Spaces:
Sleeping
Sleeping
File size: 18,789 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function, diff)
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Rational)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, Wild, symbols)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.polys.polytools import factor
from sympy.series.order import O
from sympy.simplify.radsimp import (collect, collect_const, fraction, radsimp, rcollect)
from sympy.core.expr import unchanged
from sympy.core.mul import _unevaluated_Mul as umul
from sympy.simplify.radsimp import (_unevaluated_Add,
collect_sqrt, fraction_expand, collect_abs)
from sympy.testing.pytest import raises
from sympy.abc import x, y, z, a, b, c, d
def test_radsimp():
r2 = sqrt(2)
r3 = sqrt(3)
r5 = sqrt(5)
r7 = sqrt(7)
assert fraction(radsimp(1/r2)) == (sqrt(2), 2)
assert radsimp(1/(1 + r2)) == \
-1 + sqrt(2)
assert radsimp(1/(r2 + r3)) == \
-sqrt(2) + sqrt(3)
assert fraction(radsimp(1/(1 + r2 + r3))) == \
(-sqrt(6) + sqrt(2) + 2, 4)
assert fraction(radsimp(1/(r2 + r3 + r5))) == \
(-sqrt(30) + 2*sqrt(3) + 3*sqrt(2), 12)
assert fraction(radsimp(1/(1 + r2 + r3 + r5))) == (
(-34*sqrt(10) - 26*sqrt(15) - 55*sqrt(3) - 61*sqrt(2) + 14*sqrt(30) +
93 + 46*sqrt(6) + 53*sqrt(5), 71))
assert fraction(radsimp(1/(r2 + r3 + r5 + r7))) == (
(-50*sqrt(42) - 133*sqrt(5) - 34*sqrt(70) - 145*sqrt(3) + 22*sqrt(105)
+ 185*sqrt(2) + 62*sqrt(30) + 135*sqrt(7), 215))
z = radsimp(1/(1 + r2/3 + r3/5 + r5 + r7))
assert len((3616791619821680643598*z).args) == 16
assert radsimp(1/z) == 1/z
assert radsimp(1/z, max_terms=20).expand() == 1 + r2/3 + r3/5 + r5 + r7
assert radsimp(1/(r2*3)) == \
sqrt(2)/6
assert radsimp(1/(r2*a + r3 + r5 + r7)) == (
(8*sqrt(2)*a**7 - 8*sqrt(7)*a**6 - 8*sqrt(5)*a**6 - 8*sqrt(3)*a**6 -
180*sqrt(2)*a**5 + 8*sqrt(30)*a**5 + 8*sqrt(42)*a**5 + 8*sqrt(70)*a**5
- 24*sqrt(105)*a**4 + 84*sqrt(3)*a**4 + 100*sqrt(5)*a**4 +
116*sqrt(7)*a**4 - 72*sqrt(70)*a**3 - 40*sqrt(42)*a**3 -
8*sqrt(30)*a**3 + 782*sqrt(2)*a**3 - 462*sqrt(3)*a**2 -
302*sqrt(7)*a**2 - 254*sqrt(5)*a**2 + 120*sqrt(105)*a**2 -
795*sqrt(2)*a - 62*sqrt(30)*a + 82*sqrt(42)*a + 98*sqrt(70)*a -
118*sqrt(105) + 59*sqrt(7) + 295*sqrt(5) + 531*sqrt(3))/(16*a**8 -
480*a**6 + 3128*a**4 - 6360*a**2 + 3481))
assert radsimp(1/(r2*a + r2*b + r3 + r7)) == (
(sqrt(2)*a*(a + b)**2 - 5*sqrt(2)*a + sqrt(42)*a + sqrt(2)*b*(a +
b)**2 - 5*sqrt(2)*b + sqrt(42)*b - sqrt(7)*(a + b)**2 - sqrt(3)*(a +
b)**2 - 2*sqrt(3) + 2*sqrt(7))/(2*a**4 + 8*a**3*b + 12*a**2*b**2 -
20*a**2 + 8*a*b**3 - 40*a*b + 2*b**4 - 20*b**2 + 8))
assert radsimp(1/(r2*a + r2*b + r2*c + r2*d)) == \
sqrt(2)/(2*a + 2*b + 2*c + 2*d)
assert radsimp(1/(1 + r2*a + r2*b + r2*c + r2*d)) == (
(sqrt(2)*a + sqrt(2)*b + sqrt(2)*c + sqrt(2)*d - 1)/(2*a**2 + 4*a*b +
4*a*c + 4*a*d + 2*b**2 + 4*b*c + 4*b*d + 2*c**2 + 4*c*d + 2*d**2 - 1))
assert radsimp((y**2 - x)/(y - sqrt(x))) == \
sqrt(x) + y
assert radsimp(-(y**2 - x)/(y - sqrt(x))) == \
-(sqrt(x) + y)
assert radsimp(1/(1 - I + a*I)) == \
(-I*a + 1 + I)/(a**2 - 2*a + 2)
assert radsimp(1/((-x + y)*(x - sqrt(y)))) == \
(-x - sqrt(y))/((x - y)*(x**2 - y))
e = (3 + 3*sqrt(2))*x*(3*x - 3*sqrt(y))
assert radsimp(e) == x*(3 + 3*sqrt(2))*(3*x - 3*sqrt(y))
assert radsimp(1/e) == (
(-9*x + 9*sqrt(2)*x - 9*sqrt(y) + 9*sqrt(2)*sqrt(y))/(9*x*(9*x**2 -
9*y)))
assert radsimp(1 + 1/(1 + sqrt(3))) == \
Mul(S.Half, -1 + sqrt(3), evaluate=False) + 1
A = symbols("A", commutative=False)
assert radsimp(x**2 + sqrt(2)*x**2 - sqrt(2)*x*A) == \
x**2 + sqrt(2)*x**2 - sqrt(2)*x*A
assert radsimp(1/sqrt(5 + 2 * sqrt(6))) == -sqrt(2) + sqrt(3)
assert radsimp(1/sqrt(5 + 2 * sqrt(6))**3) == -(-sqrt(3) + sqrt(2))**3
# issue 6532
assert fraction(radsimp(1/sqrt(x))) == (sqrt(x), x)
assert fraction(radsimp(1/sqrt(2*x + 3))) == (sqrt(2*x + 3), 2*x + 3)
assert fraction(radsimp(1/sqrt(2*(x + 3)))) == (sqrt(2*x + 6), 2*x + 6)
# issue 5994
e = S('-(2 + 2*sqrt(2) + 4*2**(1/4))/'
'(1 + 2**(3/4) + 3*2**(1/4) + 3*sqrt(2))')
assert radsimp(e).expand() == -2*2**Rational(3, 4) - 2*2**Rational(1, 4) + 2 + 2*sqrt(2)
# issue 5986 (modifications to radimp didn't initially recognize this so
# the test is included here)
assert radsimp(1/(-sqrt(5)/2 - S.Half + (-sqrt(5)/2 - S.Half)**2)) == 1
# from issue 5934
eq = (
(-240*sqrt(2)*sqrt(sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) -
360*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) -
120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(-sqrt(5) + 5) +
120*sqrt(2)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
120*sqrt(2)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5) +
120*sqrt(10)*sqrt(-sqrt(5) + 5)*sqrt(8*sqrt(5) + 40) +
120*sqrt(10)*sqrt(-8*sqrt(5) + 40)*sqrt(sqrt(5) + 5))/(-36000 -
7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) +
24*sqrt(10)*sqrt(-sqrt(5) + 5))**2))
assert radsimp(eq) is S.NaN # it's 0/0
# work with normal form
e = 1/sqrt(sqrt(7)/7 + 2*sqrt(2) + 3*sqrt(3) + 5*sqrt(5)) + 3
assert radsimp(e) == (
-sqrt(sqrt(7) + 14*sqrt(2) + 21*sqrt(3) +
35*sqrt(5))*(-11654899*sqrt(35) - 1577436*sqrt(210) - 1278438*sqrt(15)
- 1346996*sqrt(10) + 1635060*sqrt(6) + 5709765 + 7539830*sqrt(14) +
8291415*sqrt(21))/1300423175 + 3)
# obey power rules
base = sqrt(3) - sqrt(2)
assert radsimp(1/base**3) == (sqrt(3) + sqrt(2))**3
assert radsimp(1/(-base)**3) == -(sqrt(2) + sqrt(3))**3
assert radsimp(1/(-base)**x) == (-base)**(-x)
assert radsimp(1/base**x) == (sqrt(2) + sqrt(3))**x
assert radsimp(root(1/(-1 - sqrt(2)), -x)) == (-1)**(-1/x)*(1 + sqrt(2))**(1/x)
# recurse
e = cos(1/(1 + sqrt(2)))
assert radsimp(e) == cos(-sqrt(2) + 1)
assert radsimp(e/2) == cos(-sqrt(2) + 1)/2
assert radsimp(1/e) == 1/cos(-sqrt(2) + 1)
assert radsimp(2/e) == 2/cos(-sqrt(2) + 1)
assert fraction(radsimp(e/sqrt(x))) == (sqrt(x)*cos(-sqrt(2)+1), x)
# test that symbolic denominators are not processed
r = 1 + sqrt(2)
assert radsimp(x/r, symbolic=False) == -x*(-sqrt(2) + 1)
assert radsimp(x/(y + r), symbolic=False) == x/(y + 1 + sqrt(2))
assert radsimp(x/(y + r)/r, symbolic=False) == \
-x*(-sqrt(2) + 1)/(y + 1 + sqrt(2))
# issue 7408
eq = sqrt(x)/sqrt(y)
assert radsimp(eq) == umul(sqrt(x), sqrt(y), 1/y)
assert radsimp(eq, symbolic=False) == eq
# issue 7498
assert radsimp(sqrt(x)/sqrt(y)**3) == umul(sqrt(x), sqrt(y**3), 1/y**3)
# for coverage
eq = sqrt(x)/y**2
assert radsimp(eq) == eq
def test_radsimp_issue_3214():
c, p = symbols('c p', positive=True)
s = sqrt(c**2 - p**2)
b = (c + I*p - s)/(c + I*p + s)
assert radsimp(b) == -I*(c + I*p - sqrt(c**2 - p**2))**2/(2*c*p)
def test_collect_1():
"""Collect with respect to Symbol"""
x, y, z, n = symbols('x,y,z,n')
assert collect(1, x) == 1
assert collect( x + y*x, x ) == x * (1 + y)
assert collect( x + x**2, x ) == x + x**2
assert collect( x**2 + y*x**2, x ) == (x**2)*(1 + y)
assert collect( x**2 + y*x, x ) == x*y + x**2
assert collect( 2*x**2 + y*x**2 + 3*x*y, [x] ) == x**2*(2 + y) + 3*x*y
assert collect( 2*x**2 + y*x**2 + 3*x*y, [y] ) == 2*x**2 + y*(x**2 + 3*x)
assert collect( ((1 + y + x)**4).expand(), x) == ((1 + y)**4).expand() + \
x*(4*(1 + y)**3).expand() + x**2*(6*(1 + y)**2).expand() + \
x**3*(4*(1 + y)).expand() + x**4
# symbols can be given as any iterable
expr = x + y
assert collect(expr, expr.free_symbols) == expr
assert collect(x*exp(x) + sin(x)*y + sin(x)*2 + 3*x, x, exact=None
) == x*exp(x) + 3*x + (y + 2)*sin(x)
assert collect(x*exp(x) + sin(x)*y + sin(x)*2 + 3*x + y*x +
y*x*exp(x), x, exact=None
) == x*exp(x)*(y + 1) + (3 + y)*x + (y + 2)*sin(x)
def test_collect_2():
"""Collect with respect to a sum"""
a, b, x = symbols('a,b,x')
assert collect(a*(cos(x) + sin(x)) + b*(cos(x) + sin(x)),
sin(x) + cos(x)) == (a + b)*(cos(x) + sin(x))
def test_collect_3():
"""Collect with respect to a product"""
a, b, c = symbols('a,b,c')
f = Function('f')
x, y, z, n = symbols('x,y,z,n')
assert collect(-x/8 + x*y, -x) == x*(y - Rational(1, 8))
assert collect( 1 + x*(y**2), x*y ) == 1 + x*(y**2)
assert collect( x*y + a*x*y, x*y) == x*y*(1 + a)
assert collect( 1 + x*y + a*x*y, x*y) == 1 + x*y*(1 + a)
assert collect(a*x*f(x) + b*(x*f(x)), x*f(x)) == x*(a + b)*f(x)
assert collect(a*x*log(x) + b*(x*log(x)), x*log(x)) == x*(a + b)*log(x)
assert collect(a*x**2*log(x)**2 + b*(x*log(x))**2, x*log(x)) == \
x**2*log(x)**2*(a + b)
# with respect to a product of three symbols
assert collect(y*x*z + a*x*y*z, x*y*z) == (1 + a)*x*y*z
def test_collect_4():
"""Collect with respect to a power"""
a, b, c, x = symbols('a,b,c,x')
assert collect(a*x**c + b*x**c, x**c) == x**c*(a + b)
# issue 6096: 2 stays with c (unless c is integer or x is positive0
assert collect(a*x**(2*c) + b*x**(2*c), x**c) == x**(2*c)*(a + b)
def test_collect_5():
"""Collect with respect to a tuple"""
a, x, y, z, n = symbols('a,x,y,z,n')
assert collect(x**2*y**4 + z*(x*y**2)**2 + z + a*z, [x*y**2, z]) in [
z*(1 + a + x**2*y**4) + x**2*y**4,
z*(1 + a) + x**2*y**4*(1 + z) ]
assert collect((1 + (x + y) + (x + y)**2).expand(),
[x, y]) == 1 + y + x*(1 + 2*y) + x**2 + y**2
def test_collect_pr19431():
"""Unevaluated collect with respect to a product"""
a = symbols('a')
assert collect(a**2*(a**2 + 1), a**2, evaluate=False)[a**2] == (a**2 + 1)
def test_collect_D():
D = Derivative
f = Function('f')
x, a, b = symbols('x,a,b')
fx = D(f(x), x)
fxx = D(f(x), x, x)
assert collect(a*fx + b*fx, fx) == (a + b)*fx
assert collect(a*D(fx, x) + b*D(fx, x), fx) == (a + b)*D(fx, x)
assert collect(a*fxx + b*fxx, fx) == (a + b)*D(fx, x)
# issue 4784
assert collect(5*f(x) + 3*fx, fx) == 5*f(x) + 3*fx
assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x)) == \
(x*f(x) + f(x))*D(f(x), x) + f(x)
assert collect(f(x) + f(x)*diff(f(x), x) + x*diff(f(x), x)*f(x), f(x).diff(x), exact=True) == \
(x*f(x) + f(x))*D(f(x), x) + f(x)
assert collect(1/f(x) + 1/f(x)*diff(f(x), x) + x*diff(f(x), x)/f(x), f(x).diff(x), exact=True) == \
(1/f(x) + x/f(x))*D(f(x), x) + 1/f(x)
e = (1 + x*fx + fx)/f(x)
assert collect(e.expand(), fx) == fx*(x/f(x) + 1/f(x)) + 1/f(x)
def test_collect_func():
f = ((x + a + 1)**3).expand()
assert collect(f, x) == a**3 + 3*a**2 + 3*a + x**3 + x**2*(3*a + 3) + \
x*(3*a**2 + 6*a + 3) + 1
assert collect(f, x, factor) == x**3 + 3*x**2*(a + 1) + 3*x*(a + 1)**2 + \
(a + 1)**3
assert collect(f, x, evaluate=False) == {
S.One: a**3 + 3*a**2 + 3*a + 1,
x: 3*a**2 + 6*a + 3, x**2: 3*a + 3,
x**3: 1
}
assert collect(f, x, factor, evaluate=False) == {
S.One: (a + 1)**3, x: 3*(a + 1)**2,
x**2: umul(S(3), a + 1), x**3: 1}
def test_collect_order():
a, b, x, t = symbols('a,b,x,t')
assert collect(t + t*x + t*x**2 + O(x**3), t) == t*(1 + x + x**2 + O(x**3))
assert collect(t + t*x + x**2 + O(x**3), t) == \
t*(1 + x + O(x**3)) + x**2 + O(x**3)
f = a*x + b*x + c*x**2 + d*x**2 + O(x**3)
g = x*(a + b) + x**2*(c + d) + O(x**3)
assert collect(f, x) == g
assert collect(f, x, distribute_order_term=False) == g
f = sin(a + b).series(b, 0, 10)
assert collect(f, [sin(a), cos(a)]) == \
sin(a)*cos(b).series(b, 0, 10) + cos(a)*sin(b).series(b, 0, 10)
assert collect(f, [sin(a), cos(a)], distribute_order_term=False) == \
sin(a)*cos(b).series(b, 0, 10).removeO() + \
cos(a)*sin(b).series(b, 0, 10).removeO() + O(b**10)
def test_rcollect():
assert rcollect((x**2*y + x*y + x + y)/(x + y), y) == \
(x + y*(1 + x + x**2))/(x + y)
assert rcollect(sqrt(-((x + 1)*(y + 1))), z) == sqrt(-((x + 1)*(y + 1)))
def test_collect_D_0():
D = Derivative
f = Function('f')
x, a, b = symbols('x,a,b')
fxx = D(f(x), x, x)
assert collect(a*fxx + b*fxx, fxx) == (a + b)*fxx
def test_collect_Wild():
"""Collect with respect to functions with Wild argument"""
a, b, x, y = symbols('a b x y')
f = Function('f')
w1 = Wild('.1')
w2 = Wild('.2')
assert collect(f(x) + a*f(x), f(w1)) == (1 + a)*f(x)
assert collect(f(x, y) + a*f(x, y), f(w1)) == f(x, y) + a*f(x, y)
assert collect(f(x, y) + a*f(x, y), f(w1, w2)) == (1 + a)*f(x, y)
assert collect(f(x, y) + a*f(x, y), f(w1, w1)) == f(x, y) + a*f(x, y)
assert collect(f(x, x) + a*f(x, x), f(w1, w1)) == (1 + a)*f(x, x)
assert collect(a*(x + 1)**y + (x + 1)**y, w1**y) == (1 + a)*(x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, w1**b) == \
a*(x + 1)**y + (x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, (x + 1)**w2) == \
(1 + a)*(x + 1)**y
assert collect(a*(x + 1)**y + (x + 1)**y, w1**w2) == (1 + a)*(x + 1)**y
def test_collect_const():
# coverage not provided by above tests
assert collect_const(2*sqrt(3) + 4*a*sqrt(5)) == \
2*(2*sqrt(5)*a + sqrt(3)) # let the primitive reabsorb
assert collect_const(2*sqrt(3) + 4*a*sqrt(5), sqrt(3)) == \
2*sqrt(3) + 4*a*sqrt(5)
assert collect_const(sqrt(2)*(1 + sqrt(2)) + sqrt(3) + x*sqrt(2)) == \
sqrt(2)*(x + 1 + sqrt(2)) + sqrt(3)
# issue 5290
assert collect_const(2*x + 2*y + 1, 2) == \
collect_const(2*x + 2*y + 1) == \
Add(S.One, Mul(2, x + y, evaluate=False), evaluate=False)
assert collect_const(-y - z) == Mul(-1, y + z, evaluate=False)
assert collect_const(2*x - 2*y - 2*z, 2) == \
Mul(2, x - y - z, evaluate=False)
assert collect_const(2*x - 2*y - 2*z, -2) == \
_unevaluated_Add(2*x, Mul(-2, y + z, evaluate=False))
# this is why the content_primitive is used
eq = (sqrt(15 + 5*sqrt(2))*x + sqrt(3 + sqrt(2))*y)*2
assert collect_sqrt(eq + 2) == \
2*sqrt(sqrt(2) + 3)*(sqrt(5)*x + y) + 2
# issue 16296
assert collect_const(a + b + x/2 + y/2) == a + b + Mul(S.Half, x + y, evaluate=False)
def test_issue_13143():
f = Function('f')
fx = f(x).diff(x)
e = f(x) + fx + f(x)*fx
# collect function before derivative
assert collect(e, Wild('w')) == f(x)*(fx + 1) + fx
e = f(x) + f(x)*fx + x*fx*f(x)
assert collect(e, fx) == (x*f(x) + f(x))*fx + f(x)
assert collect(e, f(x)) == (x*fx + fx + 1)*f(x)
e = f(x) + fx + f(x)*fx
assert collect(e, [f(x), fx]) == f(x)*(1 + fx) + fx
assert collect(e, [fx, f(x)]) == fx*(1 + f(x)) + f(x)
def test_issue_6097():
assert collect(a*y**(2.0*x) + b*y**(2.0*x), y**x) == (a + b)*(y**x)**2.0
assert collect(a*2**(2.0*x) + b*2**(2.0*x), 2**x) == (a + b)*(2**x)**2.0
def test_fraction_expand():
eq = (x + y)*y/x
assert eq.expand(frac=True) == fraction_expand(eq) == (x*y + y**2)/x
assert eq.expand() == y + y**2/x
def test_fraction():
x, y, z = map(Symbol, 'xyz')
A = Symbol('A', commutative=False)
assert fraction(S.Half) == (1, 2)
assert fraction(x) == (x, 1)
assert fraction(1/x) == (1, x)
assert fraction(x/y) == (x, y)
assert fraction(x/2) == (x, 2)
assert fraction(x*y/z) == (x*y, z)
assert fraction(x/(y*z)) == (x, y*z)
assert fraction(1/y**2) == (1, y**2)
assert fraction(x/y**2) == (x, y**2)
assert fraction((x**2 + 1)/y) == (x**2 + 1, y)
assert fraction(x*(y + 1)/y**7) == (x*(y + 1), y**7)
assert fraction(exp(-x), exact=True) == (exp(-x), 1)
assert fraction((1/(x + y))/2, exact=True) == (1, Mul(2,(x + y), evaluate=False))
assert fraction(x*A/y) == (x*A, y)
assert fraction(x*A**-1/y) == (x*A**-1, y)
n = symbols('n', negative=True)
assert fraction(exp(n)) == (1, exp(-n))
assert fraction(exp(-n)) == (exp(-n), 1)
p = symbols('p', positive=True)
assert fraction(exp(-p)*log(p), exact=True) == (exp(-p)*log(p), 1)
m = Mul(1, 1, S.Half, evaluate=False)
assert fraction(m) == (1, 2)
assert fraction(m, exact=True) == (Mul(1, 1, evaluate=False), 2)
m = Mul(1, 1, S.Half, S.Half, Pow(1, -1, evaluate=False), evaluate=False)
assert fraction(m) == (1, 4)
assert fraction(m, exact=True) == \
(Mul(1, 1, evaluate=False), Mul(2, 2, 1, evaluate=False))
def test_issue_5615():
aA, Re, a, b, D = symbols('aA Re a b D')
e = ((D**3*a + b*aA**3)/Re).expand()
assert collect(e, [aA**3/Re, a]) == e
def test_issue_5933():
from sympy.geometry.polygon import (Polygon, RegularPolygon)
from sympy.simplify.radsimp import denom
x = Polygon(*RegularPolygon((0, 0), 1, 5).vertices).centroid.x
assert abs(denom(x).n()) > 1e-12
assert abs(denom(radsimp(x))) > 1e-12 # in case simplify didn't handle it
def test_issue_14608():
a, b = symbols('a b', commutative=False)
x, y = symbols('x y')
raises(AttributeError, lambda: collect(a*b + b*a, a))
assert collect(x*y + y*(x+1), a) == x*y + y*(x+1)
assert collect(x*y + y*(x+1) + a*b + b*a, y) == y*(2*x + 1) + a*b + b*a
def test_collect_abs():
s = abs(x) + abs(y)
assert collect_abs(s) == s
assert unchanged(Mul, abs(x), abs(y))
ans = Abs(x*y)
assert isinstance(ans, Abs)
assert collect_abs(abs(x)*abs(y)) == ans
assert collect_abs(1 + exp(abs(x)*abs(y))) == 1 + exp(ans)
# See https://github.com/sympy/sympy/issues/12910
p = Symbol('p', positive=True)
assert collect_abs(p/abs(1-p)).is_commutative is True
def test_issue_19149():
eq = exp(3*x/4)
assert collect(eq, exp(x)) == eq
def test_issue_19719():
a, b = symbols('a, b')
expr = a**2 * (b + 1) + (7 + 1/b)/a
collected = collect(expr, (a**2, 1/a), evaluate=False)
# Would return {_Dummy_20**(-2): b + 1, 1/a: 7 + 1/b} without xreplace
assert collected == {a**2: b + 1, 1/a: 7 + 1/b}
def test_issue_21355():
assert radsimp(1/(x + sqrt(x**2))) == 1/(x + sqrt(x**2))
assert radsimp(1/(x - sqrt(x**2))) == 1/(x - sqrt(x**2))
|