Spaces:
Sleeping
Sleeping
File size: 14,313 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
from sympy.core.function import Function
from sympy.core.mul import Mul
from sympy.core.numbers import (E, I, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import sin
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.simplify.powsimp import (powdenest, powsimp)
from sympy.simplify.simplify import (signsimp, simplify)
from sympy.core.symbol import Str
from sympy.abc import x, y, z, a, b
def test_powsimp():
x, y, z, n = symbols('x,y,z,n')
f = Function('f')
assert powsimp( 4**x * 2**(-x) * 2**(-x) ) == 1
assert powsimp( (-4)**x * (-2)**(-x) * 2**(-x) ) == 1
assert powsimp(
f(4**x * 2**(-x) * 2**(-x)) ) == f(4**x * 2**(-x) * 2**(-x))
assert powsimp( f(4**x * 2**(-x) * 2**(-x)), deep=True ) == f(1)
assert exp(x)*exp(y) == exp(x)*exp(y)
assert powsimp(exp(x)*exp(y)) == exp(x + y)
assert powsimp(exp(x)*exp(y)*2**x*2**y) == (2*E)**(x + y)
assert powsimp(exp(x)*exp(y)*2**x*2**y, combine='exp') == \
exp(x + y)*2**(x + y)
assert powsimp(exp(x)*exp(y)*exp(2)*sin(x) + sin(y) + 2**x*2**y) == \
exp(2 + x + y)*sin(x) + sin(y) + 2**(x + y)
assert powsimp(sin(exp(x)*exp(y))) == sin(exp(x)*exp(y))
assert powsimp(sin(exp(x)*exp(y)), deep=True) == sin(exp(x + y))
assert powsimp(x**2*x**y) == x**(2 + y)
# This should remain factored, because 'exp' with deep=True is supposed
# to act like old automatic exponent combining.
assert powsimp((1 + E*exp(E))*exp(-E), combine='exp', deep=True) == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), deep=True) == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E)) == (1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), combine='exp') == \
(1 + exp(1 + E))*exp(-E)
assert powsimp((1 + E*exp(E))*exp(-E), combine='base') == \
(1 + E*exp(E))*exp(-E)
x, y = symbols('x,y', nonnegative=True)
n = Symbol('n', real=True)
assert powsimp(y**n * (y/x)**(-n)) == x**n
assert powsimp(x**(x**(x*y)*y**(x*y))*y**(x**(x*y)*y**(x*y)), deep=True) \
== (x*y)**(x*y)**(x*y)
assert powsimp(2**(2**(2*x)*x), deep=False) == 2**(2**(2*x)*x)
assert powsimp(2**(2**(2*x)*x), deep=True) == 2**(x*4**x)
assert powsimp(
exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
exp(-x + exp(-x)*exp(-x*log(x)))
assert powsimp(
exp(-x + exp(-x)*exp(-x*log(x))), deep=False, combine='exp') == \
exp(-x + exp(-x)*exp(-x*log(x)))
assert powsimp((x + y)/(3*z), deep=False, combine='exp') == (x + y)/(3*z)
assert powsimp((x/3 + y/3)/z, deep=True, combine='exp') == (x/3 + y/3)/z
assert powsimp(exp(x)/(1 + exp(x)*exp(y)), deep=True) == \
exp(x)/(1 + exp(x + y))
assert powsimp(x*y**(z**x*z**y), deep=True) == x*y**(z**(x + y))
assert powsimp((z**x*z**y)**x, deep=True) == (z**(x + y))**x
assert powsimp(x*(z**x*z**y)**x, deep=True) == x*(z**(x + y))**x
p = symbols('p', positive=True)
assert powsimp((1/x)**log(2)/x) == (1/x)**(1 + log(2))
assert powsimp((1/p)**log(2)/p) == p**(-1 - log(2))
# coefficient of exponent can only be simplified for positive bases
assert powsimp(2**(2*x)) == 4**x
assert powsimp((-1)**(2*x)) == (-1)**(2*x)
i = symbols('i', integer=True)
assert powsimp((-1)**(2*i)) == 1
assert powsimp((-1)**(-x)) != (-1)**x # could be 1/((-1)**x), but is not
# force=True overrides assumptions
assert powsimp((-1)**(2*x), force=True) == 1
# rational exponents allow combining of negative terms
w, n, m = symbols('w n m', negative=True)
e = i/a # not a rational exponent if `a` is unknown
ex = w**e*n**e*m**e
assert powsimp(ex) == m**(i/a)*n**(i/a)*w**(i/a)
e = i/3
ex = w**e*n**e*m**e
assert powsimp(ex) == (-1)**i*(-m*n*w)**(i/3)
e = (3 + i)/i
ex = w**e*n**e*m**e
assert powsimp(ex) == (-1)**(3*e)*(-m*n*w)**e
eq = x**(a*Rational(2, 3))
# eq != (x**a)**(2/3) (try x = -1 and a = 3 to see)
assert powsimp(eq).exp == eq.exp == a*Rational(2, 3)
# powdenest goes the other direction
assert powsimp(2**(2*x)) == 4**x
assert powsimp(exp(p/2)) == exp(p/2)
# issue 6368
eq = Mul(*[sqrt(Dummy(imaginary=True)) for i in range(3)])
assert powsimp(eq) == eq and eq.is_Mul
assert all(powsimp(e) == e for e in (sqrt(x**a), sqrt(x**2)))
# issue 8836
assert str( powsimp(exp(I*pi/3)*root(-1,3)) ) == '(-1)**(2/3)'
# issue 9183
assert powsimp(-0.1**x) == -0.1**x
# issue 10095
assert powsimp((1/(2*E))**oo) == (exp(-1)/2)**oo
# PR 13131
eq = sin(2*x)**2*sin(2.0*x)**2
assert powsimp(eq) == eq
# issue 14615
assert powsimp(x**2*y**3*(x*y**2)**Rational(3, 2)
) == x*y*(x*y**2)**Rational(5, 2)
def test_powsimp_negated_base():
assert powsimp((-x + y)/sqrt(x - y)) == -sqrt(x - y)
assert powsimp((-x + y)*(-z + y)/sqrt(x - y)/sqrt(z - y)) == sqrt(x - y)*sqrt(z - y)
p = symbols('p', positive=True)
reps = {p: 2, a: S.Half}
assert powsimp((-p)**a/p**a).subs(reps) == ((-1)**a).subs(reps)
assert powsimp((-p)**a*p**a).subs(reps) == ((-p**2)**a).subs(reps)
n = symbols('n', negative=True)
reps = {p: -2, a: S.Half}
assert powsimp((-n)**a/n**a).subs(reps) == (-1)**(-a).subs(a, S.Half)
assert powsimp((-n)**a*n**a).subs(reps) == ((-n**2)**a).subs(reps)
# if x is 0 then the lhs is 0**a*oo**a which is not (-1)**a
eq = (-x)**a/x**a
assert powsimp(eq) == eq
def test_powsimp_nc():
x, y, z = symbols('x,y,z')
A, B, C = symbols('A B C', commutative=False)
assert powsimp(A**x*A**y, combine='all') == A**(x + y)
assert powsimp(A**x*A**y, combine='base') == A**x*A**y
assert powsimp(A**x*A**y, combine='exp') == A**(x + y)
assert powsimp(A**x*B**x, combine='all') == A**x*B**x
assert powsimp(A**x*B**x, combine='base') == A**x*B**x
assert powsimp(A**x*B**x, combine='exp') == A**x*B**x
assert powsimp(B**x*A**x, combine='all') == B**x*A**x
assert powsimp(B**x*A**x, combine='base') == B**x*A**x
assert powsimp(B**x*A**x, combine='exp') == B**x*A**x
assert powsimp(A**x*A**y*A**z, combine='all') == A**(x + y + z)
assert powsimp(A**x*A**y*A**z, combine='base') == A**x*A**y*A**z
assert powsimp(A**x*A**y*A**z, combine='exp') == A**(x + y + z)
assert powsimp(A**x*B**x*C**x, combine='all') == A**x*B**x*C**x
assert powsimp(A**x*B**x*C**x, combine='base') == A**x*B**x*C**x
assert powsimp(A**x*B**x*C**x, combine='exp') == A**x*B**x*C**x
assert powsimp(B**x*A**x*C**x, combine='all') == B**x*A**x*C**x
assert powsimp(B**x*A**x*C**x, combine='base') == B**x*A**x*C**x
assert powsimp(B**x*A**x*C**x, combine='exp') == B**x*A**x*C**x
def test_issue_6440():
assert powsimp(16*2**a*8**b) == 2**(a + 3*b + 4)
def test_powdenest():
x, y = symbols('x,y')
p, q = symbols('p q', positive=True)
i, j = symbols('i,j', integer=True)
assert powdenest(x) == x
assert powdenest(x + 2*(x**(a*Rational(2, 3)))**(3*x)) == (x + 2*(x**(a*Rational(2, 3)))**(3*x))
assert powdenest((exp(a*Rational(2, 3)))**(3*x)) # -X-> (exp(a/3))**(6*x)
assert powdenest((x**(a*Rational(2, 3)))**(3*x)) == ((x**(a*Rational(2, 3)))**(3*x))
assert powdenest(exp(3*x*log(2))) == 2**(3*x)
assert powdenest(sqrt(p**2)) == p
eq = p**(2*i)*q**(4*i)
assert powdenest(eq) == (p*q**2)**(2*i)
# -X-> (x**x)**i*(x**x)**j == x**(x*(i + j))
assert powdenest((x**x)**(i + j))
assert powdenest(exp(3*y*log(x))) == x**(3*y)
assert powdenest(exp(y*(log(a) + log(b)))) == (a*b)**y
assert powdenest(exp(3*(log(a) + log(b)))) == a**3*b**3
assert powdenest(((x**(2*i))**(3*y))**x) == ((x**(2*i))**(3*y))**x
assert powdenest(((x**(2*i))**(3*y))**x, force=True) == x**(6*i*x*y)
assert powdenest(((x**(a*Rational(2, 3)))**(3*y/i))**x) == \
(((x**(a*Rational(2, 3)))**(3*y/i))**x)
assert powdenest((x**(2*i)*y**(4*i))**z, force=True) == (x*y**2)**(2*i*z)
assert powdenest((p**(2*i)*q**(4*i))**j) == (p*q**2)**(2*i*j)
e = ((p**(2*a))**(3*y))**x
assert powdenest(e) == e
e = ((x**2*y**4)**a)**(x*y)
assert powdenest(e) == e
e = (((x**2*y**4)**a)**(x*y))**3
assert powdenest(e) == ((x**2*y**4)**a)**(3*x*y)
assert powdenest((((x**2*y**4)**a)**(x*y)), force=True) == \
(x*y**2)**(2*a*x*y)
assert powdenest((((x**2*y**4)**a)**(x*y))**3, force=True) == \
(x*y**2)**(6*a*x*y)
assert powdenest((x**2*y**6)**i) != (x*y**3)**(2*i)
x, y = symbols('x,y', positive=True)
assert powdenest((x**2*y**6)**i) == (x*y**3)**(2*i)
assert powdenest((x**(i*Rational(2, 3))*y**(i/2))**(2*i)) == (x**Rational(4, 3)*y)**(i**2)
assert powdenest(sqrt(x**(2*i)*y**(6*i))) == (x*y**3)**i
assert powdenest(4**x) == 2**(2*x)
assert powdenest((4**x)**y) == 2**(2*x*y)
assert powdenest(4**x*y) == 2**(2*x)*y
def test_powdenest_polar():
x, y, z = symbols('x y z', polar=True)
a, b, c = symbols('a b c')
assert powdenest((x*y*z)**a) == x**a*y**a*z**a
assert powdenest((x**a*y**b)**c) == x**(a*c)*y**(b*c)
assert powdenest(((x**a)**b*y**c)**c) == x**(a*b*c)*y**(c**2)
def test_issue_5805():
arg = ((gamma(x)*hyper((), (), x))*pi)**2
assert powdenest(arg) == (pi*gamma(x)*hyper((), (), x))**2
assert arg.is_positive is None
def test_issue_9324_powsimp_on_matrix_symbol():
M = MatrixSymbol('M', 10, 10)
expr = powsimp(M, deep=True)
assert expr == M
assert expr.args[0] == Str('M')
def test_issue_6367():
z = -5*sqrt(2)/(2*sqrt(2*sqrt(29) + 29)) + sqrt(-sqrt(29)/29 + S.Half)
assert Mul(*[powsimp(a) for a in Mul.make_args(z.normal())]) == 0
assert powsimp(z.normal()) == 0
assert simplify(z) == 0
assert powsimp(sqrt(2 + sqrt(3))*sqrt(2 - sqrt(3)) + 1) == 2
assert powsimp(z) != 0
def test_powsimp_polar():
from sympy.functions.elementary.complexes import polar_lift
from sympy.functions.elementary.exponential import exp_polar
x, y, z = symbols('x y z')
p, q, r = symbols('p q r', polar=True)
assert (polar_lift(-1))**(2*x) == exp_polar(2*pi*I*x)
assert powsimp(p**x * q**x) == (p*q)**x
assert p**x * (1/p)**x == 1
assert (1/p)**x == p**(-x)
assert exp_polar(x)*exp_polar(y) == exp_polar(x)*exp_polar(y)
assert powsimp(exp_polar(x)*exp_polar(y)) == exp_polar(x + y)
assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y) == \
(p*exp_polar(1))**(x + y)
assert powsimp(exp_polar(x)*exp_polar(y)*p**x*p**y, combine='exp') == \
exp_polar(x + y)*p**(x + y)
assert powsimp(
exp_polar(x)*exp_polar(y)*exp_polar(2)*sin(x) + sin(y) + p**x*p**y) \
== p**(x + y) + sin(x)*exp_polar(2 + x + y) + sin(y)
assert powsimp(sin(exp_polar(x)*exp_polar(y))) == \
sin(exp_polar(x)*exp_polar(y))
assert powsimp(sin(exp_polar(x)*exp_polar(y)), deep=True) == \
sin(exp_polar(x + y))
def test_issue_5728():
b = x*sqrt(y)
a = sqrt(b)
c = sqrt(sqrt(x)*y)
assert powsimp(a*b) == sqrt(b)**3
assert powsimp(a*b**2*sqrt(y)) == sqrt(y)*a**5
assert powsimp(a*x**2*c**3*y) == c**3*a**5
assert powsimp(a*x*c**3*y**2) == c**7*a
assert powsimp(x*c**3*y**2) == c**7
assert powsimp(x*c**3*y) == x*y*c**3
assert powsimp(sqrt(x)*c**3*y) == c**5
assert powsimp(sqrt(x)*a**3*sqrt(y)) == sqrt(x)*sqrt(y)*a**3
assert powsimp(Mul(sqrt(x)*c**3*sqrt(y), y, evaluate=False)) == \
sqrt(x)*sqrt(y)**3*c**3
assert powsimp(a**2*a*x**2*y) == a**7
# symbolic powers work, too
b = x**y*y
a = b*sqrt(b)
assert a.is_Mul is True
assert powsimp(a) == sqrt(b)**3
# as does exp
a = x*exp(y*Rational(2, 3))
assert powsimp(a*sqrt(a)) == sqrt(a)**3
assert powsimp(a**2*sqrt(a)) == sqrt(a)**5
assert powsimp(a**2*sqrt(sqrt(a))) == sqrt(sqrt(a))**9
def test_issue_from_PR1599():
n1, n2, n3, n4 = symbols('n1 n2 n3 n4', negative=True)
assert (powsimp(sqrt(n1)*sqrt(n2)*sqrt(n3)) ==
-I*sqrt(-n1)*sqrt(-n2)*sqrt(-n3))
assert (powsimp(root(n1, 3)*root(n2, 3)*root(n3, 3)*root(n4, 3)) ==
-(-1)**Rational(1, 3)*
(-n1)**Rational(1, 3)*(-n2)**Rational(1, 3)*(-n3)**Rational(1, 3)*(-n4)**Rational(1, 3))
def test_issue_10195():
a = Symbol('a', integer=True)
l = Symbol('l', even=True, nonzero=True)
n = Symbol('n', odd=True)
e_x = (-1)**(n/2 - S.Half) - (-1)**(n*Rational(3, 2) - S.Half)
assert powsimp((-1)**(l/2)) == I**l
assert powsimp((-1)**(n/2)) == I**n
assert powsimp((-1)**(n*Rational(3, 2))) == -I**n
assert powsimp(e_x) == (-1)**(n/2 - S.Half) + (-1)**(n*Rational(3, 2) +
S.Half)
assert powsimp((-1)**(a*Rational(3, 2))) == (-I)**a
def test_issue_15709():
assert powsimp(3**x*Rational(2, 3)) == 2*3**(x-1)
assert powsimp(2*3**x/3) == 2*3**(x-1)
def test_issue_11981():
x, y = symbols('x y', commutative=False)
assert powsimp((x*y)**2 * (y*x)**2) == (x*y)**2 * (y*x)**2
def test_issue_17524():
a = symbols("a", real=True)
e = (-1 - a**2)*sqrt(1 + a**2)
assert signsimp(powsimp(e)) == signsimp(e) == -(a**2 + 1)**(S(3)/2)
def test_issue_19627():
# if you use force the user must verify
assert powdenest(sqrt(sin(x)**2), force=True) == sin(x)
assert powdenest((x**(S.Half/y))**(2*y), force=True) == x
from sympy.core.function import expand_power_base
e = 1 - a
expr = (exp(z/e)*x**(b/e)*y**((1 - b)/e))**e
assert powdenest(expand_power_base(expr, force=True), force=True
) == x**b*y**(1 - b)*exp(z)
def test_issue_22546():
p1, p2 = symbols('p1, p2', positive=True)
ref = powsimp(p1**z/p2**z)
e = z + 1
ans = ref.subs(z, e)
assert ans.is_Pow
assert powsimp(p1**e/p2**e) == ans
i = symbols('i', integer=True)
ref = powsimp(x**i/y**i)
e = i + 1
ans = ref.subs(i, e)
assert ans.is_Pow
assert powsimp(x**e/y**e) == ans
|