File size: 14,313 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from sympy.core.function import Function
from sympy.core.mul import Mul
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import sin
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.simplify.powsimp import (powdenest, powsimp)
from sympy.simplify.simplify import (signsimp, simplify)
from sympy.core.symbol import Str

from sympy.abc import x, y, z, a, b


def test_powsimp():
    x, y, z, n = symbols('x,y,z,n')
    f = Function('f')
    assert powsimp( 4**x * 2**(-x) * 2**(-x) ) == 1
    assert powsimp( (-4)**x * (-2)**(-x) * 2**(-x) ) == 1

    assert powsimp(
        f(4**x * 2**(-x) * 2**(-x)) ) == f(4**x * 2**(-x) * 2**(-x))
    assert powsimp( f(4**x * 2**(-x) * 2**(-x)), deep=True ) == f(1)
    assert exp(x)*exp(y) == exp(x)*exp(y)
    assert powsimp(exp(x)*exp(y)) == exp(x + y)
    assert powsimp(exp(x)*exp(y)*2**x*2**y) == (2*E)**(x + y)
    assert powsimp(exp(x)*exp(y)*2**x*2**y, combine='exp') == \
        exp(x + y)*2**(x + y)
    assert powsimp(exp(x)*exp(y)*exp(2)*sin(x) + sin(y) + 2**x*2**y) == \
        exp(2 + x + y)*sin(x) + sin(y) + 2**(x + y)
    assert powsimp(sin(exp(x)*exp(y))) == sin(exp(x)*exp(y))
    assert powsimp(sin(exp(x)*exp(y)), deep=True) == sin(exp(x + y))
    assert powsimp(x**2*x**y) == x**(2 + y)
    # This should remain factored, because 'exp' with deep=True is supposed
    # to act like old automatic exponent combining.
    assert powsimp((1 + E*exp(E))*exp(-E), combine='exp', deep=True) == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), deep=True) == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E)) == (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), combine='exp') == \
        (1 + exp(1 + E))*exp(-E)
    assert powsimp((1 + E*exp(E))*exp(-E), combine='base') == \
        (1 + E*exp(E))*exp(-E)
    x, y = symbols('x,y', nonnegative=True)
    n = Symbol('n', real=True)
    assert powsimp(y**n * (y/x)**(-n)) == x**n
    assert powsimp(x**(x**(x*y)*y**(x*y))*y**(x**(x*y)*y**(x*y)), deep=True) \
        == (x*y)**(x*y)**(x*y)
    assert powsimp(2**(2**(2*x)*x), deep=False) == 2**(2**(2*x)*x)
    assert powsimp(2**(2**(2*x)*x), deep=True) == 2**(x*4**x)
    assert powsimp(
        exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
        exp(-x + exp(-x)*exp(-x*log(x)))
    assert powsimp(
        exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
        exp(-x + exp(-x)*exp(-x*log(x)))
    assert powsimp((x + y)/(3*z), deep=False, combine='exp') == (x + y)/(3*z)
    assert powsimp((x/3 + y/3)/z, deep=True, combine='exp') == (x/3 + y/3)/z
    assert powsimp(exp(x)/(1 + exp(x)*exp(y)), deep=True) == \
        exp(x)/(1 + exp(x + y))
    assert powsimp(x*y**(z**x*z**y), deep=True) == x*y**(z**(x + y))
    assert powsimp((z**x*z**y)**x, deep=True) == (z**(x + y))**x
    assert powsimp(x*(z**x*z**y)**x, deep=True) == x*(z**(x + y))**x
    p = symbols('p', positive=True)
    assert powsimp((1/x)**log(2)/x) == (1/x)**(1 + log(2))
    assert powsimp((1/p)**log(2)/p) == p**(-1 - log(2))

    # coefficient of exponent can only be simplified for positive bases
    assert powsimp(2**(2*x)) == 4**x
    assert powsimp((-1)**(2*x)) == (-1)**(2*x)
    i = symbols('i', integer=True)
    assert powsimp((-1)**(2*i)) == 1
    assert powsimp((-1)**(-x)) != (-1)**x  # could be 1/((-1)**x), but is not
    # force=True overrides assumptions
    assert powsimp((-1)**(2*x), force=True) == 1

    # rational exponents allow combining of negative terms
    w, n, m = symbols('w n m', negative=True)
    e = i/a  # not a rational exponent if `a` is unknown
    ex = w**e*n**e*m**e
    assert powsimp(ex) == m**(i/a)*n**(i/a)*w**(i/a)
    e = i/3
    ex = w**e*n**e*m**e
    assert powsimp(ex) == (-1)**i*(-m*n*w)**(i/3)
    e = (3 + i)/i
    ex = w**e*n**e*m**e
    assert powsimp(ex) == (-1)**(3*e)*(-m*n*w)**e

    eq = x**(a*Rational(2, 3))
    # eq != (x**a)**(2/3) (try x = -1 and a = 3 to see)
    assert powsimp(eq).exp == eq.exp == a*Rational(2, 3)
    # powdenest goes the other direction
    assert powsimp(2**(2*x)) == 4**x

    assert powsimp(exp(p/2)) == exp(p/2)

    # issue 6368
    eq = Mul(*[sqrt(Dummy(imaginary=True)) for i in range(3)])
    assert powsimp(eq) == eq and eq.is_Mul

    assert all(powsimp(e) == e for e in (sqrt(x**a), sqrt(x**2)))

    # issue 8836
    assert str( powsimp(exp(I*pi/3)*root(-1,3)) ) == '(-1)**(2/3)'

    # issue 9183
    assert powsimp(-0.1**x) == -0.1**x

    # issue 10095
    assert powsimp((1/(2*E))**oo) == (exp(-1)/2)**oo

    # PR 13131
    eq = sin(2*x)**2*sin(2.0*x)**2
    assert powsimp(eq) == eq

    # issue 14615
    assert powsimp(x**2*y**3*(x*y**2)**Rational(3, 2)
        ) == x*y*(x*y**2)**Rational(5, 2)


def test_powsimp_negated_base():
    assert powsimp((-x + y)/sqrt(x - y)) == -sqrt(x - y)
    assert powsimp((-x + y)*(-z + y)/sqrt(x - y)/sqrt(z - y)) == sqrt(x - y)*sqrt(z - y)
    p = symbols('p', positive=True)
    reps = {p: 2, a: S.Half}
    assert powsimp((-p)**a/p**a).subs(reps) == ((-1)**a).subs(reps)
    assert powsimp((-p)**a*p**a).subs(reps) == ((-p**2)**a).subs(reps)
    n = symbols('n', negative=True)
    reps = {p: -2, a: S.Half}
    assert powsimp((-n)**a/n**a).subs(reps) == (-1)**(-a).subs(a, S.Half)
    assert powsimp((-n)**a*n**a).subs(reps) == ((-n**2)**a).subs(reps)
    # if x is 0 then the lhs is 0**a*oo**a which is not (-1)**a
    eq = (-x)**a/x**a
    assert powsimp(eq) == eq


def test_powsimp_nc():
    x, y, z = symbols('x,y,z')
    A, B, C = symbols('A B C', commutative=False)

    assert powsimp(A**x*A**y, combine='all') == A**(x + y)
    assert powsimp(A**x*A**y, combine='base') == A**x*A**y
    assert powsimp(A**x*A**y, combine='exp') == A**(x + y)

    assert powsimp(A**x*B**x, combine='all') == A**x*B**x
    assert powsimp(A**x*B**x, combine='base') == A**x*B**x
    assert powsimp(A**x*B**x, combine='exp') == A**x*B**x

    assert powsimp(B**x*A**x, combine='all') == B**x*A**x
    assert powsimp(B**x*A**x, combine='base') == B**x*A**x
    assert powsimp(B**x*A**x, combine='exp') == B**x*A**x

    assert powsimp(A**x*A**y*A**z, combine='all') == A**(x + y + z)
    assert powsimp(A**x*A**y*A**z, combine='base') == A**x*A**y*A**z
    assert powsimp(A**x*A**y*A**z, combine='exp') == A**(x + y + z)

    assert powsimp(A**x*B**x*C**x, combine='all') == A**x*B**x*C**x
    assert powsimp(A**x*B**x*C**x, combine='base') == A**x*B**x*C**x
    assert powsimp(A**x*B**x*C**x, combine='exp') == A**x*B**x*C**x

    assert powsimp(B**x*A**x*C**x, combine='all') == B**x*A**x*C**x
    assert powsimp(B**x*A**x*C**x, combine='base') == B**x*A**x*C**x
    assert powsimp(B**x*A**x*C**x, combine='exp') == B**x*A**x*C**x


def test_issue_6440():
    assert powsimp(16*2**a*8**b) == 2**(a + 3*b + 4)


def test_powdenest():
    x, y = symbols('x,y')
    p, q = symbols('p q', positive=True)
    i, j = symbols('i,j', integer=True)

    assert powdenest(x) == x
    assert powdenest(x + 2*(x**(a*Rational(2, 3)))**(3*x)) == (x + 2*(x**(a*Rational(2, 3)))**(3*x))
    assert powdenest((exp(a*Rational(2, 3)))**(3*x))  # -X-> (exp(a/3))**(6*x)
    assert powdenest((x**(a*Rational(2, 3)))**(3*x)) == ((x**(a*Rational(2, 3)))**(3*x))
    assert powdenest(exp(3*x*log(2))) == 2**(3*x)
    assert powdenest(sqrt(p**2)) == p
    eq = p**(2*i)*q**(4*i)
    assert powdenest(eq) == (p*q**2)**(2*i)
    # -X-> (x**x)**i*(x**x)**j == x**(x*(i + j))
    assert powdenest((x**x)**(i + j))
    assert powdenest(exp(3*y*log(x))) == x**(3*y)
    assert powdenest(exp(y*(log(a) + log(b)))) == (a*b)**y
    assert powdenest(exp(3*(log(a) + log(b)))) == a**3*b**3
    assert powdenest(((x**(2*i))**(3*y))**x) == ((x**(2*i))**(3*y))**x
    assert powdenest(((x**(2*i))**(3*y))**x, force=True) == x**(6*i*x*y)
    assert powdenest(((x**(a*Rational(2, 3)))**(3*y/i))**x) == \
        (((x**(a*Rational(2, 3)))**(3*y/i))**x)
    assert powdenest((x**(2*i)*y**(4*i))**z, force=True) == (x*y**2)**(2*i*z)
    assert powdenest((p**(2*i)*q**(4*i))**j) == (p*q**2)**(2*i*j)
    e = ((p**(2*a))**(3*y))**x
    assert powdenest(e) == e
    e = ((x**2*y**4)**a)**(x*y)
    assert powdenest(e) == e
    e = (((x**2*y**4)**a)**(x*y))**3
    assert powdenest(e) == ((x**2*y**4)**a)**(3*x*y)
    assert powdenest((((x**2*y**4)**a)**(x*y)), force=True) == \
        (x*y**2)**(2*a*x*y)
    assert powdenest((((x**2*y**4)**a)**(x*y))**3, force=True) == \
        (x*y**2)**(6*a*x*y)
    assert powdenest((x**2*y**6)**i) != (x*y**3)**(2*i)
    x, y = symbols('x,y', positive=True)
    assert powdenest((x**2*y**6)**i) == (x*y**3)**(2*i)

    assert powdenest((x**(i*Rational(2, 3))*y**(i/2))**(2*i)) == (x**Rational(4, 3)*y)**(i**2)
    assert powdenest(sqrt(x**(2*i)*y**(6*i))) == (x*y**3)**i

    assert powdenest(4**x) == 2**(2*x)
    assert powdenest((4**x)**y) == 2**(2*x*y)
    assert powdenest(4**x*y) == 2**(2*x)*y


def test_powdenest_polar():
    x, y, z = symbols('x y z', polar=True)
    a, b, c = symbols('a b c')
    assert powdenest((x*y*z)**a) == x**a*y**a*z**a
    assert powdenest((x**a*y**b)**c) == x**(a*c)*y**(b*c)
    assert powdenest(((x**a)**b*y**c)**c) == x**(a*b*c)*y**(c**2)


def test_issue_5805():
    arg = ((gamma(x)*hyper((), (), x))*pi)**2
    assert powdenest(arg) == (pi*gamma(x)*hyper((), (), x))**2
    assert arg.is_positive is None


def test_issue_9324_powsimp_on_matrix_symbol():
    M = MatrixSymbol('M', 10, 10)
    expr = powsimp(M, deep=True)
    assert expr == M
    assert expr.args[0] == Str('M')


def test_issue_6367():
    z = -5*sqrt(2)/(2*sqrt(2*sqrt(29) + 29)) + sqrt(-sqrt(29)/29 + S.Half)
    assert Mul(*[powsimp(a) for a in Mul.make_args(z.normal())]) == 0
    assert powsimp(z.normal()) == 0
    assert simplify(z) == 0
    assert powsimp(sqrt(2 + sqrt(3))*sqrt(2 - sqrt(3)) + 1) == 2
    assert powsimp(z) != 0


def test_powsimp_polar():
    from sympy.functions.elementary.complexes import polar_lift
    from sympy.functions.elementary.exponential import exp_polar
    x, y, z = symbols('x y z')
    p, q, r = symbols('p q r', polar=True)

    assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x)
    assert powsimp(p**x * q**x) == (p*q)**x
    assert p**x * (1/p)**x == 1
    assert (1/p)**x == p**(-x)

    assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y)
    assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
        (p*exp_polar(1))**(x + y)
    assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
        exp_polar(x + y)*p**(x + y)
    assert powsimp(
        exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
        == p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
    assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
        sin(exp_polar(x)*exp_polar(y))
    assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
        sin(exp_polar(x + y))


def test_issue_5728():
    b = x*sqrt(y)
    a = sqrt(b)
    c = sqrt(sqrt(x)*y)
    assert powsimp(a*b) == sqrt(b)**3
    assert powsimp(a*b**2*sqrt(y)) == sqrt(y)*a**5
    assert powsimp(a*x**2*c**3*y) == c**3*a**5
    assert powsimp(a*x*c**3*y**2) == c**7*a
    assert powsimp(x*c**3*y**2) == c**7
    assert powsimp(x*c**3*y) == x*y*c**3
    assert powsimp(sqrt(x)*c**3*y) == c**5
    assert powsimp(sqrt(x)*a**3*sqrt(y)) == sqrt(x)*sqrt(y)*a**3
    assert powsimp(Mul(sqrt(x)*c**3*sqrt(y), y, evaluate=False)) == \
        sqrt(x)*sqrt(y)**3*c**3
    assert powsimp(a**2*a*x**2*y) == a**7

    # symbolic powers work, too
    b = x**y*y
    a = b*sqrt(b)
    assert a.is_Mul is True
    assert powsimp(a) == sqrt(b)**3

    # as does exp
    a = x*exp(y*Rational(2, 3))
    assert powsimp(a*sqrt(a)) == sqrt(a)**3
    assert powsimp(a**2*sqrt(a)) == sqrt(a)**5
    assert powsimp(a**2*sqrt(sqrt(a))) == sqrt(sqrt(a))**9


def test_issue_from_PR1599():
    n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
    assert (powsimp(sqrt(n1)*sqrt(n2)*sqrt(n3)) ==
        -I*sqrt(-n1)*sqrt(-n2)*sqrt(-n3))
    assert (powsimp(root(n1, 3)*root(n2, 3)*root(n3, 3)*root(n4, 3)) ==
        -(-1)**Rational(1, 3)*
        (-n1)**Rational(1, 3)*(-n2)**Rational(1, 3)*(-n3)**Rational(1, 3)*(-n4)**Rational(1, 3))


def test_issue_10195():
    a = Symbol('a', integer=True)
    l = Symbol('l', even=True, nonzero=True)
    n = Symbol('n', odd=True)
    e_x = (-1)**(n/2 - S.Half) - (-1)**(n*Rational(3, 2) - S.Half)
    assert powsimp((-1)**(l/2)) == I**l
    assert powsimp((-1)**(n/2)) == I**n
    assert powsimp((-1)**(n*Rational(3, 2))) == -I**n
    assert powsimp(e_x) == (-1)**(n/2 - S.Half) + (-1)**(n*Rational(3, 2) +
            S.Half)
    assert powsimp((-1)**(a*Rational(3, 2))) == (-I)**a

def test_issue_15709():
    assert powsimp(3**x*Rational(2, 3)) == 2*3**(x-1)
    assert powsimp(2*3**x/3) == 2*3**(x-1)


def test_issue_11981():
    x, y = symbols('x y', commutative=False)
    assert powsimp((x*y)**2 * (y*x)**2) == (x*y)**2 * (y*x)**2


def test_issue_17524():
    a = symbols("a", real=True)
    e = (-1 - a**2)*sqrt(1 + a**2)
    assert signsimp(powsimp(e)) == signsimp(e) == -(a**2 + 1)**(S(3)/2)


def test_issue_19627():
    # if you use force the user must verify
    assert powdenest(sqrt(sin(x)**2), force=True) == sin(x)
    assert powdenest((x**(S.Half/y))**(2*y), force=True) == x
    from sympy.core.function import expand_power_base
    e = 1 - a
    expr = (exp(z/e)*x**(b/e)*y**((1 - b)/e))**e
    assert powdenest(expand_power_base(expr, force=True), force=True
        ) == x**b*y**(1 - b)*exp(z)


def test_issue_22546():
    p1, p2 = symbols('p1, p2', positive=True)
    ref = powsimp(p1**z/p2**z)
    e = z + 1
    ans = ref.subs(z, e)
    assert ans.is_Pow
    assert powsimp(p1**e/p2**e) == ans
    i = symbols('i', integer=True)
    ref = powsimp(x**i/y**i)
    e = i + 1
    ans = ref.subs(i, e)
    assert ans.is_Pow
    assert powsimp(x**e/y**e) == ans