File size: 18,789 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function, diff)
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Rational)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, Wild, symbols)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.polys.polytools import factor
from sympy.series.order import O
from sympy.simplify.radsimp import (collect, collect_const, fraction, radsimp, rcollect)

from sympy.core.expr import unchanged
from sympy.core.mul import _unevaluated_Mul as umul
from sympy.simplify.radsimp import (_unevaluated_Add,
    collect_sqrt, fraction_expand, collect_abs)
from sympy.testing.pytest import raises

from sympy.abc import x, y, z, a, b, c, d


def test_radsimp():
    r2 = sqrt(2)
    r3 = sqrt(3)
    r5 = sqrt(5)
    r7 = sqrt(7)
    assert fraction(radsimp(1/r2)) == (sqrt(2), 2)
    assert radsimp(1/(1 + r2)) == \
        -1 + sqrt(2)
    assert radsimp(1/(r2 + r3)) == \
        -sqrt(2) + sqrt(3)
    assert fraction(radsimp(1/(1 + r2 + r3))) == \
        (-sqrt(6) + sqrt(2) + 2, 4)
    assert fraction(radsimp(1/(r2 + r3 + r5))) == \
        (-sqrt(30) + 2*sqrt(3) + 3*sqrt(2), 12)
    assert fraction(radsimp(1/(1 + r2 + r3 + r5))) == (
        (-34*sqrt(10) - 26*sqrt(15) - 55*sqrt(3) - 61*sqrt(2) + 14*sqrt(30) +
        93 + 46*sqrt(6) + 53*sqrt(5), 71))
    assert fraction(radsimp(1/(r2 + r3 + r5 + r7))) == (
        (-50*sqrt(42) - 133*sqrt(5) - 34*sqrt(70) - 145*sqrt(3) + 22*sqrt(105)
        + 185*sqrt(2) + 62*sqrt(30) + 135*sqrt(7), 215))
    z = radsimp(1/(1 + r2/3 + r3/5 + r5 + r7))
    assert len((3616791619821680643598*z).args) == 16
    assert radsimp(1/z) == 1/z
    assert radsimp(1/z, max_terms=20).expand() == 1 + r2/3 + r3/5 + r5 + r7
    assert radsimp(1/(r2*3)) == \
        sqrt(2)/6
    assert radsimp(1/(r2*a + r3 + r5 + r7)) == (
        (8*sqrt(2)*a**7 - 8*sqrt(7)*a**6 - 8*sqrt(5)*a**6 - 8*sqrt(3)*a**6 -
        180*sqrt(2)*a**5 + 8*sqrt(30)*a**5 + 8*sqrt(42)*a**5 + 8*sqrt(70)*a**5
        - 24*sqrt(105)*a**4 + 84*sqrt(3)*a**4 + 100*sqrt(5)*a**4 +
        116*sqrt(7)*a**4 - 72*sqrt(70)*a**3 - 40*sqrt(42)*a**3 -
        8*sqrt(30)*a**3 + 782*sqrt(2)*a**3 - 462*sqrt(3)*a**2 -
        302*sqrt(7)*a**2 - 254*sqrt(5)*a**2 + 120*sqrt(105)*a**2 -
        795*sqrt(2)*a - 62*sqrt(30)*a + 82*sqrt(42)*a + 98*sqrt(70)*a -
        118*sqrt(105) + 59*sqrt(7) + 295*sqrt(5) + 531*sqrt(3))/(16*a**8 -
        480*a**6 + 3128*a**4 - 6360*a**2 + 3481))
    assert radsimp(1/(r2*a + r2*b + r3 + r7)) == (
        (sqrt(2)*a*(a + b)**2 - 5*sqrt(2)*a + sqrt(42)*a + sqrt(2)*b*(a +
        b)**2 - 5*sqrt(2)*b + sqrt(42)*b - sqrt(7)*(a + b)**2 - sqrt(3)*(a +
        b)**2 - 2*sqrt(3) + 2*sqrt(7))/(2*a**4 + 8*a**3*b + 12*a**2*b**2 -
        20*a**2 + 8*a*b**3 - 40*a*b + 2*b**4 - 20*b**2 + 8))
    assert radsimp(1/(r2*a + r2*b + r2*c + r2*d)) == \
        sqrt(2)/(2*a + 2*b + 2*c + 2*d)
    assert radsimp(1/(1 + r2*a + r2*b + r2*c + r2*d)) == (
        (sqrt(2)*a + sqrt(2)*b + sqrt(2)*c + sqrt(2)*d - 1)/(2*a**2 + 4*a*b +
        4*a*c + 4*a*d + 2*b**2 + 4*b*c + 4*b*d + 2*c**2 + 4*c*d + 2*d**2 - 1))
    assert radsimp((y**2 - x)/(y - sqrt(x))) == \
        sqrt(x) + y
    assert radsimp(-(y**2 - x)/(y - sqrt(x))) == \
        -(sqrt(x) + y)
    assert radsimp(1/(1 - I + a*I)) == \
        (-I*a + 1 + I)/(a**2 - 2*a + 2)
    assert radsimp(1/((-x + y)*(x - sqrt(y)))) == \
        (-x - sqrt(y))/((x - y)*(x**2 - y))
    e = (3 + 3*sqrt(2))*x*(3*x - 3*sqrt(y))
    assert radsimp(e) == x*(3 + 3*sqrt(2))*(3*x - 3*sqrt(y))
    assert radsimp(1/e) == (
        (-9*x + 9*sqrt(2)*x - 9*sqrt(y) + 9*sqrt(2)*sqrt(y))/(9*x*(9*x**2 -
        9*y)))
    assert radsimp(1 + 1/(1 + sqrt(3))) == \
        Mul(S.Half, -1 + sqrt(3), evaluate=False) + 1
    A = symbols("A", commutative=False)
    assert radsimp(x**2 + sqrt(2)*x**2 - sqrt(2)*x*A) == \
        x**2 + sqrt(2)*x**2 - sqrt(2)*x*A
    assert radsimp(1/sqrt(5 + 2 * sqrt(6))) == -sqrt(2) + sqrt(3)
    assert radsimp(1/sqrt(5 + 2 * sqrt(6))**3) == -(-sqrt(3) + sqrt(2))**3

    # issue 6532
    assert fraction(radsimp(1/sqrt(x))) == (sqrt(x), x)
    assert fraction(radsimp(1/sqrt(2*x + 3))) == (sqrt(2*x + 3), 2*x + 3)
    assert fraction(radsimp(1/sqrt(2*(x + 3)))) == (sqrt(2*x + 6), 2*x + 6)

    # issue 5994
    e = S('-(2 + 2*sqrt(2) + 4*2**(1/4))/'
        '(1 + 2**(3/4) + 3*2**(1/4) + 3*sqrt(2))')
    assert radsimp(e).expand() == -2*2**Rational(3, 4) - 2*2**Rational(1, 4) + 2 + 2*sqrt(2)

    # issue 5986 (modifications to radimp didn't initially recognize this so
    # the test is included here)
    assert radsimp(1/(-sqrt(5)/2 - S.Half + (-sqrt(5)/2 - S.Half)**2)) == 1

    # from issue 5934
    eq = (
        (-240*sqrt(2)*sqrt(sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) -
        360*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) -
        120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) +
        120*sqrt(2)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
        120*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5) +
        120*sqrt(10)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
        120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5))/(-36000 -
        7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) +
        24*sqrt(10)*sqrt(-sqrt(5) + 5))**2))
    assert radsimp(eq) is S.NaN  # it's 0/0

    # work with normal form
    e = 1/sqrt(sqrt(7)/7 + 2*sqrt(2) + 3*sqrt(3) + 5*sqrt(5)) + 3
    assert radsimp(e) == (
        -sqrt(sqrt(7) + 14*sqrt(2) + 21*sqrt(3) +
        35*sqrt(5))*(-11654899*sqrt(35) - 1577436*sqrt(210) - 1278438*sqrt(15)
        - 1346996*sqrt(10) + 1635060*sqrt(6) + 5709765 + 7539830*sqrt(14) +
        8291415*sqrt(21))/1300423175 + 3)

    # obey power rules
    base = sqrt(3) - sqrt(2)
    assert radsimp(1/base**3) == (sqrt(3) + sqrt(2))**3
    assert radsimp(1/(-base)**3) == -(sqrt(2) + sqrt(3))**3
    assert radsimp(1/(-base)**x) == (-base)**(-x)
    assert radsimp(1/base**x) == (sqrt(2) + sqrt(3))**x
    assert radsimp(root(1/(-1 - sqrt(2)), -x)) == (-1)**(-1/x)*(1 + sqrt(2))**(1/x)

    # recurse
    e = cos(1/(1 + sqrt(2)))
    assert radsimp(e) == cos(-sqrt(2) + 1)
    assert radsimp(e/2) == cos(-sqrt(2) + 1)/2
    assert radsimp(1/e) == 1/cos(-sqrt(2) + 1)
    assert radsimp(2/e) == 2/cos(-sqrt(2) + 1)
    assert fraction(radsimp(e/sqrt(x))) == (sqrt(x)*cos(-sqrt(2)+1), x)

    # test that symbolic denominators are not processed
    r = 1 + sqrt(2)
    assert radsimp(x/r, symbolic=False) == -x*(-sqrt(2) + 1)
    assert radsimp(x/(y + r), symbolic=False) == x/(y + 1 + sqrt(2))
    assert radsimp(x/(y + r)/r, symbolic=False) == \
        -x*(-sqrt(2) + 1)/(y + 1 + sqrt(2))

    # issue 7408
    eq = sqrt(x)/sqrt(y)
    assert radsimp(eq) == umul(sqrt(x), sqrt(y), 1/y)
    assert radsimp(eq, symbolic=False) == eq

    # issue 7498
    assert radsimp(sqrt(x)/sqrt(y)**3) == umul(sqrt(x), sqrt(y**3), 1/y**3)

    # for coverage
    eq = sqrt(x)/y**2
    assert radsimp(eq) == eq


def test_radsimp_issue_3214():
    c, p = symbols('c p', positive=True)
    s = sqrt(c**2 - p**2)
    b = (c + I*p - s)/(c + I*p + s)
    assert radsimp(b) == -I*(c + I*p - sqrt(c**2 - p**2))**2/(2*c*p)


def test_collect_1():
    """Collect with respect to Symbol"""
    x, y, z, n = symbols('x,y,z,n')
    assert collect(1, x) == 1
    assert collect( x + y*x, x ) == x * (1 + y)
    assert collect( x + x**2, x ) == x + x**2
    assert collect( x**2 + y*x**2, x ) == (x**2)*(1 + y)
    assert collect( x**2 + y*x, x ) == x*y + x**2
    assert collect( 2*x**2 + y*x**2 + 3*x*y, [x] ) == x**2*(2 + y) + 3*x*y
    assert collect( 2*x**2 + y*x**2 + 3*x*y, [y] ) == 2*x**2 + y*(x**2 + 3*x)

    assert collect( ((1 + y + x)**4).expand(), x) == ((1 + y)**4).expand() + \
        x*(4*(1 + y)**3).expand() + x**2*(6*(1 + y)**2).expand() + \
        x**3*(4*(1 + y)).expand() + x**4
    # symbols can be given as any iterable
    expr = x + y
    assert collect(expr, expr.free_symbols) == expr
    assert collect(x*exp(x) + sin(x)*y + sin(x)*2 + 3*x, x, exact=None
        ) == x*exp(x) + 3*x + (y + 2)*sin(x)
    assert collect(x*exp(x) + sin(x)*y + sin(x)*2 + 3*x + y*x +
        y*x*exp(x), x, exact=None
        ) == x*exp(x)*(y + 1) + (3 + y)*x + (y + 2)*sin(x)


def test_collect_2():
    """Collect with respect to a sum"""
    a, b, x = symbols('a,b,x')
    assert collect(a*(cos(x) + sin(x)) + b*(cos(x) + sin(x)),
        sin(x) + cos(x)) == (a + b)*(cos(x) + sin(x))


def test_collect_3():
    """Collect with respect to a product"""
    a, b, c = symbols('a,b,c')
    f = Function('f')
    x, y, z, n = symbols('x,y,z,n')

    assert collect(-x/8 + x*y, -x) == x*(y - Rational(1, 8))

    assert collect( 1 + x*(y**2), x*y ) == 1 + x*(y**2)
    assert collect( x*y + a*x*y, x*y) == x*y*(1 + a)
    assert collect( 1 + x*y + a*x*y, x*y) == 1 + x*y*(1 + a)
    assert collect(a*x*f(x) + b*(x*f(x)), x*f(x)) == x*(a + b)*f(x)

    assert collect(a*x*log(x) + b*(x*log(x)), x*log(x)) == x*(a + b)*log(x)
    assert collect(a*x**2*log(x)**2 + b*(x*log(x))**2, x*log(x)) == \
        x**2*log(x)**2*(a + b)

    # with respect to a product of three symbols
    assert collect(y*x*z + a*x*y*z, x*y*z) == (1 + a)*x*y*z


def test_collect_4():
    """Collect with respect to a power"""
    a, b, c, x = symbols('a,b,c,x')

    assert collect(a*x**c + b*x**c, x**c) == x**c*(a + b)
    # issue 6096: 2 stays with c (unless c is integer or x is positive0
    assert collect(a*x**(2*c) + b*x**(2*c), x**c) == x**(2*c)*(a + b)


def test_collect_5():
    """Collect with respect to a tuple"""
    a, x, y, z, n = symbols('a,x,y,z,n')
    assert collect(x**2*y**4 + z*(x*y**2)**2 + z + a*z, [x*y**2, z]) in [
        z*(1 + a + x**2*y**4) + x**2*y**4,
        z*(1 + a) + x**2*y**4*(1 + z) ]
    assert collect((1 + (x + y) + (x + y)**2).expand(),
                   [x, y]) == 1 + y + x*(1 + 2*y) + x**2 + y**2


def test_collect_pr19431():
    """Unevaluated collect with respect to a product"""
    a = symbols('a')
    assert collect(a**2*(a**2 + 1), a**2, evaluate=False)[a**2] == (a**2 + 1)


def test_collect_D():
    D = Derivative
    f = Function('f')
    x, a, b = symbols('x,a,b')
    fx = D(f(x), x)
    fxx = D(f(x), x, x)

    assert collect(a*fx + b*fx, fx) == (a + b)*fx
    assert collect(a*D(fx, x) + b*D(fx, x), fx) == (a + b)*D(fx, x)
    assert collect(a*fxx + b*fxx, fx) == (a + b)*D(fx, x)
    # issue 4784
    assert collect(5*f(x) + 3*fx, fx) == 5*f(x) + 3*fx
    assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x)) == \
        (x*f(x) + f(x))*D(f(x), x) + f(x)
    assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x), exact=True) == \
        (x*f(x) + f(x))*D(f(x), x) + f(x)
    assert collect(1/f(x) + 1/f(x)*diff(f(x), x) + x*diff(f(x), x)/f(x), f(x).diff(x), exact=True) == \
        (1/f(x) + x/f(x))*D(f(x), x) + 1/f(x)
    e = (1 + x*fx + fx)/f(x)
    assert collect(e.expand(), fx) == fx*(x/f(x) + 1/f(x)) + 1/f(x)


def test_collect_func():
    f = ((x + a + 1)**3).expand()

    assert collect(f, x) == a**3 + 3*a**2 + 3*a + x**3 + x**2*(3*a + 3) + \
        x*(3*a**2 + 6*a + 3) + 1
    assert collect(f, x, factor) == x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + \
        (a + 1)**3

    assert collect(f, x, evaluate=False) == {
        S.One: a**3 + 3*a**2 + 3*a + 1,
        x: 3*a**2 + 6*a + 3, x**2: 3*a + 3,
        x**3: 1
    }

    assert collect(f, x, factor, evaluate=False) == {
        S.One: (a + 1)**3, x: 3*(a + 1)**2,
        x**2: umul(S(3), a + 1), x**3: 1}


def test_collect_order():
    a, b, x, t = symbols('a,b,x,t')

    assert collect(t + t*x + t*x**2 + O(x**3), t) == t*(1 + x + x**2 + O(x**3))
    assert collect(t + t*x + x**2 + O(x**3), t) == \
        t*(1 + x + O(x**3)) + x**2 + O(x**3)

    f = a*x + b*x + c*x**2 + d*x**2 + O(x**3)
    g = x*(a + b) + x**2*(c + d) + O(x**3)

    assert collect(f, x) == g
    assert collect(f, x, distribute_order_term=False) == g

    f = sin(a + b).series(b, 0, 10)

    assert collect(f, [sin(a), cos(a)]) == \
        sin(a)*cos(b).series(b, 0, 10) + cos(a)*sin(b).series(b, 0, 10)
    assert collect(f, [sin(a), cos(a)], distribute_order_term=False) == \
        sin(a)*cos(b).series(b, 0, 10).removeO() + \
        cos(a)*sin(b).series(b, 0, 10).removeO() + O(b**10)


def test_rcollect():
    assert rcollect((x**2*y + x*y + x + y)/(x + y), y) == \
        (x + y*(1 + x + x**2))/(x + y)
    assert rcollect(sqrt(-((x + 1)*(y + 1))), z) == sqrt(-((x + 1)*(y + 1)))


def test_collect_D_0():
    D = Derivative
    f = Function('f')
    x, a, b = symbols('x,a,b')
    fxx = D(f(x), x, x)

    assert collect(a*fxx + b*fxx, fxx) == (a + b)*fxx


def test_collect_Wild():
    """Collect with respect to functions with Wild argument"""
    a, b, x, y = symbols('a b x y')
    f = Function('f')
    w1 = Wild('.1')
    w2 = Wild('.2')
    assert collect(f(x) + a*f(x), f(w1)) == (1 + a)*f(x)
    assert collect(f(x, y) + a*f(x, y), f(w1)) == f(x, y) + a*f(x, y)
    assert collect(f(x, y) + a*f(x, y), f(w1, w2)) == (1 + a)*f(x, y)
    assert collect(f(x, y) + a*f(x, y), f(w1, w1)) == f(x, y) + a*f(x, y)
    assert collect(f(x, x) + a*f(x, x), f(w1, w1)) == (1 + a)*f(x, x)
    assert collect(a*(x + 1)**y + (x + 1)**y, w1**y) == (1 + a)*(x + 1)**y
    assert collect(a*(x + 1)**y + (x + 1)**y, w1**b) == \
        a*(x + 1)**y + (x + 1)**y
    assert collect(a*(x + 1)**y + (x + 1)**y, (x + 1)**w2) == \
        (1 + a)*(x + 1)**y
    assert collect(a*(x + 1)**y + (x + 1)**y, w1**w2) == (1 + a)*(x + 1)**y


def test_collect_const():
    # coverage not provided by above tests
    assert collect_const(2*sqrt(3) + 4*a*sqrt(5)) == \
        2*(2*sqrt(5)*a + sqrt(3))  # let the primitive reabsorb
    assert collect_const(2*sqrt(3) + 4*a*sqrt(5), sqrt(3)) == \
        2*sqrt(3) + 4*a*sqrt(5)
    assert collect_const(sqrt(2)*(1 + sqrt(2)) + sqrt(3) + x*sqrt(2)) == \
        sqrt(2)*(x + 1 + sqrt(2)) + sqrt(3)

    # issue 5290
    assert collect_const(2*x + 2*y + 1, 2) == \
        collect_const(2*x + 2*y + 1) == \
        Add(S.One, Mul(2, x + y, evaluate=False), evaluate=False)
    assert collect_const(-y - z) == Mul(-1, y + z, evaluate=False)
    assert collect_const(2*x - 2*y - 2*z, 2) == \
        Mul(2, x - y - z, evaluate=False)
    assert collect_const(2*x - 2*y - 2*z, -2) == \
        _unevaluated_Add(2*x, Mul(-2, y + z, evaluate=False))

    # this is why the content_primitive is used
    eq = (sqrt(15 + 5*sqrt(2))*x + sqrt(3 + sqrt(2))*y)*2
    assert collect_sqrt(eq + 2) == \
        2*sqrt(sqrt(2) + 3)*(sqrt(5)*x + y) + 2

    # issue 16296
    assert collect_const(a + b + x/2 + y/2) == a + b + Mul(S.Half, x + y, evaluate=False)


def test_issue_13143():
    f = Function('f')
    fx = f(x).diff(x)
    e = f(x) + fx + f(x)*fx
    # collect function before derivative
    assert collect(e, Wild('w')) == f(x)*(fx + 1) + fx
    e = f(x) + f(x)*fx + x*fx*f(x)
    assert collect(e, fx) == (x*f(x) + f(x))*fx + f(x)
    assert collect(e, f(x)) == (x*fx + fx + 1)*f(x)
    e = f(x) + fx + f(x)*fx
    assert collect(e, [f(x), fx]) == f(x)*(1 + fx) + fx
    assert collect(e, [fx, f(x)]) == fx*(1 + f(x)) + f(x)


def test_issue_6097():
    assert collect(a*y**(2.0*x) + b*y**(2.0*x), y**x) == (a + b)*(y**x)**2.0
    assert collect(a*2**(2.0*x) + b*2**(2.0*x), 2**x) == (a + b)*(2**x)**2.0


def test_fraction_expand():
    eq = (x + y)*y/x
    assert eq.expand(frac=True) == fraction_expand(eq) == (x*y + y**2)/x
    assert eq.expand() == y + y**2/x


def test_fraction():
    x, y, z = map(Symbol, 'xyz')
    A = Symbol('A', commutative=False)

    assert fraction(S.Half) == (1, 2)

    assert fraction(x) == (x, 1)
    assert fraction(1/x) == (1, x)
    assert fraction(x/y) == (x, y)
    assert fraction(x/2) == (x, 2)

    assert fraction(x*y/z) == (x*y, z)
    assert fraction(x/(y*z)) == (x, y*z)

    assert fraction(1/y**2) == (1, y**2)
    assert fraction(x/y**2) == (x, y**2)

    assert fraction((x**2 + 1)/y) == (x**2 + 1, y)
    assert fraction(x*(y + 1)/y**7) == (x*(y + 1), y**7)

    assert fraction(exp(-x), exact=True) == (exp(-x), 1)
    assert fraction((1/(x + y))/2, exact=True) == (1, Mul(2,(x + y), evaluate=False))

    assert fraction(x*A/y) == (x*A, y)
    assert fraction(x*A**-1/y) == (x*A**-1, y)

    n = symbols('n', negative=True)
    assert fraction(exp(n)) == (1, exp(-n))
    assert fraction(exp(-n)) == (exp(-n), 1)

    p = symbols('p', positive=True)
    assert fraction(exp(-p)*log(p), exact=True) == (exp(-p)*log(p), 1)

    m = Mul(1, 1, S.Half, evaluate=False)
    assert fraction(m) == (1, 2)
    assert fraction(m, exact=True) == (Mul(1, 1, evaluate=False), 2)

    m = Mul(1, 1, S.Half, S.Half, Pow(1, -1, evaluate=False), evaluate=False)
    assert fraction(m) == (1, 4)
    assert fraction(m, exact=True) == \
            (Mul(1, 1, evaluate=False), Mul(2, 2, 1, evaluate=False))


def test_issue_5615():
    aA, Re, a, b, D = symbols('aA Re a b D')
    e = ((D**3*a + b*aA**3)/Re).expand()
    assert collect(e, [aA**3/Re, a]) == e


def test_issue_5933():
    from sympy.geometry.polygon import (Polygon, RegularPolygon)
    from sympy.simplify.radsimp import denom
    x = Polygon(*RegularPolygon((0, 0), 1, 5).vertices).centroid.x
    assert abs(denom(x).n()) > 1e-12
    assert abs(denom(radsimp(x))) > 1e-12  # in case simplify didn't handle it


def test_issue_14608():
    a, b = symbols('a b', commutative=False)
    x, y = symbols('x y')
    raises(AttributeError, lambda: collect(a*b + b*a, a))
    assert collect(x*y + y*(x+1), a) == x*y + y*(x+1)
    assert collect(x*y + y*(x+1) + a*b + b*a, y) == y*(2*x + 1) + a*b + b*a


def test_collect_abs():
    s = abs(x) + abs(y)
    assert collect_abs(s) == s
    assert unchanged(Mul, abs(x), abs(y))
    ans = Abs(x*y)
    assert isinstance(ans, Abs)
    assert collect_abs(abs(x)*abs(y)) == ans
    assert collect_abs(1 + exp(abs(x)*abs(y))) == 1 + exp(ans)

    # See https://github.com/sympy/sympy/issues/12910
    p = Symbol('p', positive=True)
    assert collect_abs(p/abs(1-p)).is_commutative is True


def test_issue_19149():
    eq = exp(3*x/4)
    assert collect(eq, exp(x)) == eq

def test_issue_19719():
    a, b = symbols('a, b')
    expr = a**2 * (b + 1) + (7 + 1/b)/a
    collected = collect(expr, (a**2, 1/a), evaluate=False)
    # Would return {_Dummy_20**(-2): b + 1, 1/a: 7 + 1/b} without xreplace
    assert collected == {a**2: b + 1, 1/a: 7 + 1/b}


def test_issue_21355():
    assert radsimp(1/(x + sqrt(x**2))) == 1/(x + sqrt(x**2))
    assert radsimp(1/(x - sqrt(x**2))) == 1/(x - sqrt(x**2))