File size: 41,735 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.expr import unchanged
from sympy.core.function import (count_ops, diff, expand, expand_multinomial, Function, Derivative)
from sympy.core.mul import Mul, _keep_coeff
from sympy.core import GoldenRatio
from sympy.core.numbers import (E, Float, I, oo, pi, Rational, zoo)
from sympy.core.relational import (Eq, Lt, Gt, Ge, Le)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.complexes import (Abs, sign)
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import (cosh, csch, sinh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sin, sinc, tan)
from sympy.functions.special.error_functions import erf
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.geometry.polygon import rad
from sympy.integrals.integrals import (Integral, integrate)
from sympy.logic.boolalg import (And, Or)
from sympy.matrices.dense import (Matrix, eye)
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.polys.polytools import (factor, Poly)
from sympy.simplify.simplify import (besselsimp, hypersimp, inversecombine, logcombine, nsimplify, nthroot, posify, separatevars, signsimp, simplify)
from sympy.solvers.solvers import solve

from sympy.testing.pytest import XFAIL, slow, _both_exp_pow
from sympy.abc import x, y, z, t, a, b, c, d, e, f, g, h, i, n


def test_issue_7263():
    assert abs((simplify(30.8**2 - 82.5**2 * sin(rad(11.6))**2)).evalf() - \
            673.447451402970) < 1e-12


def test_factorial_simplify():
    # There are more tests in test_factorials.py.
    x = Symbol('x')
    assert simplify(factorial(x)/x) == gamma(x)
    assert simplify(factorial(factorial(x))) == factorial(factorial(x))


def test_simplify_expr():
    x, y, z, k, n, m, w, s, A = symbols('x,y,z,k,n,m,w,s,A')
    f = Function('f')

    assert all(simplify(tmp) == tmp for tmp in [I, E, oo, x, -x, -oo, -E, -I])

    e = 1/x + 1/y
    assert e != (x + y)/(x*y)
    assert simplify(e) == (x + y)/(x*y)

    e = A**2*s**4/(4*pi*k*m**3)
    assert simplify(e) == e

    e = (4 + 4*x - 2*(2 + 2*x))/(2 + 2*x)
    assert simplify(e) == 0

    e = (-4*x*y**2 - 2*y**3 - 2*x**2*y)/(x + y)**2
    assert simplify(e) == -2*y

    e = -x - y - (x + y)**(-1)*y**2 + (x + y)**(-1)*x**2
    assert simplify(e) == -2*y

    e = (x + x*y)/x
    assert simplify(e) == 1 + y

    e = (f(x) + y*f(x))/f(x)
    assert simplify(e) == 1 + y

    e = (2 * (1/n - cos(n * pi)/n))/pi
    assert simplify(e) == (-cos(pi*n) + 1)/(pi*n)*2

    e = integrate(1/(x**3 + 1), x).diff(x)
    assert simplify(e) == 1/(x**3 + 1)

    e = integrate(x/(x**2 + 3*x + 1), x).diff(x)
    assert simplify(e) == x/(x**2 + 3*x + 1)

    f = Symbol('f')
    A = Matrix([[2*k - m*w**2, -k], [-k, k - m*w**2]]).inv()
    assert simplify((A*Matrix([0, f]))[1] -
            (-f*(2*k - m*w**2)/(k**2 - (k - m*w**2)*(2*k - m*w**2)))) == 0

    f = -x + y/(z + t) + z*x/(z + t) + z*a/(z + t) + t*x/(z + t)
    assert simplify(f) == (y + a*z)/(z + t)

    # issue 10347
    expr = -x*(y**2 - 1)*(2*y**2*(x**2 - 1)/(a*(x**2 - y**2)**2) + (x**2 - 1)
        /(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2
        + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 +
        y**2 - 1)*sin(z)/(a*(x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*
        (y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(x**2 - 1) + sqrt(
        (-x**2 + 1)*(y**2 - 1))*(x*(-x*y**2 + x)/sqrt(-x**2*y**2 + x**2 + y**2 -
        1) + sqrt(-x**2*y**2 + x**2 + y**2 - 1))*sin(z))/(a*sqrt((-x**2 + 1)*(
        y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*
        (x**2 - y**2)) + x*(-2*x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
        (x**2 - y**2)**2) - x**2*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*
        (x**2 - 1)*(x**2 - y**2)) + (x**2*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2
        *y**2 + x**2 + y**2 - 1)*cos(z)/(x**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 -
        1))*(-x*y**2 + x)*cos(z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1) + sqrt((-x**2
        + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z))/(a*sqrt((-x**2
        + 1)*(y**2 - 1))*(x**2 - y**2)))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(
        z)/(a*(x**2 - y**2)) - y*sqrt((-x**2 + 1)*(y**2 - 1))*(-x*y*sqrt(-x**2*
        y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)*(y**2 - 1)) + 2*x*y*sqrt(
        -x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(a*(x**2 - y**2)**2) + (x*y*sqrt((
        -x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(z)/(y**2 -
        1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*sin(z)/sqrt(-x**2*y**2
        + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)))*sin(
        z)/(a*(x**2 - y**2)) + y*(x**2 - 1)*(-2*x*y*(x**2 - 1)/(a*(x**2 - y**2)
        **2) + 2*x*y/(a*(x**2 - y**2)))/(a*(x**2 - y**2)) + y*(x**2 - 1)*(y**2 -
        1)*(-x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)*(y**2
        - 1)) + 2*x*y*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)/(a*(x**2 - y**2)
        **2) + (x*y*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 -
        1)*cos(z)/(y**2 - 1) + x*sqrt((-x**2 + 1)*(y**2 - 1))*(-x**2*y + y)*cos(
        z)/sqrt(-x**2*y**2 + x**2 + y**2 - 1))/(a*sqrt((-x**2 + 1)*(y**2 - 1)
        )*(x**2 - y**2)))*cos(z)/(a*sqrt((-x**2 + 1)*(y**2 - 1))*(x**2 - y**2)
        ) - x*sqrt((-x**2 + 1)*(y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*sin(
        z)**2/(a**2*(x**2 - 1)*(x**2 - y**2)*(y**2 - 1)) - x*sqrt((-x**2 + 1)*(
        y**2 - 1))*sqrt(-x**2*y**2 + x**2 + y**2 - 1)*cos(z)**2/(a**2*(x**2 - 1)*(
        x**2 - y**2)*(y**2 - 1))
    assert simplify(expr) == 2*x/(a**2*(x**2 - y**2))

    #issue 17631
    assert simplify('((-1/2)*Boole(True)*Boole(False)-1)*Boole(True)') == \
            Mul(sympify('(2 + Boole(True)*Boole(False))'), sympify('-Boole(True)/2'))

    A, B = symbols('A,B', commutative=False)

    assert simplify(A*B - B*A) == A*B - B*A
    assert simplify(A/(1 + y/x)) == x*A/(x + y)
    assert simplify(A*(1/x + 1/y)) == A/x + A/y  #(x + y)*A/(x*y)

    assert simplify(log(2) + log(3)) == log(6)
    assert simplify(log(2*x) - log(2)) == log(x)

    assert simplify(hyper([], [], x)) == exp(x)


def test_issue_3557():
    f_1 = x*a + y*b + z*c - 1
    f_2 = x*d + y*e + z*f - 1
    f_3 = x*g + y*h + z*i - 1

    solutions = solve([f_1, f_2, f_3], x, y, z, simplify=False)

    assert simplify(solutions[y]) == \
        (a*i + c*d + f*g - a*f - c*g - d*i)/ \
        (a*e*i + b*f*g + c*d*h - a*f*h - b*d*i - c*e*g)


def test_simplify_other():
    assert simplify(sin(x)**2 + cos(x)**2) == 1
    assert simplify(gamma(x + 1)/gamma(x)) == x
    assert simplify(sin(x)**2 + cos(x)**2 + factorial(x)/gamma(x)) == 1 + x
    assert simplify(
        Eq(sin(x)**2 + cos(x)**2, factorial(x)/gamma(x))) == Eq(x, 1)
    nc = symbols('nc', commutative=False)
    assert simplify(x + x*nc) == x*(1 + nc)
    # issue 6123
    # f = exp(-I*(k*sqrt(t) + x/(2*sqrt(t)))**2)
    # ans = integrate(f, (k, -oo, oo), conds='none')
    ans = I*(-pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))*erf(x*exp(I*pi*Rational(-3, 4))/
        (2*sqrt(t)))/(2*sqrt(t)) + pi*x*exp(I*pi*Rational(-3, 4) + I*x**2/(4*t))/
        (2*sqrt(t)))*exp(-I*x**2/(4*t))/(sqrt(pi)*x) - I*sqrt(pi) * \
        (-erf(x*exp(I*pi/4)/(2*sqrt(t))) + 1)*exp(I*pi/4)/(2*sqrt(t))
    assert simplify(ans) == -(-1)**Rational(3, 4)*sqrt(pi)/sqrt(t)
    # issue 6370
    assert simplify(2**(2 + x)/4) == 2**x


@_both_exp_pow
def test_simplify_complex():
    cosAsExp = cos(x)._eval_rewrite_as_exp(x)
    tanAsExp = tan(x)._eval_rewrite_as_exp(x)
    assert simplify(cosAsExp*tanAsExp) == sin(x) # issue 4341

    # issue 10124
    assert simplify(exp(Matrix([[0, -1], [1, 0]]))) == Matrix([[cos(1),
        -sin(1)], [sin(1), cos(1)]])


def test_simplify_ratio():
    # roots of x**3-3*x+5
    roots = ['(1/2 - sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3) + 1/((1/2 - '
             'sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3))',
             '1/((1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)) + '
             '(1/2 + sqrt(3)*I/2)*(sqrt(21)/2 + 5/2)**(1/3)',
             '-(sqrt(21)/2 + 5/2)**(1/3) - 1/(sqrt(21)/2 + 5/2)**(1/3)']

    for r in roots:
        r = S(r)
        assert count_ops(simplify(r, ratio=1)) <= count_ops(r)
        # If ratio=oo, simplify() is always applied:
        assert simplify(r, ratio=oo) is not r


def test_simplify_measure():
    measure1 = lambda expr: len(str(expr))
    measure2 = lambda expr: -count_ops(expr)
                                       # Return the most complicated result
    expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
    assert measure1(simplify(expr, measure=measure1)) <= measure1(expr)
    assert measure2(simplify(expr, measure=measure2)) <= measure2(expr)

    expr2 = Eq(sin(x)**2 + cos(x)**2, 1)
    assert measure1(simplify(expr2, measure=measure1)) <= measure1(expr2)
    assert measure2(simplify(expr2, measure=measure2)) <= measure2(expr2)


def test_simplify_rational():
    expr = 2**x*2.**y
    assert simplify(expr, rational = True) == 2**(x+y)
    assert simplify(expr, rational = None) == 2.0**(x+y)
    assert simplify(expr, rational = False) == expr
    assert simplify('0.9 - 0.8 - 0.1', rational = True) == 0


def test_simplify_issue_1308():
    assert simplify(exp(Rational(-1, 2)) + exp(Rational(-3, 2))) == \
        (1 + E)*exp(Rational(-3, 2))


def test_issue_5652():
    assert simplify(E + exp(-E)) == exp(-E) + E
    n = symbols('n', commutative=False)
    assert simplify(n + n**(-n)) == n + n**(-n)


def test_simplify_fail1():
    x = Symbol('x')
    y = Symbol('y')
    e = (x + y)**2/(-4*x*y**2 - 2*y**3 - 2*x**2*y)
    assert simplify(e) == 1 / (-2*y)


def test_nthroot():
    assert nthroot(90 + 34*sqrt(7), 3) == sqrt(7) + 3
    q = 1 + sqrt(2) - 2*sqrt(3) + sqrt(6) + sqrt(7)
    assert nthroot(expand_multinomial(q**3), 3) == q
    assert nthroot(41 + 29*sqrt(2), 5) == 1 + sqrt(2)
    assert nthroot(-41 - 29*sqrt(2), 5) == -1 - sqrt(2)
    expr = 1320*sqrt(10) + 4216 + 2576*sqrt(6) + 1640*sqrt(15)
    assert nthroot(expr, 5) == 1 + sqrt(6) + sqrt(15)
    q = 1 + sqrt(2) + sqrt(3) + sqrt(5)
    assert expand_multinomial(nthroot(expand_multinomial(q**5), 5)) == q
    q = 1 + sqrt(2) + 7*sqrt(6) + 2*sqrt(10)
    assert nthroot(expand_multinomial(q**5), 5, 8) == q
    q = 1 + sqrt(2) - 2*sqrt(3) + 1171*sqrt(6)
    assert nthroot(expand_multinomial(q**3), 3) == q
    assert nthroot(expand_multinomial(q**6), 6) == q


def test_nthroot1():
    q = 1 + sqrt(2) + sqrt(3) + S.One/10**20
    p = expand_multinomial(q**5)
    assert nthroot(p, 5) == q
    q = 1 + sqrt(2) + sqrt(3) + S.One/10**30
    p = expand_multinomial(q**5)
    assert nthroot(p, 5) == q


@_both_exp_pow
def test_separatevars():
    x, y, z, n = symbols('x,y,z,n')
    assert separatevars(2*n*x*z + 2*x*y*z) == 2*x*z*(n + y)
    assert separatevars(x*z + x*y*z) == x*z*(1 + y)
    assert separatevars(pi*x*z + pi*x*y*z) == pi*x*z*(1 + y)
    assert separatevars(x*y**2*sin(x) + x*sin(x)*sin(y)) == \
        x*(sin(y) + y**2)*sin(x)
    assert separatevars(x*exp(x + y) + x*exp(x)) == x*(1 + exp(y))*exp(x)
    assert separatevars((x*(y + 1))**z).is_Pow  # != x**z*(1 + y)**z
    assert separatevars(1 + x + y + x*y) == (x + 1)*(y + 1)
    assert separatevars(y/pi*exp(-(z - x)/cos(n))) == \
        y*exp(x/cos(n))*exp(-z/cos(n))/pi
    assert separatevars((x + y)*(x - y) + y**2 + 2*x + 1) == (x + 1)**2
    # issue 4858
    p = Symbol('p', positive=True)
    assert separatevars(sqrt(p**2 + x*p**2)) == p*sqrt(1 + x)
    assert separatevars(sqrt(y*(p**2 + x*p**2))) == p*sqrt(y*(1 + x))
    assert separatevars(sqrt(y*(p**2 + x*p**2)), force=True) == \
        p*sqrt(y)*sqrt(1 + x)
    # issue 4865
    assert separatevars(sqrt(x*y)).is_Pow
    assert separatevars(sqrt(x*y), force=True) == sqrt(x)*sqrt(y)
    # issue 4957
    # any type sequence for symbols is fine
    assert separatevars(((2*x + 2)*y), dict=True, symbols=()) == \
        {'coeff': 1, x: 2*x + 2, y: y}
    # separable
    assert separatevars(((2*x + 2)*y), dict=True, symbols=[x]) == \
        {'coeff': y, x: 2*x + 2}
    assert separatevars(((2*x + 2)*y), dict=True, symbols=[]) == \
        {'coeff': 1, x: 2*x + 2, y: y}
    assert separatevars(((2*x + 2)*y), dict=True) == \
        {'coeff': 1, x: 2*x + 2, y: y}
    assert separatevars(((2*x + 2)*y), dict=True, symbols=None) == \
        {'coeff': y*(2*x + 2)}
    # not separable
    assert separatevars(3, dict=True) is None
    assert separatevars(2*x + y, dict=True, symbols=()) is None
    assert separatevars(2*x + y, dict=True) is None
    assert separatevars(2*x + y, dict=True, symbols=None) == {'coeff': 2*x + y}
    # issue 4808
    n, m = symbols('n,m', commutative=False)
    assert separatevars(m + n*m) == (1 + n)*m
    assert separatevars(x + x*n) == x*(1 + n)
    # issue 4910
    f = Function('f')
    assert separatevars(f(x) + x*f(x)) == f(x) + x*f(x)
    # a noncommutable object present
    eq = x*(1 + hyper((), (), y*z))
    assert separatevars(eq) == eq

    s = separatevars(abs(x*y))
    assert s == abs(x)*abs(y) and s.is_Mul
    z = cos(1)**2 + sin(1)**2 - 1
    a = abs(x*z)
    s = separatevars(a)
    assert not a.is_Mul and s.is_Mul and s == abs(x)*abs(z)
    s = separatevars(abs(x*y*z))
    assert s == abs(x)*abs(y)*abs(z)

    # abs(x+y)/abs(z) would be better but we test this here to
    # see that it doesn't raise
    assert separatevars(abs((x+y)/z)) == abs((x+y)/z)


def test_separatevars_advanced_factor():
    x, y, z = symbols('x,y,z')
    assert separatevars(1 + log(x)*log(y) + log(x) + log(y)) == \
        (log(x) + 1)*(log(y) + 1)
    assert separatevars(1 + x - log(z) - x*log(z) - exp(y)*log(z) -
        x*exp(y)*log(z) + x*exp(y) + exp(y)) == \
        -((x + 1)*(log(z) - 1)*(exp(y) + 1))
    x, y = symbols('x,y', positive=True)
    assert separatevars(1 + log(x**log(y)) + log(x*y)) == \
        (log(x) + 1)*(log(y) + 1)


def test_hypersimp():
    n, k = symbols('n,k', integer=True)

    assert hypersimp(factorial(k), k) == k + 1
    assert hypersimp(factorial(k**2), k) is None

    assert hypersimp(1/factorial(k), k) == 1/(k + 1)

    assert hypersimp(2**k/factorial(k)**2, k) == 2/(k + 1)**2

    assert hypersimp(binomial(n, k), k) == (n - k)/(k + 1)
    assert hypersimp(binomial(n + 1, k), k) == (n - k + 1)/(k + 1)

    term = (4*k + 1)*factorial(k)/factorial(2*k + 1)
    assert hypersimp(term, k) == S.Half*((4*k + 5)/(3 + 14*k + 8*k**2))

    term = 1/((2*k - 1)*factorial(2*k + 1))
    assert hypersimp(term, k) == (k - S.Half)/((k + 1)*(2*k + 1)*(2*k + 3))

    term = binomial(n, k)*(-1)**k/factorial(k)
    assert hypersimp(term, k) == (k - n)/(k + 1)**2


def test_nsimplify():
    x = Symbol("x")
    assert nsimplify(0) == 0
    assert nsimplify(-1) == -1
    assert nsimplify(1) == 1
    assert nsimplify(1 + x) == 1 + x
    assert nsimplify(2.7) == Rational(27, 10)
    assert nsimplify(1 - GoldenRatio) == (1 - sqrt(5))/2
    assert nsimplify((1 + sqrt(5))/4, [GoldenRatio]) == GoldenRatio/2
    assert nsimplify(2/GoldenRatio, [GoldenRatio]) == 2*GoldenRatio - 2
    assert nsimplify(exp(pi*I*Rational(5, 3), evaluate=False)) == \
        sympify('1/2 - sqrt(3)*I/2')
    assert nsimplify(sin(pi*Rational(3, 5), evaluate=False)) == \
        sympify('sqrt(sqrt(5)/8 + 5/8)')
    assert nsimplify(sqrt(atan('1', evaluate=False))*(2 + I), [pi]) == \
        sqrt(pi) + sqrt(pi)/2*I
    assert nsimplify(2 + exp(2*atan('1/4')*I)) == sympify('49/17 + 8*I/17')
    assert nsimplify(pi, tolerance=0.01) == Rational(22, 7)
    assert nsimplify(pi, tolerance=0.001) == Rational(355, 113)
    assert nsimplify(0.33333, tolerance=1e-4) == Rational(1, 3)
    assert nsimplify(2.0**(1/3.), tolerance=0.001) == Rational(635, 504)
    assert nsimplify(2.0**(1/3.), tolerance=0.001, full=True) == \
        2**Rational(1, 3)
    assert nsimplify(x + .5, rational=True) == S.Half + x
    assert nsimplify(1/.3 + x, rational=True) == Rational(10, 3) + x
    assert nsimplify(log(3).n(), rational=True) == \
        sympify('109861228866811/100000000000000')
    assert nsimplify(Float(0.272198261287950), [pi, log(2)]) == pi*log(2)/8
    assert nsimplify(Float(0.272198261287950).n(3), [pi, log(2)]) == \
        -pi/4 - log(2) + Rational(7, 4)
    assert nsimplify(x/7.0) == x/7
    assert nsimplify(pi/1e2) == pi/100
    assert nsimplify(pi/1e2, rational=False) == pi/100.0
    assert nsimplify(pi/1e-7) == 10000000*pi
    assert not nsimplify(
        factor(-3.0*z**2*(z**2)**(-2.5) + 3*(z**2)**(-1.5))).atoms(Float)
    e = x**0.0
    assert e.is_Pow and nsimplify(x**0.0) == 1
    assert nsimplify(3.333333, tolerance=0.1, rational=True) == Rational(10, 3)
    assert nsimplify(3.333333, tolerance=0.01, rational=True) == Rational(10, 3)
    assert nsimplify(3.666666, tolerance=0.1, rational=True) == Rational(11, 3)
    assert nsimplify(3.666666, tolerance=0.01, rational=True) == Rational(11, 3)
    assert nsimplify(33, tolerance=10, rational=True) == Rational(33)
    assert nsimplify(33.33, tolerance=10, rational=True) == Rational(30)
    assert nsimplify(37.76, tolerance=10, rational=True) == Rational(40)
    assert nsimplify(-203.1) == Rational(-2031, 10)
    assert nsimplify(.2, tolerance=0) == Rational(1, 5)
    assert nsimplify(-.2, tolerance=0) == Rational(-1, 5)
    assert nsimplify(.2222, tolerance=0) == Rational(1111, 5000)
    assert nsimplify(-.2222, tolerance=0) == Rational(-1111, 5000)
    # issue 7211, PR 4112
    assert nsimplify(S(2e-8)) == Rational(1, 50000000)
    # issue 7322 direct test
    assert nsimplify(1e-42, rational=True) != 0
    # issue 10336
    inf = Float('inf')
    infs = (-oo, oo, inf, -inf)
    for zi in infs:
        ans = sign(zi)*oo
        assert nsimplify(zi) == ans
        assert nsimplify(zi + x) == x + ans

    assert nsimplify(0.33333333, rational=True, rational_conversion='exact') == Rational(0.33333333)

    # Make sure nsimplify on expressions uses full precision
    assert nsimplify(pi.evalf(100)*x, rational_conversion='exact').evalf(100) == pi.evalf(100)*x


def test_issue_9448():
    tmp = sympify("1/(1 - (-1)**(2/3) - (-1)**(1/3)) + 1/(1 + (-1)**(2/3) + (-1)**(1/3))")
    assert nsimplify(tmp) == S.Half


def test_extract_minus_sign():
    x = Symbol("x")
    y = Symbol("y")
    a = Symbol("a")
    b = Symbol("b")
    assert simplify(-x/-y) == x/y
    assert simplify(-x/y) == -x/y
    assert simplify(x/y) == x/y
    assert simplify(x/-y) == -x/y
    assert simplify(-x/0) == zoo*x
    assert simplify(Rational(-5, 0)) is zoo
    assert simplify(-a*x/(-y - b)) == a*x/(b + y)


def test_diff():
    x = Symbol("x")
    y = Symbol("y")
    f = Function("f")
    g = Function("g")
    assert simplify(g(x).diff(x)*f(x).diff(x) - f(x).diff(x)*g(x).diff(x)) == 0
    assert simplify(2*f(x)*f(x).diff(x) - diff(f(x)**2, x)) == 0
    assert simplify(diff(1/f(x), x) + f(x).diff(x)/f(x)**2) == 0
    assert simplify(f(x).diff(x, y) - f(x).diff(y, x)) == 0


def test_logcombine_1():
    x, y = symbols("x,y")
    a = Symbol("a")
    z, w = symbols("z,w", positive=True)
    b = Symbol("b", real=True)
    assert logcombine(log(x) + 2*log(y)) == log(x) + 2*log(y)
    assert logcombine(log(x) + 2*log(y), force=True) == log(x*y**2)
    assert logcombine(a*log(w) + log(z)) == a*log(w) + log(z)
    assert logcombine(b*log(z) + b*log(x)) == log(z**b) + b*log(x)
    assert logcombine(b*log(z) - log(w)) == log(z**b/w)
    assert logcombine(log(x)*log(z)) == log(x)*log(z)
    assert logcombine(log(w)*log(x)) == log(w)*log(x)
    assert logcombine(cos(-2*log(z) + b*log(w))) in [cos(log(w**b/z**2)),
                                                   cos(log(z**2/w**b))]
    assert logcombine(log(log(x) - log(y)) - log(z), force=True) == \
        log(log(x/y)/z)
    assert logcombine((2 + I)*log(x), force=True) == (2 + I)*log(x)
    assert logcombine((x**2 + log(x) - log(y))/(x*y), force=True) == \
        (x**2 + log(x/y))/(x*y)
    # the following could also give log(z*x**log(y**2)), what we
    # are testing is that a canonical result is obtained
    assert logcombine(log(x)*2*log(y) + log(z), force=True) == \
        log(z*y**log(x**2))
    assert logcombine((x*y + sqrt(x**4 + y**4) + log(x) - log(y))/(pi*x**Rational(2, 3)*
            sqrt(y)**3), force=True) == (
            x*y + sqrt(x**4 + y**4) + log(x/y))/(pi*x**Rational(2, 3)*y**Rational(3, 2))
    assert logcombine(gamma(-log(x/y))*acos(-log(x/y)), force=True) == \
        acos(-log(x/y))*gamma(-log(x/y))

    assert logcombine(2*log(z)*log(w)*log(x) + log(z) + log(w)) == \
        log(z**log(w**2))*log(x) + log(w*z)
    assert logcombine(3*log(w) + 3*log(z)) == log(w**3*z**3)
    assert logcombine(x*(y + 1) + log(2) + log(3)) == x*(y + 1) + log(6)
    assert logcombine((x + y)*log(w) + (-x - y)*log(3)) == (x + y)*log(w/3)
    # a single unknown can combine
    assert logcombine(log(x) + log(2)) == log(2*x)
    eq = log(abs(x)) + log(abs(y))
    assert logcombine(eq) == eq
    reps = {x: 0, y: 0}
    assert log(abs(x)*abs(y)).subs(reps) != eq.subs(reps)


def test_logcombine_complex_coeff():
    i = Integral((sin(x**2) + cos(x**3))/x, x)
    assert logcombine(i, force=True) == i
    assert logcombine(i + 2*log(x), force=True) == \
        i + log(x**2)


def test_issue_5950():
    x, y = symbols("x,y", positive=True)
    assert logcombine(log(3) - log(2)) == log(Rational(3,2), evaluate=False)
    assert logcombine(log(x) - log(y)) == log(x/y)
    assert logcombine(log(Rational(3,2), evaluate=False) - log(2)) == \
        log(Rational(3,4), evaluate=False)


def test_posify():
    x = symbols('x')

    assert str(posify(
        x +
        Symbol('p', positive=True) +
        Symbol('n', negative=True))) == '(_x + n + p, {_x: x})'

    eq, rep = posify(1/x)
    assert log(eq).expand().subs(rep) == -log(x)
    assert str(posify([x, 1 + x])) == '([_x, _x + 1], {_x: x})'

    p = symbols('p', positive=True)
    n = symbols('n', negative=True)
    orig = [x, n, p]
    modified, reps = posify(orig)
    assert str(modified) == '[_x, n, p]'
    assert [w.subs(reps) for w in modified] == orig

    assert str(Integral(posify(1/x + y)[0], (y, 1, 3)).expand()) == \
        'Integral(1/_x, (y, 1, 3)) + Integral(_y, (y, 1, 3))'
    assert str(Sum(posify(1/x**n)[0], (n,1,3)).expand()) == \
        'Sum(_x**(-n), (n, 1, 3))'

    # issue 16438
    k = Symbol('k', finite=True)
    eq, rep = posify(k)
    assert eq.assumptions0 == {'positive': True, 'zero': False, 'imaginary': False,
     'nonpositive': False, 'commutative': True, 'hermitian': True, 'real': True, 'nonzero': True,
     'nonnegative': True, 'negative': False, 'complex': True, 'finite': True,
     'infinite': False, 'extended_real':True, 'extended_negative': False,
     'extended_nonnegative': True, 'extended_nonpositive': False,
     'extended_nonzero': True, 'extended_positive': True}


def test_issue_4194():
    # simplify should call cancel
    f = Function('f')
    assert simplify((4*x + 6*f(y))/(2*x + 3*f(y))) == 2


@XFAIL
def test_simplify_float_vs_integer():
    # Test for issue 4473:
    # https://github.com/sympy/sympy/issues/4473
    assert simplify(x**2.0 - x**2) == 0
    assert simplify(x**2 - x**2.0) == 0


def test_as_content_primitive():
    assert (x/2 + y).as_content_primitive() == (S.Half, x + 2*y)
    assert (x/2 + y).as_content_primitive(clear=False) == (S.One, x/2 + y)
    assert (y*(x/2 + y)).as_content_primitive() == (S.Half, y*(x + 2*y))
    assert (y*(x/2 + y)).as_content_primitive(clear=False) == (S.One, y*(x/2 + y))

    # although the _as_content_primitive methods do not alter the underlying structure,
    # the as_content_primitive function will touch up the expression and join
    # bases that would otherwise have not been joined.
    assert (x*(2 + 2*x)*(3*x + 3)**2).as_content_primitive() == \
        (18, x*(x + 1)**3)
    assert (2 + 2*x + 2*y*(3 + 3*y)).as_content_primitive() == \
        (2, x + 3*y*(y + 1) + 1)
    assert ((2 + 6*x)**2).as_content_primitive() == \
        (4, (3*x + 1)**2)
    assert ((2 + 6*x)**(2*y)).as_content_primitive() == \
        (1, (_keep_coeff(S(2), (3*x + 1)))**(2*y))
    assert (5 + 10*x + 2*y*(3 + 3*y)).as_content_primitive() == \
        (1, 10*x + 6*y*(y + 1) + 5)
    assert (5*(x*(1 + y)) + 2*x*(3 + 3*y)).as_content_primitive() == \
        (11, x*(y + 1))
    assert ((5*(x*(1 + y)) + 2*x*(3 + 3*y))**2).as_content_primitive() == \
        (121, x**2*(y + 1)**2)
    assert (y**2).as_content_primitive() == \
        (1, y**2)
    assert (S.Infinity).as_content_primitive() == (1, oo)
    eq = x**(2 + y)
    assert (eq).as_content_primitive() == (1, eq)
    assert (S.Half**(2 + x)).as_content_primitive() == (Rational(1, 4), 2**-x)
    assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \
           (Rational(1, 4), (Rational(-1, 2))**x)
    assert (Rational(-1, 2)**(2 + x)).as_content_primitive() == \
           (Rational(1, 4), Rational(-1, 2)**x)
    assert (4**((1 + y)/2)).as_content_primitive() == (2, 4**(y/2))
    assert (3**((1 + y)/2)).as_content_primitive() == \
           (1, 3**(Mul(S.Half, 1 + y, evaluate=False)))
    assert (5**Rational(3, 4)).as_content_primitive() == (1, 5**Rational(3, 4))
    assert (5**Rational(7, 4)).as_content_primitive() == (5, 5**Rational(3, 4))
    assert Add(z*Rational(5, 7), 0.5*x, y*Rational(3, 2), evaluate=False).as_content_primitive() == \
              (Rational(1, 14), 7.0*x + 21*y + 10*z)
    assert (2**Rational(3, 4) + 2**Rational(1, 4)*sqrt(3)).as_content_primitive(radical=True) == \
           (1, 2**Rational(1, 4)*(sqrt(2) + sqrt(3)))


def test_signsimp():
    e = x*(-x + 1) + x*(x - 1)
    assert signsimp(Eq(e, 0)) is S.true
    assert Abs(x - 1) == Abs(1 - x)
    assert signsimp(y - x) == y - x
    assert signsimp(y - x, evaluate=False) == Mul(-1, x - y, evaluate=False)


def test_besselsimp():
    from sympy.functions.special.bessel import (besseli, besselj, bessely)
    from sympy.integrals.transforms import cosine_transform
    assert besselsimp(exp(-I*pi*y/2)*besseli(y, z*exp_polar(I*pi/2))) == \
        besselj(y, z)
    assert besselsimp(exp(-I*pi*a/2)*besseli(a, 2*sqrt(x)*exp_polar(I*pi/2))) == \
        besselj(a, 2*sqrt(x))
    assert besselsimp(sqrt(2)*sqrt(pi)*x**Rational(1, 4)*exp(I*pi/4)*exp(-I*pi*a/2) *
                      besseli(Rational(-1, 2), sqrt(x)*exp_polar(I*pi/2)) *
                      besseli(a, sqrt(x)*exp_polar(I*pi/2))/2) == \
        besselj(a, sqrt(x)) * cos(sqrt(x))
    assert besselsimp(besseli(Rational(-1, 2), z)) == \
        sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    assert besselsimp(besseli(a, z*exp_polar(-I*pi/2))) == \
        exp(-I*pi*a/2)*besselj(a, z)
    assert cosine_transform(1/t*sin(a/t), t, y) == \
        sqrt(2)*sqrt(pi)*besselj(0, 2*sqrt(a)*sqrt(y))/2

    assert besselsimp(x**2*(a*(-2*besselj(5*I, x) + besselj(-2 + 5*I, x) +
    besselj(2 + 5*I, x)) + b*(-2*bessely(5*I, x) + bessely(-2 + 5*I, x) +
    bessely(2 + 5*I, x)))/4 + x*(a*(besselj(-1 + 5*I, x)/2 - besselj(1 + 5*I, x)/2)
    + b*(bessely(-1 + 5*I, x)/2 - bessely(1 + 5*I, x)/2)) + (x**2 + 25)*(a*besselj(5*I, x)
    + b*bessely(5*I, x))) == 0

    assert besselsimp(81*x**2*(a*(besselj(Rational(-5, 3), 9*x) - 2*besselj(Rational(1, 3), 9*x) + besselj(Rational(7, 3), 9*x))
    + b*(bessely(Rational(-5, 3), 9*x) - 2*bessely(Rational(1, 3), 9*x) + bessely(Rational(7, 3), 9*x)))/4 + x*(a*(9*besselj(Rational(-2, 3), 9*x)/2
    - 9*besselj(Rational(4, 3), 9*x)/2) + b*(9*bessely(Rational(-2, 3), 9*x)/2 - 9*bessely(Rational(4, 3), 9*x)/2)) +
    (81*x**2 - Rational(1, 9))*(a*besselj(Rational(1, 3), 9*x) + b*bessely(Rational(1, 3), 9*x))) == 0

    assert besselsimp(besselj(a-1,x) + besselj(a+1, x) - 2*a*besselj(a, x)/x) == 0

    assert besselsimp(besselj(a-1,x) + besselj(a+1, x) + besselj(a, x)) == (2*a + x)*besselj(a, x)/x

    assert besselsimp(x**2* besselj(a,x) + x**3*besselj(a+1, x) + besselj(a+2, x)) == \
    2*a*x*besselj(a + 1, x) + x**3*besselj(a + 1, x) - x**2*besselj(a + 2, x) + 2*x*besselj(a + 1, x) + besselj(a + 2, x)

def test_Piecewise():
    e1 = x*(x + y) - y*(x + y)
    e2 = sin(x)**2 + cos(x)**2
    e3 = expand((x + y)*y/x)
    s1 = simplify(e1)
    s2 = simplify(e2)
    s3 = simplify(e3)
    assert simplify(Piecewise((e1, x < e2), (e3, True))) == \
        Piecewise((s1, x < s2), (s3, True))


def test_polymorphism():
    class A(Basic):
        def _eval_simplify(x, **kwargs):
            return S.One

    a = A(S(5), S(2))
    assert simplify(a) == 1


def test_issue_from_PR1599():
    n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
    assert simplify(I*sqrt(n1)) == -sqrt(-n1)


def test_issue_6811():
    eq = (x + 2*y)*(2*x + 2)
    assert simplify(eq) == (x + 1)*(x + 2*y)*2
    # reject the 2-arg Mul -- these are a headache for test writing
    assert simplify(eq.expand()) == \
        2*x**2 + 4*x*y + 2*x + 4*y


def test_issue_6920():
    e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
        cosh(x) - sinh(x), cosh(x) + sinh(x)]
    ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
    # wrap in f to show that the change happens wherever ei occurs
    f = Function('f')
    assert [simplify(f(ei)).args[0] for ei in e] == ok


def test_issue_7001():
    from sympy.abc import r, R
    assert simplify(-(r*Piecewise((pi*Rational(4, 3), r <= R),
        (-8*pi*R**3/(3*r**3), True)) + 2*Piecewise((pi*r*Rational(4, 3), r <= R),
        (4*pi*R**3/(3*r**2), True)))/(4*pi*r)) == \
        Piecewise((-1, r <= R), (0, True))


def test_inequality_no_auto_simplify():
    # no simplify on creation but can be simplified
    lhs = cos(x)**2 + sin(x)**2
    rhs = 2
    e = Lt(lhs, rhs, evaluate=False)
    assert e is not S.true
    assert simplify(e)


def test_issue_9398():
    from sympy.core.numbers import Number
    from sympy.polys.polytools import cancel
    assert cancel(1e-14) != 0
    assert cancel(1e-14*I) != 0

    assert simplify(1e-14) != 0
    assert simplify(1e-14*I) != 0

    assert (I*Number(1.)*Number(10)**Number(-14)).simplify() != 0

    assert cancel(1e-20) != 0
    assert cancel(1e-20*I) != 0

    assert simplify(1e-20) != 0
    assert simplify(1e-20*I) != 0

    assert cancel(1e-100) != 0
    assert cancel(1e-100*I) != 0

    assert simplify(1e-100) != 0
    assert simplify(1e-100*I) != 0

    f = Float("1e-1000")
    assert cancel(f) != 0
    assert cancel(f*I) != 0

    assert simplify(f) != 0
    assert simplify(f*I) != 0


def test_issue_9324_simplify():
    M = MatrixSymbol('M', 10, 10)
    e = M[0, 0] + M[5, 4] + 1304
    assert simplify(e) == e


def test_issue_9817_simplify():
    # simplify on trace of substituted explicit quadratic form of matrix
    # expressions (a scalar) should return without errors (AttributeError)
    # See issue #9817 and #9190 for the original bug more discussion on this
    from sympy.matrices.expressions import Identity, trace
    v = MatrixSymbol('v', 3, 1)
    A = MatrixSymbol('A', 3, 3)
    x = Matrix([i + 1 for i in range(3)])
    X = Identity(3)
    quadratic = v.T * A * v
    assert simplify((trace(quadratic.as_explicit())).xreplace({v:x, A:X})) == 14


def test_issue_13474():
    x = Symbol('x')
    assert simplify(x + csch(sinc(1))) == x + csch(sinc(1))


@_both_exp_pow
def test_simplify_function_inverse():
    # "inverse" attribute does not guarantee that f(g(x)) is x
    # so this simplification should not happen automatically.
    # See issue #12140
    x, y = symbols('x, y')
    g = Function('g')

    class f(Function):
        def inverse(self, argindex=1):
            return g

    assert simplify(f(g(x))) == f(g(x))
    assert inversecombine(f(g(x))) == x
    assert simplify(f(g(x)), inverse=True) == x
    assert simplify(f(g(sin(x)**2 + cos(x)**2)), inverse=True) == 1
    assert simplify(f(g(x, y)), inverse=True) == f(g(x, y))
    assert unchanged(asin, sin(x))
    assert simplify(asin(sin(x))) == asin(sin(x))
    assert simplify(2*asin(sin(3*x)), inverse=True) == 6*x
    assert simplify(log(exp(x))) == log(exp(x))
    assert simplify(log(exp(x)), inverse=True) == x
    assert simplify(exp(log(x)), inverse=True) == x
    assert simplify(log(exp(x), 2), inverse=True) == x/log(2)
    assert simplify(log(exp(x), 2, evaluate=False), inverse=True) == x/log(2)


def test_clear_coefficients():
    from sympy.simplify.simplify import clear_coefficients
    assert clear_coefficients(4*y*(6*x + 3)) == (y*(2*x + 1), 0)
    assert clear_coefficients(4*y*(6*x + 3) - 2) == (y*(2*x + 1), Rational(1, 6))
    assert clear_coefficients(4*y*(6*x + 3) - 2, x) == (y*(2*x + 1), x/12 + Rational(1, 6))
    assert clear_coefficients(sqrt(2) - 2) == (sqrt(2), 2)
    assert clear_coefficients(4*sqrt(2) - 2) == (sqrt(2), S.Half)
    assert clear_coefficients(S(3), x) == (0, x - 3)
    assert clear_coefficients(S.Infinity, x) == (S.Infinity, x)
    assert clear_coefficients(-S.Pi, x) == (S.Pi, -x)
    assert clear_coefficients(2 - S.Pi/3, x) == (pi, -3*x + 6)

def test_nc_simplify():
    from sympy.simplify.simplify import nc_simplify
    from sympy.matrices.expressions import MatPow, Identity
    from sympy.core import Pow
    from functools import reduce

    a, b, c, d = symbols('a b c d', commutative = False)
    x = Symbol('x')
    A = MatrixSymbol("A", x, x)
    B = MatrixSymbol("B", x, x)
    C = MatrixSymbol("C", x, x)
    D = MatrixSymbol("D", x, x)
    subst = {a: A, b: B, c: C, d:D}
    funcs = {Add: lambda x,y: x+y, Mul: lambda x,y: x*y }

    def _to_matrix(expr):
        if expr in subst:
            return subst[expr]
        if isinstance(expr, Pow):
            return MatPow(_to_matrix(expr.args[0]), expr.args[1])
        elif isinstance(expr, (Add, Mul)):
            return reduce(funcs[expr.func],[_to_matrix(a) for a in expr.args])
        else:
            return expr*Identity(x)

    def _check(expr, simplified, deep=True, matrix=True):
        assert nc_simplify(expr, deep=deep) == simplified
        assert expand(expr) == expand(simplified)
        if matrix:
            m_simp = _to_matrix(simplified).doit(inv_expand=False)
            assert nc_simplify(_to_matrix(expr), deep=deep) == m_simp

    _check(a*b*a*b*a*b*c*(a*b)**3*c, ((a*b)**3*c)**2)
    _check(a*b*(a*b)**-2*a*b, 1)
    _check(a**2*b*a*b*a*b*(a*b)**-1, a*(a*b)**2, matrix=False)
    _check(b*a*b**2*a*b**2*a*b**2, b*(a*b**2)**3)
    _check(a*b*a**2*b*a**2*b*a**3, (a*b*a)**3*a**2)
    _check(a**2*b*a**4*b*a**4*b*a**2, (a**2*b*a**2)**3)
    _check(a**3*b*a**4*b*a**4*b*a, a**3*(b*a**4)**3*a**-3)
    _check(a*b*a*b + a*b*c*x*a*b*c, (a*b)**2 + x*(a*b*c)**2)
    _check(a*b*a*b*c*a*b*a*b*c, ((a*b)**2*c)**2)
    _check(b**-1*a**-1*(a*b)**2, a*b)
    _check(a**-1*b*c**-1, (c*b**-1*a)**-1)
    expr = a**3*b*a**4*b*a**4*b*a**2*b*a**2*(b*a**2)**2*b*a**2*b*a**2
    for _ in range(10):
        expr *= a*b
    _check(expr, a**3*(b*a**4)**2*(b*a**2)**6*(a*b)**10)
    _check((a*b*a*b)**2, (a*b*a*b)**2, deep=False)
    _check(a*b*(c*d)**2, a*b*(c*d)**2)
    expr = b**-1*(a**-1*b**-1 - a**-1*c*b**-1)**-1*a**-1
    assert nc_simplify(expr) == (1-c)**-1
    # commutative expressions should be returned without an error
    assert nc_simplify(2*x**2) == 2*x**2

def test_issue_15965():
    A = Sum(z*x**y, (x, 1, a))
    anew = z*Sum(x**y, (x, 1, a))
    B = Integral(x*y, x)
    bdo = x**2*y/2
    assert simplify(A + B) == anew + bdo
    assert simplify(A) == anew
    assert simplify(B) == bdo
    assert simplify(B, doit=False) == y*Integral(x, x)


def test_issue_17137():
    assert simplify(cos(x)**I) == cos(x)**I
    assert simplify(cos(x)**(2 + 3*I)) == cos(x)**(2 + 3*I)


def test_issue_21869():
    x = Symbol('x', real=True)
    y = Symbol('y', real=True)
    expr = And(Eq(x**2, 4), Le(x, y))
    assert expr.simplify() == expr

    expr = And(Eq(x**2, 4), Eq(x, 2))
    assert expr.simplify() == Eq(x, 2)

    expr = And(Eq(x**3, x**2), Eq(x, 1))
    assert expr.simplify() == Eq(x, 1)

    expr = And(Eq(sin(x), x**2), Eq(x, 0))
    assert expr.simplify() == Eq(x, 0)

    expr = And(Eq(x**3, x**2), Eq(x, 2))
    assert expr.simplify() == S.false

    expr = And(Eq(y, x**2), Eq(x, 1))
    assert expr.simplify() == And(Eq(y,1), Eq(x, 1))

    expr = And(Eq(y**2, 1), Eq(y, x**2), Eq(x, 1))
    assert expr.simplify() == And(Eq(y,1), Eq(x, 1))

    expr = And(Eq(y**2, 4), Eq(y, 2*x**2), Eq(x, 1))
    assert expr.simplify() == And(Eq(y,2), Eq(x, 1))

    expr = And(Eq(y**2, 4), Eq(y, x**2), Eq(x, 1))
    assert expr.simplify() == S.false


def test_issue_7971_21740():
    z = Integral(x, (x, 1, 1))
    assert z != 0
    assert simplify(z) is S.Zero
    assert simplify(S.Zero) is S.Zero
    z = simplify(Float(0))
    assert z is not S.Zero and z == 0.0


@slow
def test_issue_17141_slow():
    # Should not give RecursionError
    assert simplify((2**acos(I+1)**2).rewrite('log')) == 2**((pi + 2*I*log(-1 +
                   sqrt(1 - 2*I) + I))**2/4)


def test_issue_17141():
    # Check that there is no RecursionError
    assert simplify(x**(1 / acos(I))) == x**(2/(pi - 2*I*log(1 + sqrt(2))))
    assert simplify(acos(-I)**2*acos(I)**2) == \
           log(1 + sqrt(2))**4 + pi**2*log(1 + sqrt(2))**2/2 + pi**4/16
    assert simplify(2**acos(I)**2) == 2**((pi - 2*I*log(1 + sqrt(2)))**2/4)
    p = 2**acos(I+1)**2
    assert simplify(p) == p


def test_simplify_kroneckerdelta():
    i, j = symbols("i j")
    K = KroneckerDelta

    assert simplify(K(i, j)) == K(i, j)
    assert simplify(K(0, j)) == K(0, j)
    assert simplify(K(i, 0)) == K(i, 0)

    assert simplify(K(0, j).rewrite(Piecewise) * K(1, j)) == 0
    assert simplify(K(1, i) + Piecewise((1, Eq(j, 2)), (0, True))) == K(1, i) + K(2, j)

    # issue 17214
    assert simplify(K(0, j) * K(1, j)) == 0

    n = Symbol('n', integer=True)
    assert simplify(K(0, n) * K(1, n)) == 0

    M = Matrix(4, 4, lambda i, j: K(j - i, n) if i <= j else 0)
    assert simplify(M**2) == Matrix([[K(0, n), 0, K(1, n), 0],
                                     [0, K(0, n), 0, K(1, n)],
                                     [0, 0, K(0, n), 0],
                                     [0, 0, 0, K(0, n)]])
    assert simplify(eye(1) * KroneckerDelta(0, n) *
                    KroneckerDelta(1, n)) == Matrix([[0]])

    assert simplify(S.Infinity * KroneckerDelta(0, n) *
                    KroneckerDelta(1, n)) is S.NaN


def test_issue_17292():
    assert simplify(abs(x)/abs(x**2)) == 1/abs(x)
    # this is bigger than the issue: check that deep processing works
    assert simplify(5*abs((x**2 - 1)/(x - 1))) == 5*Abs(x + 1)


def test_issue_19822():
    expr = And(Gt(n-2, 1), Gt(n, 1))
    assert simplify(expr) == Gt(n, 3)


def test_issue_18645():
    expr = And(Ge(x, 3), Le(x, 3))
    assert simplify(expr) == Eq(x, 3)
    expr = And(Eq(x, 3), Le(x, 3))
    assert simplify(expr) == Eq(x, 3)


@XFAIL
def test_issue_18642():
    i = Symbol("i", integer=True)
    n = Symbol("n", integer=True)
    expr = And(Eq(i, 2 * n), Le(i, 2*n -1))
    assert simplify(expr) == S.false


@XFAIL
def test_issue_18389():
    n = Symbol("n", integer=True)
    expr = Eq(n, 0) | (n >= 1)
    assert simplify(expr) == Ge(n, 0)


def test_issue_8373():
    x = Symbol('x', real=True)
    assert simplify(Or(x < 1, x >= 1)) == S.true


def test_issue_7950():
    expr = And(Eq(x, 1), Eq(x, 2))
    assert simplify(expr) == S.false


def test_issue_22020():
    expr = I*pi/2 -oo
    assert simplify(expr) == expr
    # Used to throw an error


def test_issue_19484():
    assert simplify(sign(x) * Abs(x)) == x

    e = x + sign(x + x**3)
    assert simplify(Abs(x + x**3)*e) == x**3 + x*Abs(x**3 + x) + x

    e = x**2 + sign(x**3 + 1)
    assert simplify(Abs(x**3 + 1) * e) == x**3 + x**2*Abs(x**3 + 1) + 1

    f = Function('f')
    e = x + sign(x + f(x)**3)
    assert simplify(Abs(x + f(x)**3) * e) == x*Abs(x + f(x)**3) + x + f(x)**3


def test_issue_23543():
    # Used to give an error
    x, y, z = symbols("x y z", commutative=False)
    assert (x*(y + z/2)).simplify() == x*(2*y + z)/2


def test_issue_11004():

    def f(n):
        return sqrt(2*pi*n) * (n/E)**n

    def m(n, k):
        return  f(n) / (f(n/k)**k)

    def p(n,k):
        return m(n, k) / (k**n)

    N, k = symbols('N k')
    half = Float('0.5', 4)
    z = log(p(n, k) / p(n, k + 1)).expand(force=True)
    r = simplify(z.subs(n, N).n(4))
    assert r == (
        half*k*log(k)
        - half*k*log(k + 1)
        + half*log(N)
        - half*log(k + 1)
        + Float(0.9189224, 4)
    )


def test_issue_19161():
    polynomial = Poly('x**2').simplify()
    assert (polynomial-x**2).simplify() == 0


def test_issue_22210():
    d = Symbol('d', integer=True)
    expr = 2*Derivative(sin(x), (x, d))
    assert expr.simplify() == expr


def test_reduce_inverses_nc_pow():
    x, y = symbols("x y", commutative=True)
    Z = symbols("Z", commutative=False)
    assert simplify(2**Z * y**Z) == 2**Z * y**Z
    assert simplify(x**Z * y**Z) == x**Z * y**Z
    x, y = symbols("x y", positive=True)
    assert expand((x*y)**Z) == x**Z * y**Z
    assert simplify(x**Z * y**Z) == expand((x*y)**Z)

def test_nc_recursion_coeff():
    X = symbols("X", commutative = False)
    assert (2 * cos(pi/3) * X).simplify() == X
    assert (2.0 * cos(pi/3) * X).simplify() == X