File size: 46,878 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
from collections import defaultdict
from functools import reduce

from sympy.core import (sympify, Basic, S, Expr, factor_terms,
                        Mul, Add, bottom_up)
from sympy.core.cache import cacheit
from sympy.core.function import (count_ops, _mexpand, FunctionClass, expand,
                                 expand_mul, _coeff_isneg, Derivative)
from sympy.core.numbers import I, Integer
from sympy.core.intfunc import igcd
from sympy.core.sorting import _nodes
from sympy.core.symbol import Dummy, symbols, Wild
from sympy.external.gmpy import SYMPY_INTS
from sympy.functions import sin, cos, exp, cosh, tanh, sinh, tan, cot, coth
from sympy.functions import atan2
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.polys import Poly, factor, cancel, parallel_poly_from_expr
from sympy.polys.domains import ZZ
from sympy.polys.polyerrors import PolificationFailed
from sympy.polys.polytools import groebner
from sympy.simplify.cse_main import cse
from sympy.strategies.core import identity
from sympy.strategies.tree import greedy
from sympy.utilities.iterables import iterable
from sympy.utilities.misc import debug

def trigsimp_groebner(expr, hints=[], quick=False, order="grlex",
                      polynomial=False):
    """
    Simplify trigonometric expressions using a groebner basis algorithm.

    Explanation
    ===========

    This routine takes a fraction involving trigonometric or hyperbolic
    expressions, and tries to simplify it. The primary metric is the
    total degree. Some attempts are made to choose the simplest possible
    expression of the minimal degree, but this is non-rigorous, and also
    very slow (see the ``quick=True`` option).

    If ``polynomial`` is set to True, instead of simplifying numerator and
    denominator together, this function just brings numerator and denominator
    into a canonical form. This is much faster, but has potentially worse
    results. However, if the input is a polynomial, then the result is
    guaranteed to be an equivalent polynomial of minimal degree.

    The most important option is hints. Its entries can be any of the
    following:

    - a natural number
    - a function
    - an iterable of the form (func, var1, var2, ...)
    - anything else, interpreted as a generator

    A number is used to indicate that the search space should be increased.
    A function is used to indicate that said function is likely to occur in a
    simplified expression.
    An iterable is used indicate that func(var1 + var2 + ...) is likely to
    occur in a simplified .
    An additional generator also indicates that it is likely to occur.
    (See examples below).

    This routine carries out various computationally intensive algorithms.
    The option ``quick=True`` can be used to suppress one particularly slow
    step (at the expense of potentially more complicated results, but never at
    the expense of increased total degree).

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy import sin, tan, cos, sinh, cosh, tanh
    >>> from sympy.simplify.trigsimp import trigsimp_groebner

    Suppose you want to simplify ``sin(x)*cos(x)``. Naively, nothing happens:

    >>> ex = sin(x)*cos(x)
    >>> trigsimp_groebner(ex)
    sin(x)*cos(x)

    This is because ``trigsimp_groebner`` only looks for a simplification
    involving just ``sin(x)`` and ``cos(x)``. You can tell it to also try
    ``2*x`` by passing ``hints=[2]``:

    >>> trigsimp_groebner(ex, hints=[2])
    sin(2*x)/2
    >>> trigsimp_groebner(sin(x)**2 - cos(x)**2, hints=[2])
    -cos(2*x)

    Increasing the search space this way can quickly become expensive. A much
    faster way is to give a specific expression that is likely to occur:

    >>> trigsimp_groebner(ex, hints=[sin(2*x)])
    sin(2*x)/2

    Hyperbolic expressions are similarly supported:

    >>> trigsimp_groebner(sinh(2*x)/sinh(x))
    2*cosh(x)

    Note how no hints had to be passed, since the expression already involved
    ``2*x``.

    The tangent function is also supported. You can either pass ``tan`` in the
    hints, to indicate that tan should be tried whenever cosine or sine are,
    or you can pass a specific generator:

    >>> trigsimp_groebner(sin(x)/cos(x), hints=[tan])
    tan(x)
    >>> trigsimp_groebner(sinh(x)/cosh(x), hints=[tanh(x)])
    tanh(x)

    Finally, you can use the iterable form to suggest that angle sum formulae
    should be tried:

    >>> ex = (tan(x) + tan(y))/(1 - tan(x)*tan(y))
    >>> trigsimp_groebner(ex, hints=[(tan, x, y)])
    tan(x + y)
    """
    # TODO
    #  - preprocess by replacing everything by funcs we can handle
    # - optionally use cot instead of tan
    # - more intelligent hinting.
    #     For example, if the ideal is small, and we have sin(x), sin(y),
    #     add sin(x + y) automatically... ?
    # - algebraic numbers ...
    # - expressions of lowest degree are not distinguished properly
    #   e.g. 1 - sin(x)**2
    # - we could try to order the generators intelligently, so as to influence
    #   which monomials appear in the quotient basis

    # THEORY
    # ------
    # Ratsimpmodprime above can be used to "simplify" a rational function
    # modulo a prime ideal. "Simplify" mainly means finding an equivalent
    # expression of lower total degree.
    #
    # We intend to use this to simplify trigonometric functions. To do that,
    # we need to decide (a) which ring to use, and (b) modulo which ideal to
    # simplify. In practice, (a) means settling on a list of "generators"
    # a, b, c, ..., such that the fraction we want to simplify is a rational
    # function in a, b, c, ..., with coefficients in ZZ (integers).
    # (2) means that we have to decide what relations to impose on the
    # generators. There are two practical problems:
    #   (1) The ideal has to be *prime* (a technical term).
    #   (2) The relations have to be polynomials in the generators.
    #
    # We typically have two kinds of generators:
    # - trigonometric expressions, like sin(x), cos(5*x), etc
    # - "everything else", like gamma(x), pi, etc.
    #
    # Since this function is trigsimp, we will concentrate on what to do with
    # trigonometric expressions. We can also simplify hyperbolic expressions,
    # but the extensions should be clear.
    #
    # One crucial point is that all *other* generators really should behave
    # like indeterminates. In particular if (say) "I" is one of them, then
    # in fact I**2 + 1 = 0 and we may and will compute non-sensical
    # expressions. However, we can work with a dummy and add the relation
    # I**2 + 1 = 0 to our ideal, then substitute back in the end.
    #
    # Now regarding trigonometric generators. We split them into groups,
    # according to the argument of the trigonometric functions. We want to
    # organise this in such a way that most trigonometric identities apply in
    # the same group. For example, given sin(x), cos(2*x) and cos(y), we would
    # group as [sin(x), cos(2*x)] and [cos(y)].
    #
    # Our prime ideal will be built in three steps:
    # (1) For each group, compute a "geometrically prime" ideal of relations.
    #     Geometrically prime means that it generates a prime ideal in
    #     CC[gens], not just ZZ[gens].
    # (2) Take the union of all the generators of the ideals for all groups.
    #     By the geometric primality condition, this is still prime.
    # (3) Add further inter-group relations which preserve primality.
    #
    # Step (1) works as follows. We will isolate common factors in the
    # argument, so that all our generators are of the form sin(n*x), cos(n*x)
    # or tan(n*x), with n an integer. Suppose first there are no tan terms.
    # The ideal [sin(x)**2 + cos(x)**2 - 1] is geometrically prime, since
    # X**2 + Y**2 - 1 is irreducible over CC.
    # Now, if we have a generator sin(n*x), than we can, using trig identities,
    # express sin(n*x) as a polynomial in sin(x) and cos(x). We can add this
    # relation to the ideal, preserving geometric primality, since the quotient
    # ring is unchanged.
    # Thus we have treated all sin and cos terms.
    # For tan(n*x), we add a relation tan(n*x)*cos(n*x) - sin(n*x) = 0.
    # (This requires of course that we already have relations for cos(n*x) and
    # sin(n*x).) It is not obvious, but it seems that this preserves geometric
    # primality.
    # XXX A real proof would be nice. HELP!
    #     Sketch that <S**2 + C**2 - 1, C*T - S> is a prime ideal of
    #     CC[S, C, T]:
    #     - it suffices to show that the projective closure in CP**3 is
    #       irreducible
    #     - using the half-angle substitutions, we can express sin(x), tan(x),
    #       cos(x) as rational functions in tan(x/2)
    #     - from this, we get a rational map from CP**1 to our curve
    #     - this is a morphism, hence the curve is prime
    #
    # Step (2) is trivial.
    #
    # Step (3) works by adding selected relations of the form
    # sin(x + y) - sin(x)*cos(y) - sin(y)*cos(x), etc. Geometric primality is
    # preserved by the same argument as before.

    def parse_hints(hints):
        """Split hints into (n, funcs, iterables, gens)."""
        n = 1
        funcs, iterables, gens = [], [], []
        for e in hints:
            if isinstance(e, (SYMPY_INTS, Integer)):
                n = e
            elif isinstance(e, FunctionClass):
                funcs.append(e)
            elif iterable(e):
                iterables.append((e[0], e[1:]))
                # XXX sin(x+2y)?
                # Note: we go through polys so e.g.
                # sin(-x) -> -sin(x) -> sin(x)
                gens.extend(parallel_poly_from_expr(
                    [e[0](x) for x in e[1:]] + [e[0](Add(*e[1:]))])[1].gens)
            else:
                gens.append(e)
        return n, funcs, iterables, gens

    def build_ideal(x, terms):
        """
        Build generators for our ideal. ``Terms`` is an iterable with elements of
        the form (fn, coeff), indicating that we have a generator fn(coeff*x).

        If any of the terms is trigonometric, sin(x) and cos(x) are guaranteed
        to appear in terms. Similarly for hyperbolic functions. For tan(n*x),
        sin(n*x) and cos(n*x) are guaranteed.
        """
        I = []
        y = Dummy('y')
        for fn, coeff in terms:
            for c, s, t, rel in (
                    [cos, sin, tan, cos(x)**2 + sin(x)**2 - 1],
                    [cosh, sinh, tanh, cosh(x)**2 - sinh(x)**2 - 1]):
                if coeff == 1 and fn in [c, s]:
                    I.append(rel)
                elif fn == t:
                    I.append(t(coeff*x)*c(coeff*x) - s(coeff*x))
                elif fn in [c, s]:
                    cn = fn(coeff*y).expand(trig=True).subs(y, x)
                    I.append(fn(coeff*x) - cn)
        return list(set(I))

    def analyse_gens(gens, hints):
        """
        Analyse the generators ``gens``, using the hints ``hints``.

        The meaning of ``hints`` is described in the main docstring.
        Return a new list of generators, and also the ideal we should
        work with.
        """
        # First parse the hints
        n, funcs, iterables, extragens = parse_hints(hints)
        debug('n=%s   funcs: %s   iterables: %s    extragens: %s',
              (funcs, iterables, extragens))

        # We just add the extragens to gens and analyse them as before
        gens = list(gens)
        gens.extend(extragens)

        # remove duplicates
        funcs = list(set(funcs))
        iterables = list(set(iterables))
        gens = list(set(gens))

        # all the functions we can do anything with
        allfuncs = {sin, cos, tan, sinh, cosh, tanh}
        # sin(3*x) -> ((3, x), sin)
        trigterms = [(g.args[0].as_coeff_mul(), g.func) for g in gens
                     if g.func in allfuncs]
        # Our list of new generators - start with anything that we cannot
        # work with (i.e. is not a trigonometric term)
        freegens = [g for g in gens if g.func not in allfuncs]
        newgens = []
        trigdict = {}
        for (coeff, var), fn in trigterms:
            trigdict.setdefault(var, []).append((coeff, fn))
        res = [] # the ideal

        for key, val in trigdict.items():
            # We have now assembeled a dictionary. Its keys are common
            # arguments in trigonometric expressions, and values are lists of
            # pairs (fn, coeff). x0, (fn, coeff) in trigdict means that we
            # need to deal with fn(coeff*x0). We take the rational gcd of the
            # coeffs, call it ``gcd``. We then use x = x0/gcd as "base symbol",
            # all other arguments are integral multiples thereof.
            # We will build an ideal which works with sin(x), cos(x).
            # If hint tan is provided, also work with tan(x). Moreover, if
            # n > 1, also work with sin(k*x) for k <= n, and similarly for cos
            # (and tan if the hint is provided). Finally, any generators which
            # the ideal does not work with but we need to accommodate (either
            # because it was in expr or because it was provided as a hint)
            # we also build into the ideal.
            # This selection process is expressed in the list ``terms``.
            # build_ideal then generates the actual relations in our ideal,
            # from this list.
            fns = [x[1] for x in val]
            val = [x[0] for x in val]
            gcd = reduce(igcd, val)
            terms = [(fn, v/gcd) for (fn, v) in zip(fns, val)]
            fs = set(funcs + fns)
            for c, s, t in ([cos, sin, tan], [cosh, sinh, tanh]):
                if any(x in fs for x in (c, s, t)):
                    fs.add(c)
                    fs.add(s)
            for fn in fs:
                for k in range(1, n + 1):
                    terms.append((fn, k))
            extra = []
            for fn, v in terms:
                if fn == tan:
                    extra.append((sin, v))
                    extra.append((cos, v))
                if fn in [sin, cos] and tan in fs:
                    extra.append((tan, v))
                if fn == tanh:
                    extra.append((sinh, v))
                    extra.append((cosh, v))
                if fn in [sinh, cosh] and tanh in fs:
                    extra.append((tanh, v))
            terms.extend(extra)
            x = gcd*Mul(*key)
            r = build_ideal(x, terms)
            res.extend(r)
            newgens.extend({fn(v*x) for fn, v in terms})

        # Add generators for compound expressions from iterables
        for fn, args in iterables:
            if fn == tan:
                # Tan expressions are recovered from sin and cos.
                iterables.extend([(sin, args), (cos, args)])
            elif fn == tanh:
                # Tanh expressions are recovered from sihn and cosh.
                iterables.extend([(sinh, args), (cosh, args)])
            else:
                dummys = symbols('d:%i' % len(args), cls=Dummy)
                expr = fn( Add(*dummys)).expand(trig=True).subs(list(zip(dummys, args)))
                res.append(fn(Add(*args)) - expr)

        if myI in gens:
            res.append(myI**2 + 1)
            freegens.remove(myI)
            newgens.append(myI)

        return res, freegens, newgens

    myI = Dummy('I')
    expr = expr.subs(S.ImaginaryUnit, myI)
    subs = [(myI, S.ImaginaryUnit)]

    num, denom = cancel(expr).as_numer_denom()
    try:
        (pnum, pdenom), opt = parallel_poly_from_expr([num, denom])
    except PolificationFailed:
        return expr
    debug('initial gens:', opt.gens)
    ideal, freegens, gens = analyse_gens(opt.gens, hints)
    debug('ideal:', ideal)
    debug('new gens:', gens, " -- len", len(gens))
    debug('free gens:', freegens, " -- len", len(gens))
    # NOTE we force the domain to be ZZ to stop polys from injecting generators
    #      (which is usually a sign of a bug in the way we build the ideal)
    if not gens:
        return expr
    G = groebner(ideal, order=order, gens=gens, domain=ZZ)
    debug('groebner basis:', list(G), " -- len", len(G))

    # If our fraction is a polynomial in the free generators, simplify all
    # coefficients separately:

    from sympy.simplify.ratsimp import ratsimpmodprime

    if freegens and pdenom.has_only_gens(*set(gens).intersection(pdenom.gens)):
        num = Poly(num, gens=gens+freegens).eject(*gens)
        res = []
        for monom, coeff in num.terms():
            ourgens = set(parallel_poly_from_expr([coeff, denom])[1].gens)
            # We compute the transitive closure of all generators that can
            # be reached from our generators through relations in the ideal.
            changed = True
            while changed:
                changed = False
                for p in ideal:
                    p = Poly(p)
                    if not ourgens.issuperset(p.gens) and \
                       not p.has_only_gens(*set(p.gens).difference(ourgens)):
                        changed = True
                        ourgens.update(p.exclude().gens)
            # NOTE preserve order!
            realgens = [x for x in gens if x in ourgens]
            # The generators of the ideal have now been (implicitly) split
            # into two groups: those involving ourgens and those that don't.
            # Since we took the transitive closure above, these two groups
            # live in subgrings generated by a *disjoint* set of variables.
            # Any sensible groebner basis algorithm will preserve this disjoint
            # structure (i.e. the elements of the groebner basis can be split
            # similarly), and and the two subsets of the groebner basis then
            # form groebner bases by themselves. (For the smaller generating
            # sets, of course.)
            ourG = [g.as_expr() for g in G.polys if
                    g.has_only_gens(*ourgens.intersection(g.gens))]
            res.append(Mul(*[a**b for a, b in zip(freegens, monom)]) * \
                       ratsimpmodprime(coeff/denom, ourG, order=order,
                                       gens=realgens, quick=quick, domain=ZZ,
                                       polynomial=polynomial).subs(subs))
        return Add(*res)
        # NOTE The following is simpler and has less assumptions on the
        #      groebner basis algorithm. If the above turns out to be broken,
        #      use this.
        return Add(*[Mul(*[a**b for a, b in zip(freegens, monom)]) * \
                     ratsimpmodprime(coeff/denom, list(G), order=order,
                                     gens=gens, quick=quick, domain=ZZ)
                     for monom, coeff in num.terms()])
    else:
        return ratsimpmodprime(
            expr, list(G), order=order, gens=freegens+gens,
            quick=quick, domain=ZZ, polynomial=polynomial).subs(subs)


_trigs = (TrigonometricFunction, HyperbolicFunction)


def _trigsimp_inverse(rv):

    def check_args(x, y):
        try:
            return x.args[0] == y.args[0]
        except IndexError:
            return False

    def f(rv):
        # for simple functions
        g = getattr(rv, 'inverse', None)
        if (g is not None and isinstance(rv.args[0], g()) and
                isinstance(g()(1), TrigonometricFunction)):
            return rv.args[0].args[0]

        # for atan2 simplifications, harder because atan2 has 2 args
        if isinstance(rv, atan2):
            y, x = rv.args
            if _coeff_isneg(y):
                return -f(atan2(-y, x))
            elif _coeff_isneg(x):
                return S.Pi - f(atan2(y, -x))

            if check_args(x, y):
                if isinstance(y, sin) and isinstance(x, cos):
                    return x.args[0]
                if isinstance(y, cos) and isinstance(x, sin):
                    return S.Pi / 2 - x.args[0]

        return rv

    return bottom_up(rv, f)


def trigsimp(expr, inverse=False, **opts):
    """Returns a reduced expression by using known trig identities.

    Parameters
    ==========

    inverse : bool, optional
        If ``inverse=True``, it will be assumed that a composition of inverse
        functions, such as sin and asin, can be cancelled in any order.
        For example, ``asin(sin(x))`` will yield ``x`` without checking whether
        x belongs to the set where this relation is true. The default is False.
        Default : True

    method : string, optional
        Specifies the method to use. Valid choices are:

        - ``'matching'``, default
        - ``'groebner'``
        - ``'combined'``
        - ``'fu'``
        - ``'old'``

        If ``'matching'``, simplify the expression recursively by targeting
        common patterns. If ``'groebner'``, apply an experimental groebner
        basis algorithm. In this case further options are forwarded to
        ``trigsimp_groebner``, please refer to
        its docstring. If ``'combined'``, it first runs the groebner basis
        algorithm with small default parameters, then runs the ``'matching'``
        algorithm. If ``'fu'``, run the collection of trigonometric
        transformations described by Fu, et al. (see the
        :py:func:`~sympy.simplify.fu.fu` docstring). If ``'old'``, the original
        SymPy trig simplification function is run.
    opts :
        Optional keyword arguments passed to the method. See each method's
        function docstring for details.

    Examples
    ========

    >>> from sympy import trigsimp, sin, cos, log
    >>> from sympy.abc import x
    >>> e = 2*sin(x)**2 + 2*cos(x)**2
    >>> trigsimp(e)
    2

    Simplification occurs wherever trigonometric functions are located.

    >>> trigsimp(log(e))
    log(2)

    Using ``method='groebner'`` (or ``method='combined'``) might lead to
    greater simplification.

    The old trigsimp routine can be accessed as with method ``method='old'``.

    >>> from sympy import coth, tanh
    >>> t = 3*tanh(x)**7 - 2/coth(x)**7
    >>> trigsimp(t, method='old') == t
    True
    >>> trigsimp(t)
    tanh(x)**7

    """
    from sympy.simplify.fu import fu

    expr = sympify(expr)

    _eval_trigsimp = getattr(expr, '_eval_trigsimp', None)
    if _eval_trigsimp is not None:
        return _eval_trigsimp(**opts)

    old = opts.pop('old', False)
    if not old:
        opts.pop('deep', None)
        opts.pop('recursive', None)
        method = opts.pop('method', 'matching')
    else:
        method = 'old'

    def groebnersimp(ex, **opts):
        def traverse(e):
            if e.is_Atom:
                return e
            args = [traverse(x) for x in e.args]
            if e.is_Function or e.is_Pow:
                args = [trigsimp_groebner(x, **opts) for x in args]
            return e.func(*args)
        new = traverse(ex)
        if not isinstance(new, Expr):
            return new
        return trigsimp_groebner(new, **opts)

    trigsimpfunc = {
        'fu': (lambda x: fu(x, **opts)),
        'matching': (lambda x: futrig(x)),
        'groebner': (lambda x: groebnersimp(x, **opts)),
        'combined': (lambda x: futrig(groebnersimp(x,
                               polynomial=True, hints=[2, tan]))),
        'old': lambda x: trigsimp_old(x, **opts),
                   }[method]

    expr_simplified = trigsimpfunc(expr)
    if inverse:
        expr_simplified = _trigsimp_inverse(expr_simplified)

    return expr_simplified


def exptrigsimp(expr):
    """
    Simplifies exponential / trigonometric / hyperbolic functions.

    Examples
    ========

    >>> from sympy import exptrigsimp, exp, cosh, sinh
    >>> from sympy.abc import z

    >>> exptrigsimp(exp(z) + exp(-z))
    2*cosh(z)
    >>> exptrigsimp(cosh(z) - sinh(z))
    exp(-z)
    """
    from sympy.simplify.fu import hyper_as_trig, TR2i

    def exp_trig(e):
        # select the better of e, and e rewritten in terms of exp or trig
        # functions
        choices = [e]
        if e.has(*_trigs):
            choices.append(e.rewrite(exp))
        choices.append(e.rewrite(cos))
        return min(*choices, key=count_ops)
    newexpr = bottom_up(expr, exp_trig)

    def f(rv):
        if not rv.is_Mul:
            return rv
        commutative_part, noncommutative_part = rv.args_cnc()
        # Since as_powers_dict loses order information,
        # if there is more than one noncommutative factor,
        # it should only be used to simplify the commutative part.
        if (len(noncommutative_part) > 1):
            return f(Mul(*commutative_part))*Mul(*noncommutative_part)
        rvd = rv.as_powers_dict()
        newd = rvd.copy()

        def signlog(expr, sign=S.One):
            if expr is S.Exp1:
                return sign, S.One
            elif isinstance(expr, exp) or (expr.is_Pow and expr.base == S.Exp1):
                return sign, expr.exp
            elif sign is S.One:
                return signlog(-expr, sign=-S.One)
            else:
                return None, None

        ee = rvd[S.Exp1]
        for k in rvd:
            if k.is_Add and len(k.args) == 2:
                # k == c*(1 + sign*E**x)
                c = k.args[0]
                sign, x = signlog(k.args[1]/c)
                if not x:
                    continue
                m = rvd[k]
                newd[k] -= m
                if ee == -x*m/2:
                    # sinh and cosh
                    newd[S.Exp1] -= ee
                    ee = 0
                    if sign == 1:
                        newd[2*c*cosh(x/2)] += m
                    else:
                        newd[-2*c*sinh(x/2)] += m
                elif newd[1 - sign*S.Exp1**x] == -m:
                    # tanh
                    del newd[1 - sign*S.Exp1**x]
                    if sign == 1:
                        newd[-c/tanh(x/2)] += m
                    else:
                        newd[-c*tanh(x/2)] += m
                else:
                    newd[1 + sign*S.Exp1**x] += m
                    newd[c] += m

        return Mul(*[k**newd[k] for k in newd])
    newexpr = bottom_up(newexpr, f)

    # sin/cos and sinh/cosh ratios to tan and tanh, respectively
    if newexpr.has(HyperbolicFunction):
        e, f = hyper_as_trig(newexpr)
        newexpr = f(TR2i(e))
    if newexpr.has(TrigonometricFunction):
        newexpr = TR2i(newexpr)

    # can we ever generate an I where there was none previously?
    if not (newexpr.has(I) and not expr.has(I)):
        expr = newexpr
    return expr

#-------------------- the old trigsimp routines ---------------------

def trigsimp_old(expr, *, first=True, **opts):
    """
    Reduces expression by using known trig identities.

    Notes
    =====

    deep:
    - Apply trigsimp inside all objects with arguments

    recursive:
    - Use common subexpression elimination (cse()) and apply
    trigsimp recursively (this is quite expensive if the
    expression is large)

    method:
    - Determine the method to use. Valid choices are 'matching' (default),
    'groebner', 'combined', 'fu' and 'futrig'. If 'matching', simplify the
    expression recursively by pattern matching. If 'groebner', apply an
    experimental groebner basis algorithm. In this case further options
    are forwarded to ``trigsimp_groebner``, please refer to its docstring.
    If 'combined', first run the groebner basis algorithm with small
    default parameters, then run the 'matching' algorithm. 'fu' runs the
    collection of trigonometric transformations described by Fu, et al.
    (see the `fu` docstring) while `futrig` runs a subset of Fu-transforms
    that mimic the behavior of `trigsimp`.

    compare:
    - show input and output from `trigsimp` and `futrig` when different,
    but returns the `trigsimp` value.

    Examples
    ========

    >>> from sympy import trigsimp, sin, cos, log, cot
    >>> from sympy.abc import x
    >>> e = 2*sin(x)**2 + 2*cos(x)**2
    >>> trigsimp(e, old=True)
    2
    >>> trigsimp(log(e), old=True)
    log(2*sin(x)**2 + 2*cos(x)**2)
    >>> trigsimp(log(e), deep=True, old=True)
    log(2)

    Using `method="groebner"` (or `"combined"`) can sometimes lead to a lot
    more simplification:

    >>> e = (-sin(x) + 1)/cos(x) + cos(x)/(-sin(x) + 1)
    >>> trigsimp(e, old=True)
    (1 - sin(x))/cos(x) + cos(x)/(1 - sin(x))
    >>> trigsimp(e, method="groebner", old=True)
    2/cos(x)

    >>> trigsimp(1/cot(x)**2, compare=True, old=True)
          futrig: tan(x)**2
    cot(x)**(-2)

    """
    old = expr
    if first:
        if not expr.has(*_trigs):
            return expr

        trigsyms = set().union(*[t.free_symbols for t in expr.atoms(*_trigs)])
        if len(trigsyms) > 1:
            from sympy.simplify.simplify import separatevars

            d = separatevars(expr)
            if d.is_Mul:
                d = separatevars(d, dict=True) or d
            if isinstance(d, dict):
                expr = 1
                for v in d.values():
                    # remove hollow factoring
                    was = v
                    v = expand_mul(v)
                    opts['first'] = False
                    vnew = trigsimp(v, **opts)
                    if vnew == v:
                        vnew = was
                    expr *= vnew
                old = expr
            else:
                if d.is_Add:
                    for s in trigsyms:
                        r, e = expr.as_independent(s)
                        if r:
                            opts['first'] = False
                            expr = r + trigsimp(e, **opts)
                            if not expr.is_Add:
                                break
                    old = expr

    recursive = opts.pop('recursive', False)
    deep = opts.pop('deep', False)
    method = opts.pop('method', 'matching')

    def groebnersimp(ex, deep, **opts):
        def traverse(e):
            if e.is_Atom:
                return e
            args = [traverse(x) for x in e.args]
            if e.is_Function or e.is_Pow:
                args = [trigsimp_groebner(x, **opts) for x in args]
            return e.func(*args)
        if deep:
            ex = traverse(ex)
        return trigsimp_groebner(ex, **opts)

    trigsimpfunc = {
        'matching': (lambda x, d: _trigsimp(x, d)),
        'groebner': (lambda x, d: groebnersimp(x, d, **opts)),
        'combined': (lambda x, d: _trigsimp(groebnersimp(x,
                                       d, polynomial=True, hints=[2, tan]),
                                   d))
                   }[method]

    if recursive:
        w, g = cse(expr)
        g = trigsimpfunc(g[0], deep)

        for sub in reversed(w):
            g = g.subs(sub[0], sub[1])
            g = trigsimpfunc(g, deep)
        result = g
    else:
        result = trigsimpfunc(expr, deep)

    if opts.get('compare', False):
        f = futrig(old)
        if f != result:
            print('\tfutrig:', f)

    return result


def _dotrig(a, b):
    """Helper to tell whether ``a`` and ``b`` have the same sorts
    of symbols in them -- no need to test hyperbolic patterns against
    expressions that have no hyperbolics in them."""
    return a.func == b.func and (
        a.has(TrigonometricFunction) and b.has(TrigonometricFunction) or
        a.has(HyperbolicFunction) and b.has(HyperbolicFunction))


_trigpat = None
def _trigpats():
    global _trigpat
    a, b, c = symbols('a b c', cls=Wild)
    d = Wild('d', commutative=False)

    # for the simplifications like sinh/cosh -> tanh:
    # DO NOT REORDER THE FIRST 14 since these are assumed to be in this
    # order in _match_div_rewrite.
    matchers_division = (
        (a*sin(b)**c/cos(b)**c, a*tan(b)**c, sin(b), cos(b)),
        (a*tan(b)**c*cos(b)**c, a*sin(b)**c, sin(b), cos(b)),
        (a*cot(b)**c*sin(b)**c, a*cos(b)**c, sin(b), cos(b)),
        (a*tan(b)**c/sin(b)**c, a/cos(b)**c, sin(b), cos(b)),
        (a*cot(b)**c/cos(b)**c, a/sin(b)**c, sin(b), cos(b)),
        (a*cot(b)**c*tan(b)**c, a, sin(b), cos(b)),
        (a*(cos(b) + 1)**c*(cos(b) - 1)**c,
            a*(-sin(b)**2)**c, cos(b) + 1, cos(b) - 1),
        (a*(sin(b) + 1)**c*(sin(b) - 1)**c,
            a*(-cos(b)**2)**c, sin(b) + 1, sin(b) - 1),

        (a*sinh(b)**c/cosh(b)**c, a*tanh(b)**c, S.One, S.One),
        (a*tanh(b)**c*cosh(b)**c, a*sinh(b)**c, S.One, S.One),
        (a*coth(b)**c*sinh(b)**c, a*cosh(b)**c, S.One, S.One),
        (a*tanh(b)**c/sinh(b)**c, a/cosh(b)**c, S.One, S.One),
        (a*coth(b)**c/cosh(b)**c, a/sinh(b)**c, S.One, S.One),
        (a*coth(b)**c*tanh(b)**c, a, S.One, S.One),

        (c*(tanh(a) + tanh(b))/(1 + tanh(a)*tanh(b)),
            tanh(a + b)*c, S.One, S.One),
    )

    matchers_add = (
        (c*sin(a)*cos(b) + c*cos(a)*sin(b) + d, sin(a + b)*c + d),
        (c*cos(a)*cos(b) - c*sin(a)*sin(b) + d, cos(a + b)*c + d),
        (c*sin(a)*cos(b) - c*cos(a)*sin(b) + d, sin(a - b)*c + d),
        (c*cos(a)*cos(b) + c*sin(a)*sin(b) + d, cos(a - b)*c + d),
        (c*sinh(a)*cosh(b) + c*sinh(b)*cosh(a) + d, sinh(a + b)*c + d),
        (c*cosh(a)*cosh(b) + c*sinh(a)*sinh(b) + d, cosh(a + b)*c + d),
    )

    # for cos(x)**2 + sin(x)**2 -> 1
    matchers_identity = (
        (a*sin(b)**2, a - a*cos(b)**2),
        (a*tan(b)**2, a*(1/cos(b))**2 - a),
        (a*cot(b)**2, a*(1/sin(b))**2 - a),
        (a*sin(b + c), a*(sin(b)*cos(c) + sin(c)*cos(b))),
        (a*cos(b + c), a*(cos(b)*cos(c) - sin(b)*sin(c))),
        (a*tan(b + c), a*((tan(b) + tan(c))/(1 - tan(b)*tan(c)))),

        (a*sinh(b)**2, a*cosh(b)**2 - a),
        (a*tanh(b)**2, a - a*(1/cosh(b))**2),
        (a*coth(b)**2, a + a*(1/sinh(b))**2),
        (a*sinh(b + c), a*(sinh(b)*cosh(c) + sinh(c)*cosh(b))),
        (a*cosh(b + c), a*(cosh(b)*cosh(c) + sinh(b)*sinh(c))),
        (a*tanh(b + c), a*((tanh(b) + tanh(c))/(1 + tanh(b)*tanh(c)))),

    )

    # Reduce any lingering artifacts, such as sin(x)**2 changing
    # to 1-cos(x)**2 when sin(x)**2 was "simpler"
    artifacts = (
        (a - a*cos(b)**2 + c, a*sin(b)**2 + c, cos),
        (a - a*(1/cos(b))**2 + c, -a*tan(b)**2 + c, cos),
        (a - a*(1/sin(b))**2 + c, -a*cot(b)**2 + c, sin),

        (a - a*cosh(b)**2 + c, -a*sinh(b)**2 + c, cosh),
        (a - a*(1/cosh(b))**2 + c, a*tanh(b)**2 + c, cosh),
        (a + a*(1/sinh(b))**2 + c, a*coth(b)**2 + c, sinh),

        # same as above but with noncommutative prefactor
        (a*d - a*d*cos(b)**2 + c, a*d*sin(b)**2 + c, cos),
        (a*d - a*d*(1/cos(b))**2 + c, -a*d*tan(b)**2 + c, cos),
        (a*d - a*d*(1/sin(b))**2 + c, -a*d*cot(b)**2 + c, sin),

        (a*d - a*d*cosh(b)**2 + c, -a*d*sinh(b)**2 + c, cosh),
        (a*d - a*d*(1/cosh(b))**2 + c, a*d*tanh(b)**2 + c, cosh),
        (a*d + a*d*(1/sinh(b))**2 + c, a*d*coth(b)**2 + c, sinh),
    )

    _trigpat = (a, b, c, d, matchers_division, matchers_add,
        matchers_identity, artifacts)
    return _trigpat


def _replace_mul_fpowxgpow(expr, f, g, rexp, h, rexph):
    """Helper for _match_div_rewrite.

    Replace f(b_)**c_*g(b_)**(rexp(c_)) with h(b)**rexph(c) if f(b_)
    and g(b_) are both positive or if c_ is an integer.
    """
    # assert expr.is_Mul and expr.is_commutative and f != g
    fargs = defaultdict(int)
    gargs = defaultdict(int)
    args = []
    for x in expr.args:
        if x.is_Pow or x.func in (f, g):
            b, e = x.as_base_exp()
            if b.is_positive or e.is_integer:
                if b.func == f:
                    fargs[b.args[0]] += e
                    continue
                elif b.func == g:
                    gargs[b.args[0]] += e
                    continue
        args.append(x)
    common = set(fargs) & set(gargs)
    hit = False
    while common:
        key = common.pop()
        fe = fargs.pop(key)
        ge = gargs.pop(key)
        if fe == rexp(ge):
            args.append(h(key)**rexph(fe))
            hit = True
        else:
            fargs[key] = fe
            gargs[key] = ge
    if not hit:
        return expr
    while fargs:
        key, e = fargs.popitem()
        args.append(f(key)**e)
    while gargs:
        key, e = gargs.popitem()
        args.append(g(key)**e)
    return Mul(*args)


_idn = lambda x: x
_midn = lambda x: -x
_one = lambda x: S.One

def _match_div_rewrite(expr, i):
    """helper for __trigsimp"""
    if i == 0:
        expr = _replace_mul_fpowxgpow(expr, sin, cos,
            _midn, tan, _idn)
    elif i == 1:
        expr = _replace_mul_fpowxgpow(expr, tan, cos,
            _idn, sin, _idn)
    elif i == 2:
        expr = _replace_mul_fpowxgpow(expr, cot, sin,
            _idn, cos, _idn)
    elif i == 3:
        expr = _replace_mul_fpowxgpow(expr, tan, sin,
            _midn, cos, _midn)
    elif i == 4:
        expr = _replace_mul_fpowxgpow(expr, cot, cos,
            _midn, sin, _midn)
    elif i == 5:
        expr = _replace_mul_fpowxgpow(expr, cot, tan,
            _idn, _one, _idn)
    # i in (6, 7) is skipped
    elif i == 8:
        expr = _replace_mul_fpowxgpow(expr, sinh, cosh,
            _midn, tanh, _idn)
    elif i == 9:
        expr = _replace_mul_fpowxgpow(expr, tanh, cosh,
            _idn, sinh, _idn)
    elif i == 10:
        expr = _replace_mul_fpowxgpow(expr, coth, sinh,
            _idn, cosh, _idn)
    elif i == 11:
        expr = _replace_mul_fpowxgpow(expr, tanh, sinh,
            _midn, cosh, _midn)
    elif i == 12:
        expr = _replace_mul_fpowxgpow(expr, coth, cosh,
            _midn, sinh, _midn)
    elif i == 13:
        expr = _replace_mul_fpowxgpow(expr, coth, tanh,
            _idn, _one, _idn)
    else:
        return None
    return expr


def _trigsimp(expr, deep=False):
    # protect the cache from non-trig patterns; we only allow
    # trig patterns to enter the cache
    if expr.has(*_trigs):
        return __trigsimp(expr, deep)
    return expr


@cacheit
def __trigsimp(expr, deep=False):
    """recursive helper for trigsimp"""
    from sympy.simplify.fu import TR10i

    if _trigpat is None:
        _trigpats()
    a, b, c, d, matchers_division, matchers_add, \
    matchers_identity, artifacts = _trigpat

    if expr.is_Mul:
        # do some simplifications like sin/cos -> tan:
        if not expr.is_commutative:
            com, nc = expr.args_cnc()
            expr = _trigsimp(Mul._from_args(com), deep)*Mul._from_args(nc)
        else:
            for i, (pattern, simp, ok1, ok2) in enumerate(matchers_division):
                if not _dotrig(expr, pattern):
                    continue

                newexpr = _match_div_rewrite(expr, i)
                if newexpr is not None:
                    if newexpr != expr:
                        expr = newexpr
                        break
                    else:
                        continue

                # use SymPy matching instead
                res = expr.match(pattern)
                if res and res.get(c, 0):
                    if not res[c].is_integer:
                        ok = ok1.subs(res)
                        if not ok.is_positive:
                            continue
                        ok = ok2.subs(res)
                        if not ok.is_positive:
                            continue
                    # if "a" contains any of trig or hyperbolic funcs with
                    # argument "b" then skip the simplification
                    if any(w.args[0] == res[b] for w in res[a].atoms(
                            TrigonometricFunction, HyperbolicFunction)):
                        continue
                    # simplify and finish:
                    expr = simp.subs(res)
                    break  # process below

    if expr.is_Add:
        args = []
        for term in expr.args:
            if not term.is_commutative:
                com, nc = term.args_cnc()
                nc = Mul._from_args(nc)
                term = Mul._from_args(com)
            else:
                nc = S.One
            term = _trigsimp(term, deep)
            for pattern, result in matchers_identity:
                res = term.match(pattern)
                if res is not None:
                    term = result.subs(res)
                    break
            args.append(term*nc)
        if args != expr.args:
            expr = Add(*args)
            expr = min(expr, expand(expr), key=count_ops)
        if expr.is_Add:
            for pattern, result in matchers_add:
                if not _dotrig(expr, pattern):
                    continue
                expr = TR10i(expr)
                if expr.has(HyperbolicFunction):
                    res = expr.match(pattern)
                    # if "d" contains any trig or hyperbolic funcs with
                    # argument "a" or "b" then skip the simplification;
                    # this isn't perfect -- see tests
                    if res is None or not (a in res and b in res) or any(
                        w.args[0] in (res[a], res[b]) for w in res[d].atoms(
                            TrigonometricFunction, HyperbolicFunction)):
                        continue
                    expr = result.subs(res)
                    break

        # Reduce any lingering artifacts, such as sin(x)**2 changing
        # to 1 - cos(x)**2 when sin(x)**2 was "simpler"
        for pattern, result, ex in artifacts:
            if not _dotrig(expr, pattern):
                continue
            # Substitute a new wild that excludes some function(s)
            # to help influence a better match. This is because
            # sometimes, for example, 'a' would match sec(x)**2
            a_t = Wild('a', exclude=[ex])
            pattern = pattern.subs(a, a_t)
            result = result.subs(a, a_t)

            m = expr.match(pattern)
            was = None
            while m and was != expr:
                was = expr
                if m[a_t] == 0 or \
                        -m[a_t] in m[c].args or m[a_t] + m[c] == 0:
                    break
                if d in m and m[a_t]*m[d] + m[c] == 0:
                    break
                expr = result.subs(m)
                m = expr.match(pattern)
                m.setdefault(c, S.Zero)

    elif expr.is_Mul or expr.is_Pow or deep and expr.args:
        expr = expr.func(*[_trigsimp(a, deep) for a in expr.args])

    try:
        if not expr.has(*_trigs):
            raise TypeError
        e = expr.atoms(exp)
        new = expr.rewrite(exp, deep=deep)
        if new == e:
            raise TypeError
        fnew = factor(new)
        if fnew != new:
            new = min([new, factor(new)], key=count_ops)
        # if all exp that were introduced disappeared then accept it
        if not (new.atoms(exp) - e):
            expr = new
    except TypeError:
        pass

    return expr
#------------------- end of old trigsimp routines --------------------


def futrig(e, *, hyper=True, **kwargs):
    """Return simplified ``e`` using Fu-like transformations.
    This is not the "Fu" algorithm. This is called by default
    from ``trigsimp``. By default, hyperbolics subexpressions
    will be simplified, but this can be disabled by setting
    ``hyper=False``.

    Examples
    ========

    >>> from sympy import trigsimp, tan, sinh, tanh
    >>> from sympy.simplify.trigsimp import futrig
    >>> from sympy.abc import x
    >>> trigsimp(1/tan(x)**2)
    tan(x)**(-2)

    >>> futrig(sinh(x)/tanh(x))
    cosh(x)

    """
    from sympy.simplify.fu import hyper_as_trig

    e = sympify(e)

    if not isinstance(e, Basic):
        return e

    if not e.args:
        return e

    old = e
    e = bottom_up(e, _futrig)

    if hyper and e.has(HyperbolicFunction):
        e, f = hyper_as_trig(e)
        e = f(bottom_up(e, _futrig))

    if e != old and e.is_Mul and e.args[0].is_Rational:
        # redistribute leading coeff on 2-arg Add
        e = Mul(*e.as_coeff_Mul())
    return e


def _futrig(e):
    """Helper for futrig."""
    from sympy.simplify.fu import (
        TR1, TR2, TR3, TR2i, TR10, L, TR10i,
        TR8, TR6, TR15, TR16, TR111, TR5, TRmorrie, TR11, _TR11, TR14, TR22,
        TR12)

    if not e.has(TrigonometricFunction):
        return e

    if e.is_Mul:
        coeff, e = e.as_independent(TrigonometricFunction)
    else:
        coeff = None

    Lops = lambda x: (L(x), x.count_ops(), _nodes(x), len(x.args), x.is_Add)
    trigs = lambda x: x.has(TrigonometricFunction)

    tree = [identity,
        (
        TR3,  # canonical angles
        TR1,  # sec-csc -> cos-sin
        TR12,  # expand tan of sum
        lambda x: _eapply(factor, x, trigs),
        TR2,  # tan-cot -> sin-cos
        [identity, lambda x: _eapply(_mexpand, x, trigs)],
        TR2i,  # sin-cos ratio -> tan
        lambda x: _eapply(lambda i: factor(i.normal()), x, trigs),
        TR14,  # factored identities
        TR5,  # sin-pow -> cos_pow
        TR10,  # sin-cos of sums -> sin-cos prod
        TR11, _TR11, TR6, # reduce double angles and rewrite cos pows
        lambda x: _eapply(factor, x, trigs),
        TR14,  # factored powers of identities
        [identity, lambda x: _eapply(_mexpand, x, trigs)],
        TR10i,  # sin-cos products > sin-cos of sums
        TRmorrie,
        [identity, TR8],  # sin-cos products -> sin-cos of sums
        [identity, lambda x: TR2i(TR2(x))],  # tan -> sin-cos -> tan
        [
            lambda x: _eapply(expand_mul, TR5(x), trigs),
            lambda x: _eapply(
                expand_mul, TR15(x), trigs)], # pos/neg powers of sin
        [
            lambda x:  _eapply(expand_mul, TR6(x), trigs),
            lambda x:  _eapply(
                expand_mul, TR16(x), trigs)], # pos/neg powers of cos
        TR111,  # tan, sin, cos to neg power -> cot, csc, sec
        [identity, TR2i],  # sin-cos ratio to tan
        [identity, lambda x: _eapply(
            expand_mul, TR22(x), trigs)],  # tan-cot to sec-csc
        TR1, TR2, TR2i,
        [identity, lambda x: _eapply(
            factor_terms, TR12(x), trigs)],  # expand tan of sum
        )]
    e = greedy(tree, objective=Lops)(e)

    if coeff is not None:
        e = coeff * e

    return e


def _is_Expr(e):
    """_eapply helper to tell whether ``e`` and all its args
    are Exprs."""
    if isinstance(e, Derivative):
        return _is_Expr(e.expr)
    if not isinstance(e, Expr):
        return False
    return all(_is_Expr(i) for i in e.args)


def _eapply(func, e, cond=None):
    """Apply ``func`` to ``e`` if all args are Exprs else only
    apply it to those args that *are* Exprs."""
    if not isinstance(e, Expr):
        return e
    if _is_Expr(e) or not e.args:
        return func(e)
    return e.func(*[
        _eapply(func, ei) if (cond is None or cond(ei)) else ei
        for ei in e.args])