, 7), (5, 55, 11), (11, 1, 5))

    References
    ==========

    .. [1] Legendre's Theorem, Legrange's Descent,
           https://public.csusm.edu/aitken_html/notes/legendre.pdf


    See Also
    ========

    reconstruct()
    """
    ABC = _remove_gcd(a, b, c)
    sq = tuple(square_factor(i) for i in ABC)
    sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)])
    pc = igcd(A, B)
    A /= pc
    B /= pc
    pa = igcd(B, C)
    B /= pa
    C /= pa
    pb = igcd(A, C)
    A /= pb
    B /= pb

    A *= pa
    B *= pb
    C *= pc

    if steps:
        return (sq, sqf, (A, B, C))
    else:
        return A, B, C


def square_factor(a):
    r"""
    Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square
    free. `a` can be given as an integer or a dictionary of factors.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import square_factor
    >>> square_factor(24)
    2
    >>> square_factor(-36*3)
    6
    >>> square_factor(1)
    1
    >>> square_factor({3: 2, 2: 1, -1: 1})  # -18
    3

    See Also
    ========
    sympy.ntheory.factor_.core
    """
    f = a if isinstance(a, dict) else factorint(a)
    return Mul(*[p**(e//2) for p, e in f.items()])


def reconstruct(A, B, z):
    """
    Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2`
    from the `z` value of a solution of the square-free normal form of the
    equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square
    free and `gcd(a', b', c') == 1`.
    """
    f = factorint(igcd(A, B))
    for p, e in f.items():
        if e != 1:
            raise ValueError('a and b should be square-free')
        z *= p
    return z


def ldescent(A, B):
    """
    Return a non-trivial solution to `w^2 = Ax^2 + By^2` using
    Lagrange's method; return None if there is no such solution.

    Parameters
    ==========

    A : Integer
    B : Integer
        non-zero integer

    Returns
    =======

    (int, int, int) | None : a tuple `(w_0, x_0, y_0)` which is a solution to the above equation.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import ldescent
    >>> ldescent(1, 1) # w^2 = x^2 + y^2
    (1, 1, 0)
    >>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2
    (2, -1, 0)

    This means that `x = -1, y = 0` and `w = 2` is a solution to the equation
    `w^2 = 4x^2 - 7y^2`

    >>> ldescent(5, -1) # w^2 = 5x^2 - y^2
    (2, 1, -1)

    References
    ==========

    .. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
           London Mathematical Society Student Texts 41, Cambridge University
           Press, Cambridge, 1998.
    .. [2] Cremona, J. E., Rusin, D. (2003). Efficient Solution of Rational Conics.
           Mathematics of Computation, 72(243), 1417-1441.
           https://doi.org/10.1090/S0025-5718-02-01480-1
    """
    if A == 0 or B == 0:
        raise ValueError("A and B must be non-zero integers")
    if abs(A) > abs(B):
        w, y, x = ldescent(B, A)
        return w, x, y
    if A == 1:
        return (1, 1, 0)
    if B == 1:
        return (1, 0, 1)
    if B == -1:  # and A == -1
        return

    r = sqrt_mod(A, B)
    if r is None:
        return
    Q = (r**2 - A) // B
    if Q == 0:
        return r, -1, 0
    for i in divisors(Q):
        d, _exact = integer_nthroot(abs(Q) // i, 2)
        if _exact:
            B_0 = sign(Q)*i
            W, X, Y = ldescent(A, B_0)
            return _remove_gcd(-A*X + r*W, r*X - W, Y*B_0*d)


def descent(A, B):
    """
    Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2`
    using Lagrange's descent method with lattice-reduction. `A` and `B`
    are assumed to be valid for such a solution to exist.

    This is faster than the normal Lagrange's descent algorithm because
    the Gaussian reduction is used.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import descent
    >>> descent(3, 1) # x**2 = 3*y**2 + z**2
    (1, 0, 1)

    `(x, y, z) = (1, 0, 1)` is a solution to the above equation.

    >>> descent(41, -113)
    (-16, -3, 1)

    References
    ==========

    .. [1] Cremona, J. E., Rusin, D. (2003). Efficient Solution of Rational Conics.
           Mathematics of Computation, 72(243), 1417-1441.
           https://doi.org/10.1090/S0025-5718-02-01480-1
    """
    if abs(A) > abs(B):
        x, y, z = descent(B, A)
        return x, z, y

    if B == 1:
        return (1, 0, 1)
    if A == 1:
        return (1, 1, 0)
    if B == -A:
        return (0, 1, 1)
    if B == A:
        x, z, y = descent(-1, A)
        return (A*y, z, x)

    w = sqrt_mod(A, B)
    x_0, z_0 = gaussian_reduce(w, A, B)

    t = (x_0**2 - A*z_0**2) // B
    t_2 = square_factor(t)
    t_1 = t // t_2**2

    x_1, z_1, y_1 = descent(A, t_1)

    return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1)


def gaussian_reduce(w:int, a:int, b:int) -> tuple[int, int]:
    r"""
    Returns a reduced solution `(x, z)` to the congruence
    `X^2 - aZ^2 \equiv 0 \pmod{b}` so that `x^2 + |a|z^2` is as small as possible.
    Here ``w`` is a solution of the congruence `x^2 \equiv a \pmod{b}`.

    This function is intended to be used only for ``descent()``.

    Explanation
    ===========

    The Gaussian reduction can find the shortest vector for any norm.
    So we define the special norm for the vectors `u = (u_1, u_2)` and `v = (v_1, v_2)` as follows.

    .. math ::
        u \cdot v := (wu_1 + bu_2)(wv_1 + bv_2) + |a|u_1v_1

    Note that, given the mapping `f: (u_1, u_2) \to (wu_1 + bu_2, u_1)`,
    `f((u_1,u_2))` is the solution to `X^2 - aZ^2 \equiv 0 \pmod{b}`.
    In other words, finding the shortest vector in this norm will yield a solution with smaller `X^2 + |a|Z^2`.
    The algorithm starts from basis vectors `(0, 1)` and `(1, 0)`
    (corresponding to solutions `(b, 0)` and `(w, 1)`, respectively) and finds the shortest vector.
    The shortest vector does not necessarily correspond to the smallest solution,
    but since ``descent()`` only wants the smallest possible solution, it is sufficient.

    Parameters
    ==========

    w : int
        ``w`` s.t. `w^2 \equiv a \pmod{b}`
    a : int
        square-free nonzero integer
    b : int
        square-free nonzero integer

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import gaussian_reduce
    >>> from sympy.ntheory.residue_ntheory import sqrt_mod
    >>> a, b = 19, 101
    >>> gaussian_reduce(sqrt_mod(a, b), a, b) # 1**2 - 19*(-4)**2 = -303
    (1, -4)
    >>> a, b = 11, 14
    >>> x, z = gaussian_reduce(sqrt_mod(a, b), a, b)
    >>> (x**2 - a*z**2) % b == 0
    True

    It does not always return the smallest solution.

    >>> a, b = 6, 95
    >>> min_x, min_z = 1, 4
    >>> x, z = gaussian_reduce(sqrt_mod(a, b), a, b)
    >>> (x**2 - a*z**2) % b == 0 and (min_x**2 - a*min_z**2) % b == 0
    True
    >>> min_x**2 + abs(a)*min_z**2 < x**2 + abs(a)*z**2
    True

    References
    ==========

    .. [1] Gaussian lattice Reduction [online]. Available:
           https://web.archive.org/web/20201021115213/http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404
    .. [2] Cremona, J. E., Rusin, D. (2003). Efficient Solution of Rational Conics.
           Mathematics of Computation, 72(243), 1417-1441.
           https://doi.org/10.1090/S0025-5718-02-01480-1
    """
    a = abs(a)
    def _dot(u, v):
        return u[0]*v[0] + a*u[1]*v[1]

    u = (b, 0)
    v = (w, 1) if b*w >= 0 else (-w, -1)
    # i.e., _dot(u, v) >= 0

    if b**2 < w**2 + a:
        u, v = v, u
    # i.e., norm(u) >= norm(v), where norm(u) := sqrt(_dot(u, u))

    while _dot(u, u) > (dv := _dot(v, v)):
        k = _dot(u, v) // dv
        u, v = v, (u[0] - k*v[0], u[1] - k*v[1])
    c = (v[0] - u[0], v[1] - u[1])
    if _dot(c, c) <= _dot(u, u) <= 2*_dot(u, v):
        return c
    return u


def holzer(x, y, z, a, b, c):
    r"""
    Simplify the solution `(x, y, z)` of the equation
    `ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to
    a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`.

    The algorithm is an interpretation of Mordell's reduction as described
    on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in
    reference [2]_.

    References
    ==========

    .. [1] Cremona, J. E., Rusin, D. (2003). Efficient Solution of Rational Conics.
           Mathematics of Computation, 72(243), 1417-1441.
           https://doi.org/10.1090/S0025-5718-02-01480-1
    .. [2] Diophantine Equations, L. J. Mordell, page 48.

    """

    if _odd(c):
        k = 2*c
    else:
        k = c//2

    small = a*b*c
    step = 0
    while True:
        t1, t2, t3 = a*x**2, b*y**2, c*z**2
        # check that it's a solution
        if t1 + t2 != t3:
            if step == 0:
                raise ValueError('bad starting solution')
            break
        x_0, y_0, z_0 = x, y, z
        if max(t1, t2, t3) <= small:
            # Holzer condition
            break

        uv = u, v = base_solution_linear(k, y_0, -x_0)
        if None in uv:
            break

        p, q = -(a*u*x_0 + b*v*y_0), c*z_0
        r = Rational(p, q)
        if _even(c):
            w = _nint_or_floor(p, q)
            assert abs(w - r) <= S.Half
        else:
            w = p//q  # floor
            if _odd(a*u + b*v + c*w):
                w += 1
            assert abs(w - r) <= S.One

        A = (a*u**2 + b*v**2 + c*w**2)
        B = (a*u*x_0 + b*v*y_0 + c*w*z_0)
        x = Rational(x_0*A - 2*u*B, k)
        y = Rational(y_0*A - 2*v*B, k)
        z = Rational(z_0*A - 2*w*B, k)
        assert all(i.is_Integer for i in (x, y, z))
        step += 1

    return tuple([int(i) for i in (x_0, y_0, z_0)])


def diop_general_pythagorean(eq, param=symbols("m", integer=True)):
    """
    Solves the general pythagorean equation,
    `a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`.

    Returns a tuple which contains a parametrized solution to the equation,
    sorted in the same order as the input variables.

    Usage
    =====

    ``diop_general_pythagorean(eq, param)``: where ``eq`` is a general
    pythagorean equation which is assumed to be zero and ``param`` is the base
    parameter used to construct other parameters by subscripting.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean
    >>> from sympy.abc import a, b, c, d, e
    >>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2)
    (m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2)
    >>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2)
    (10*m1**2  + 10*m2**2  + 10*m3**2 - 10*m4**2, 15*m1**2  + 15*m2**2  + 15*m3**2  + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4)
    """
    var, coeff, diop_type  = classify_diop(eq, _dict=False)

    if diop_type == GeneralPythagorean.name:
        if param is None:
            params = None
        else:
            params = symbols('%s1:%i' % (param, len(var)), integer=True)
        return list(GeneralPythagorean(eq).solve(parameters=params))[0]


def diop_general_sum_of_squares(eq, limit=1):
    r"""
    Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.

    Returns at most ``limit`` number of solutions.

    Usage
    =====

    ``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which
    is assumed to be zero. Also, ``eq`` should be in the form,
    `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.

    Details
    =======

    When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be
    no solutions. Refer to [1]_ for more details.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares
    >>> from sympy.abc import a, b, c, d, e
    >>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345)
    {(15, 22, 22, 24, 24)}

    Reference
    =========

    .. [1] Representing an integer as a sum of three squares, [online],
        Available:
        https://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)

    if diop_type == GeneralSumOfSquares.name:
        return set(GeneralSumOfSquares(eq).solve(limit=limit))


def diop_general_sum_of_even_powers(eq, limit=1):
    """
    Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`
    where `e` is an even, integer power.

    Returns at most ``limit`` number of solutions.

    Usage
    =====

    ``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which
    is assumed to be zero. Also, ``eq`` should be in the form,
    `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers
    >>> from sympy.abc import a, b
    >>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4))
    {(2, 3)}

    See Also
    ========

    power_representation
    """
    var, coeff, diop_type = classify_diop(eq, _dict=False)

    if diop_type == GeneralSumOfEvenPowers.name:
        return set(GeneralSumOfEvenPowers(eq).solve(limit=limit))


## Functions below this comment can be more suitably grouped under
## an Additive number theory module rather than the Diophantine
## equation module.


def partition(n, k=None, zeros=False):
    """
    Returns a generator that can be used to generate partitions of an integer
    `n`.

    Explanation
    ===========

    A partition of `n` is a set of positive integers which add up to `n`. For
    example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned
    as a tuple. If ``k`` equals None, then all possible partitions are returned
    irrespective of their size, otherwise only the partitions of size ``k`` are
    returned. If the ``zero`` parameter is set to True then a suitable
    number of zeros are added at the end of every partition of size less than
    ``k``.

    ``zero`` parameter is considered only if ``k`` is not None. When the
    partitions are over, the last `next()` call throws the ``StopIteration``
    exception, so this function should always be used inside a try - except
    block.

    Details
    =======

    ``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size
    of the partition which is also positive integer.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import partition
    >>> f = partition(5)
    >>> next(f)
    (1, 1, 1, 1, 1)
    >>> next(f)
    (1, 1, 1, 2)
    >>> g = partition(5, 3)
    >>> next(g)
    (1, 1, 3)
    >>> next(g)
    (1, 2, 2)
    >>> g = partition(5, 3, zeros=True)
    >>> next(g)
    (0, 0, 5)

    """
    if not zeros or k is None:
        for i in ordered_partitions(n, k):
            yield tuple(i)
    else:
        for m in range(1, k + 1):
            for i in ordered_partitions(n, m):
                i = tuple(i)
                yield (0,)*(k - len(i)) + i


def prime_as_sum_of_two_squares(p):
    """
    Represent a prime `p` as a unique sum of two squares; this can
    only be done if the prime is congruent to 1 mod 4.

    Parameters
    ==========

    p : Integer
        A prime that is congruent to 1 mod 4

    Returns
    =======

    (int, int) | None : Pair of positive integers ``(x, y)`` satisfying ``x**2 + y**2 = p``.
                        None if ``p`` is not congruent to 1 mod 4.

    Raises
    ======

    ValueError
        If ``p`` is not prime number

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares
    >>> prime_as_sum_of_two_squares(7)  # can't be done
    >>> prime_as_sum_of_two_squares(5)
    (1, 2)

    Reference
    =========

    .. [1] Representing a number as a sum of four squares, [online],
           Available: https://schorn.ch/lagrange.html

    See Also
    ========

    sum_of_squares

    """
    p = as_int(p)
    if p % 4 != 1:
        return
    if not isprime(p):
        raise ValueError("p should be a prime number")

    if p % 8 == 5:
        # Legendre symbol (2/p) == -1 if p % 8 in [3, 5]
        b = 2
    elif p % 12 == 5:
        # Legendre symbol (3/p) == -1 if p % 12 in [5, 7]
        b = 3
    elif p % 5 in [2, 3]:
        # Legendre symbol (5/p) == -1 if p % 5 in [2, 3]
        b = 5
    else:
        b = 7
        while jacobi(b, p) == 1:
            b = nextprime(b)

    b = pow(b, p >> 2, p)
    a = p
    while b**2 > p:
        a, b = b, a % b
    return (int(a % b), int(b))  # convert from long


def sum_of_three_squares(n):
    r"""
    Returns a 3-tuple $(a, b, c)$ such that $a^2 + b^2 + c^2 = n$ and
    $a, b, c \geq 0$.

    Returns None if $n = 4^a(8m + 7)$ for some `a, m \in \mathbb{Z}`. See
    [1]_ for more details.

    Parameters
    ==========

    n : Integer
        non-negative integer

    Returns
    =======

    (int, int, int) | None : 3-tuple non-negative integers ``(a, b, c)`` satisfying ``a**2 + b**2 + c**2 = n``.
                             a,b,c are sorted in ascending order. ``None`` if no such ``(a,b,c)``.

    Raises
    ======

    ValueError
        If ``n`` is a negative integer

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares
    >>> sum_of_three_squares(44542)
    (18, 37, 207)

    References
    ==========

    .. [1] Representing a number as a sum of three squares, [online],
        Available: https://schorn.ch/lagrange.html

    See Also
    ========

    power_representation :
        ``sum_of_three_squares(n)`` is one of the solutions output by ``power_representation(n, 2, 3, zeros=True)``

    """
    # https://math.stackexchange.com/questions/483101/rabin-and-shallit-algorithm/651425#651425
    # discusses these numbers (except for 1, 2, 3) as the exceptions of H&L's conjecture that
    # Every sufficiently large number n is either a square or the sum of a prime and a square.
    special = {1: (0, 0, 1), 2: (0, 1, 1), 3: (1, 1, 1), 10: (0, 1, 3), 34: (3, 3, 4),
               58: (0, 3, 7), 85: (0, 6, 7), 130: (0, 3, 11), 214: (3, 6, 13), 226: (8, 9, 9),
               370: (8, 9, 15), 526: (6, 7, 21), 706: (15, 15, 16), 730: (0, 1, 27),
               1414: (6, 17, 33), 1906: (13, 21, 36), 2986: (21, 32, 39), 9634: (56, 57, 57)}
    n = as_int(n)
    if n < 0:
        raise ValueError("n should be a non-negative integer")
    if n == 0:
        return (0, 0, 0)
    n, v = remove(n, 4)
    v = 1 << v
    if n % 8 == 7:
        return
    if n in special:
        return tuple([v*i for i in special[n]])

    s, _exact = integer_nthroot(n, 2)
    if _exact:
        return (0, 0, v*s)
    if n % 8 == 3:
        if not s % 2:
            s -= 1
        for x in range(s, -1, -2):
            N = (n - x**2) // 2
            if isprime(N):
                # n % 8 == 3 and x % 2 == 1 => N % 4 == 1
                y, z = prime_as_sum_of_two_squares(N)
                return tuple(sorted([v*x, v*(y + z), v*abs(y - z)]))
        # We will never reach this point because there must be a solution.
        assert False

    # assert n % 4 in [1, 2]
    if not((n % 2) ^ (s % 2)):
        s -= 1
    for x in range(s, -1, -2):
        N = n - x**2
        if isprime(N):
            # assert N % 4 == 1
            y, z = prime_as_sum_of_two_squares(N)
            return tuple(sorted([v*x, v*y, v*z]))
    # We will never reach this point because there must be a solution.
    assert False


def sum_of_four_squares(n):
    r"""
    Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`.
    Here `a, b, c, d \geq 0`.

    Parameters
    ==========

    n : Integer
        non-negative integer

    Returns
    =======

    (int, int, int, int) : 4-tuple non-negative integers ``(a, b, c, d)`` satisfying ``a**2 + b**2 + c**2 + d**2 = n``.
                           a,b,c,d are sorted in ascending order.

    Raises
    ======

    ValueError
        If ``n`` is a negative integer

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares
    >>> sum_of_four_squares(3456)
    (8, 8, 32, 48)
    >>> sum_of_four_squares(1294585930293)
    (0, 1234, 2161, 1137796)

    References
    ==========

    .. [1] Representing a number as a sum of four squares, [online],
        Available: https://schorn.ch/lagrange.html

    See Also
    ========

    power_representation :
        ``sum_of_four_squares(n)`` is one of the solutions output by ``power_representation(n, 2, 4, zeros=True)``

    """
    n = as_int(n)
    if n < 0:
        raise ValueError("n should be a non-negative integer")
    if n == 0:
        return (0, 0, 0, 0)
    # remove factors of 4 since a solution in terms of 3 squares is
    # going to be returned; this is also done in sum_of_three_squares,
    # but it needs to be done here to select d
    n, v = remove(n, 4)
    v = 1 << v
    if n % 8 == 7:
        d = 2
        n = n - 4
    elif n % 8 in (2, 6):
        d = 1
        n = n - 1
    else:
        d = 0
    x, y, z = sum_of_three_squares(n)  # sorted
    return tuple(sorted([v*d, v*x, v*y, v*z]))


def power_representation(n, p, k, zeros=False):
    r"""
    Returns a generator for finding k-tuples of integers,
    `(n_{1}, n_{2}, . . . n_{k})`, such that
    `n = n_{1}^p + n_{2}^p + . . . n_{k}^p`.

    Usage
    =====

    ``power_representation(n, p, k, zeros)``: Represent non-negative number
    ``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the
    solutions is allowed to contain zeros.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import power_representation

    Represent 1729 as a sum of two cubes:

    >>> f = power_representation(1729, 3, 2)
    >>> next(f)
    (9, 10)
    >>> next(f)
    (1, 12)

    If the flag `zeros` is True, the solution may contain tuples with
    zeros; any such solutions will be generated after the solutions
    without zeros:

    >>> list(power_representation(125, 2, 3, zeros=True))
    [(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)]

    For even `p` the `permute_sign` function can be used to get all
    signed values:

    >>> from sympy.utilities.iterables import permute_signs
    >>> list(permute_signs((1, 12)))
    [(1, 12), (-1, 12), (1, -12), (-1, -12)]

    All possible signed permutations can also be obtained:

    >>> from sympy.utilities.iterables import signed_permutations
    >>> list(signed_permutations((1, 12)))
    [(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)]
    """
    n, p, k = [as_int(i) for i in (n, p, k)]

    if n < 0:
        if p % 2:
            for t in power_representation(-n, p, k, zeros):
                yield tuple(-i for i in t)
        return

    if p < 1 or k < 1:
        raise ValueError(filldedent('''
    Expecting positive integers for `(p, k)`, but got `(%s, %s)`'''
    % (p, k)))

    if n == 0:
        if zeros:
            yield (0,)*k
        return

    if k == 1:
        if p == 1:
            yield (n,)
        elif n == 1:
            yield (1,)
        else:
            be = perfect_power(n)
            if be:
                b, e = be
                d, r = divmod(e, p)
                if not r:
                    yield (b**d,)
        return

    if p == 1:
        yield from partition(n, k, zeros=zeros)
        return

    if p == 2:
        if k == 3:
            n, v = remove(n, 4)
            if v:
                v = 1 << v
                for t in power_representation(n, p, k, zeros):
                    yield tuple(i*v for i in t)
                return
        feasible = _can_do_sum_of_squares(n, k)
        if not feasible:
            return
        if not zeros:
            if n > 33 and k >= 5 and k <= n and n - k in (
                13, 10, 7, 5, 4, 2, 1):
                '''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online].
                Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf'''
                return
            # quick tests since feasibility includes the possiblity of 0
            if k == 4 and (n in (1, 3, 5, 9, 11, 17, 29, 41) or remove(n, 4)[0] in (2, 6, 14)):
                # A000534
                return
            if k == 3 and n in (1, 2, 5, 10, 13, 25, 37, 58, 85, 130):  # or n = some number >= 5*10**10
                # A051952
                return
        if feasible is not True:  # it's prime and k == 2
            yield prime_as_sum_of_two_squares(n)
            return

    if k == 2 and p > 2:
        be = perfect_power(n)
        if be and be[1] % p == 0:
            return  # Fermat: a**n + b**n = c**n has no solution for n > 2

    if n >= k:
        a = integer_nthroot(n - (k - 1), p)[0]
        for t in pow_rep_recursive(a, k, n, [], p):
            yield tuple(reversed(t))

    if zeros:
        a = integer_nthroot(n, p)[0]
        for i in range(1, k):
            for t in pow_rep_recursive(a, i, n, [], p):
                yield tuple(reversed(t + (0,)*(k - i)))


sum_of_powers = power_representation


def pow_rep_recursive(n_i, k, n_remaining, terms, p):
    # Invalid arguments
    if n_i <= 0 or k <= 0:
        return

    # No solutions may exist
    if n_remaining < k:
        return
    if k * pow(n_i, p) < n_remaining:
        return

    if k == 0 and n_remaining == 0:
        yield tuple(terms)

    elif k == 1:
        # next_term^p must equal to n_remaining
        next_term, exact = integer_nthroot(n_remaining, p)
        if exact and next_term <= n_i:
            yield tuple(terms + [next_term])
        return

    else:
        # TODO: Fall back to diop_DN when k = 2
        if n_i >= 1 and k > 0:
            for next_term in range(1, n_i + 1):
                residual = n_remaining - pow(next_term, p)
                if residual < 0:
                    break
                yield from pow_rep_recursive(next_term, k - 1, residual, terms + [next_term], p)


def sum_of_squares(n, k, zeros=False):
    """Return a generator that yields the k-tuples of nonnegative
    values, the squares of which sum to n. If zeros is False (default)
    then the solution will not contain zeros. The nonnegative
    elements of a tuple are sorted.

    * If k == 1 and n is square, (n,) is returned.

    * If k == 2 then n can only be written as a sum of squares if
      every prime in the factorization of n that has the form
      4*k + 3 has an even multiplicity. If n is prime then
      it can only be written as a sum of two squares if it is
      in the form 4*k + 1.

    * if k == 3 then n can be written as a sum of squares if it does
      not have the form 4**m*(8*k + 7).

    * all integers can be written as the sum of 4 squares.

    * if k > 4 then n can be partitioned and each partition can
      be written as a sum of 4 squares; if n is not evenly divisible
      by 4 then n can be written as a sum of squares only if the
      an additional partition can be written as sum of squares.
      For example, if k = 6 then n is partitioned into two parts,
      the first being written as a sum of 4 squares and the second
      being written as a sum of 2 squares -- which can only be
      done if the condition above for k = 2 can be met, so this will
      automatically reject certain partitions of n.

    Examples
    ========

    >>> from sympy.solvers.diophantine.diophantine import sum_of_squares
    >>> list(sum_of_squares(25, 2))
    [(3, 4)]
    >>> list(sum_of_squares(25, 2, True))
    [(3, 4), (0, 5)]
    >>> list(sum_of_squares(25, 4))
    [(1, 2, 2, 4)]

    See Also
    ========

    sympy.utilities.iterables.signed_permutations
    """
    yield from power_representation(n, 2, k, zeros)


def _can_do_sum_of_squares(n, k):
    """Return True if n can be written as the sum of k squares,
    False if it cannot, or 1 if ``k == 2`` and ``n`` is prime (in which
    case it *can* be written as a sum of two squares). A False
    is returned only if it cannot be written as ``k``-squares, even
    if 0s are allowed.
    """
    if k < 1:
        return False
    if n < 0:
        return False
    if n == 0:
        return True
    if k == 1:
        return is_square(n)
    if k == 2:
        if n in (1, 2):
            return True
        if isprime(n):
            if n % 4 == 1:
                return 1  # signal that it was prime
            return False
        # n is a composite number
        # we can proceed iff no prime factor in the form 4*k + 3
        # has an odd multiplicity
        return all(p % 4 !=3 or m % 2 == 0 for p, m in factorint(n).items())
    if k == 3:
        return remove(n, 4)[0] % 8 != 7
    # every number can be written as a sum of 4 squares; for k > 4 partitions
    # can be 0
    return True