File size: 19,410 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.parameters import evaluate
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.hyperbolic import (cosh, coth, csch, sech, sinh, tanh)
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import (cos, cot, csc, sec, sin, tan)
from sympy.simplify.powsimp import powsimp
from sympy.simplify.fu import (
    L, TR1, TR10, TR10i, TR11, _TR11, TR12, TR12i, TR13, TR14, TR15, TR16,
    TR111, TR2, TR2i, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TRmorrie, _TR56 as T,
    TRpower, hyper_as_trig, fu, process_common_addends, trig_split,
    as_f_sign_1)
from sympy.core.random import verify_numerically
from sympy.abc import a, b, c, x, y, z


def test_TR1():
    assert TR1(2*csc(x) + sec(x)) == 1/cos(x) + 2/sin(x)


def test_TR2():
    assert TR2(tan(x)) == sin(x)/cos(x)
    assert TR2(cot(x)) == cos(x)/sin(x)
    assert TR2(tan(tan(x) - sin(x)/cos(x))) == 0


def test_TR2i():
    # just a reminder that ratios of powers only simplify if both
    # numerator and denominator satisfy the condition that each
    # has a positive base or an integer exponent; e.g. the following,
    # at y=-1, x=1/2 gives sqrt(2)*I != -sqrt(2)*I
    assert powsimp(2**x/y**x) != (2/y)**x

    assert TR2i(sin(x)/cos(x)) == tan(x)
    assert TR2i(sin(x)*sin(y)/cos(x)) == tan(x)*sin(y)
    assert TR2i(1/(sin(x)/cos(x))) == 1/tan(x)
    assert TR2i(1/(sin(x)*sin(y)/cos(x))) == 1/tan(x)/sin(y)
    assert TR2i(sin(x)/2/(cos(x) + 1)) == sin(x)/(cos(x) + 1)/2

    assert TR2i(sin(x)/2/(cos(x) + 1), half=True) == tan(x/2)/2
    assert TR2i(sin(1)/(cos(1) + 1), half=True) == tan(S.Half)
    assert TR2i(sin(2)/(cos(2) + 1), half=True) == tan(1)
    assert TR2i(sin(4)/(cos(4) + 1), half=True) == tan(2)
    assert TR2i(sin(5)/(cos(5) + 1), half=True) == tan(5*S.Half)
    assert TR2i((cos(1) + 1)/sin(1), half=True) == 1/tan(S.Half)
    assert TR2i((cos(2) + 1)/sin(2), half=True) == 1/tan(1)
    assert TR2i((cos(4) + 1)/sin(4), half=True) == 1/tan(2)
    assert TR2i((cos(5) + 1)/sin(5), half=True) == 1/tan(5*S.Half)
    assert TR2i((cos(1) + 1)**(-a)*sin(1)**a, half=True) == tan(S.Half)**a
    assert TR2i((cos(2) + 1)**(-a)*sin(2)**a, half=True) == tan(1)**a
    assert TR2i((cos(4) + 1)**(-a)*sin(4)**a, half=True) == (cos(4) + 1)**(-a)*sin(4)**a
    assert TR2i((cos(5) + 1)**(-a)*sin(5)**a, half=True) == (cos(5) + 1)**(-a)*sin(5)**a
    assert TR2i((cos(1) + 1)**a*sin(1)**(-a), half=True) == tan(S.Half)**(-a)
    assert TR2i((cos(2) + 1)**a*sin(2)**(-a), half=True) == tan(1)**(-a)
    assert TR2i((cos(4) + 1)**a*sin(4)**(-a), half=True) == (cos(4) + 1)**a*sin(4)**(-a)
    assert TR2i((cos(5) + 1)**a*sin(5)**(-a), half=True) == (cos(5) + 1)**a*sin(5)**(-a)

    i = symbols('i', integer=True)
    assert TR2i(((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**(-i)
    assert TR2i(1/((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**i


def test_TR3():
    assert TR3(cos(y - x*(y - x))) == cos(x*(x - y) + y)
    assert cos(pi/2 + x) == -sin(x)
    assert cos(30*pi/2 + x) == -cos(x)

    for f in (cos, sin, tan, cot, csc, sec):
        i = f(pi*Rational(3, 7))
        j = TR3(i)
        assert verify_numerically(i, j) and i.func != j.func

    with evaluate(False):
        eq = cos(9*pi/22)
    assert eq.has(9*pi) and TR3(eq) == sin(pi/11)


def test_TR4():
    for i in [0, pi/6, pi/4, pi/3, pi/2]:
        with evaluate(False):
            eq = cos(i)
        assert isinstance(eq, cos) and TR4(eq) == cos(i)


def test__TR56():
    h = lambda x: 1 - x
    assert T(sin(x)**3, sin, cos, h, 4, False) == sin(x)*(-cos(x)**2 + 1)
    assert T(sin(x)**10, sin, cos, h, 4, False) == sin(x)**10
    assert T(sin(x)**6, sin, cos, h, 6, False) == (-cos(x)**2 + 1)**3
    assert T(sin(x)**6, sin, cos, h, 6, True) == sin(x)**6
    assert T(sin(x)**8, sin, cos, h, 10, True) == (-cos(x)**2 + 1)**4

    # issue 17137
    assert T(sin(x)**I, sin, cos, h, 4, True) == sin(x)**I
    assert T(sin(x)**(2*I + 1), sin, cos, h, 4, True) == sin(x)**(2*I + 1)


def test_TR5():
    assert TR5(sin(x)**2) == -cos(x)**2 + 1
    assert TR5(sin(x)**-2) == sin(x)**(-2)
    assert TR5(sin(x)**4) == (-cos(x)**2 + 1)**2


def test_TR6():
    assert TR6(cos(x)**2) == -sin(x)**2 + 1
    assert TR6(cos(x)**-2) == cos(x)**(-2)
    assert TR6(cos(x)**4) == (-sin(x)**2 + 1)**2


def test_TR7():
    assert TR7(cos(x)**2) == cos(2*x)/2 + S.Half
    assert TR7(cos(x)**2 + 1) == cos(2*x)/2 + Rational(3, 2)


def test_TR8():
    assert TR8(cos(2)*cos(3)) == cos(5)/2 + cos(1)/2
    assert TR8(cos(2)*sin(3)) == sin(5)/2 + sin(1)/2
    assert TR8(sin(2)*sin(3)) == -cos(5)/2 + cos(1)/2
    assert TR8(sin(1)*sin(2)*sin(3)) == sin(4)/4 - sin(6)/4 + sin(2)/4
    assert TR8(cos(2)*cos(3)*cos(4)*cos(5)) == \
        cos(4)/4 + cos(10)/8 + cos(2)/8 + cos(8)/8 + cos(14)/8 + \
        cos(6)/8 + Rational(1, 8)
    assert TR8(cos(2)*cos(3)*cos(4)*cos(5)*cos(6)) == \
        cos(10)/8 + cos(4)/8 + 3*cos(2)/16 + cos(16)/16 + cos(8)/8 + \
        cos(14)/16 + cos(20)/16 + cos(12)/16 + Rational(1, 16) + cos(6)/8
    assert TR8(sin(pi*Rational(3, 7))**2*cos(pi*Rational(3, 7))**2/(16*sin(pi/7)**2)) == Rational(1, 64)

def test_TR9():
    a = S.Half
    b = 3*a
    assert TR9(a) == a
    assert TR9(cos(1) + cos(2)) == 2*cos(a)*cos(b)
    assert TR9(cos(1) - cos(2)) == 2*sin(a)*sin(b)
    assert TR9(sin(1) - sin(2)) == -2*sin(a)*cos(b)
    assert TR9(sin(1) + sin(2)) == 2*sin(b)*cos(a)
    assert TR9(cos(1) + 2*sin(1) + 2*sin(2)) == cos(1) + 4*sin(b)*cos(a)
    assert TR9(cos(4) + cos(2) + 2*cos(1)*cos(3)) == 4*cos(1)*cos(3)
    assert TR9((cos(4) + cos(2))/cos(3)/2 + cos(3)) == 2*cos(1)*cos(2)
    assert TR9(cos(3) + cos(4) + cos(5) + cos(6)) == \
        4*cos(S.Half)*cos(1)*cos(Rational(9, 2))
    assert TR9(cos(3) + cos(3)*cos(2)) == cos(3) + cos(2)*cos(3)
    assert TR9(-cos(y) + cos(x*y)) == -2*sin(x*y/2 - y/2)*sin(x*y/2 + y/2)
    assert TR9(-sin(y) + sin(x*y)) == 2*sin(x*y/2 - y/2)*cos(x*y/2 + y/2)
    c = cos(x)
    s = sin(x)
    for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
        for a in ((c, s), (s, c), (cos(x), cos(x*y)), (sin(x), sin(x*y))):
            args = zip(si, a)
            ex = Add(*[Mul(*ai) for ai in args])
            t = TR9(ex)
            assert not (a[0].func == a[1].func and (
                not verify_numerically(ex, t.expand(trig=True)) or t.is_Add)
                or a[1].func != a[0].func and ex != t)


def test_TR10():
    assert TR10(cos(a + b)) == -sin(a)*sin(b) + cos(a)*cos(b)
    assert TR10(sin(a + b)) == sin(a)*cos(b) + sin(b)*cos(a)
    assert TR10(sin(a + b + c)) == \
        (-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \
        (sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
    assert TR10(cos(a + b + c)) == \
        (-sin(a)*sin(b) + cos(a)*cos(b))*cos(c) - \
        (sin(a)*cos(b) + sin(b)*cos(a))*sin(c)


def test_TR10i():
    assert TR10i(cos(1)*cos(3) + sin(1)*sin(3)) == cos(2)
    assert TR10i(cos(1)*cos(3) - sin(1)*sin(3)) == cos(4)
    assert TR10i(cos(1)*sin(3) - sin(1)*cos(3)) == sin(2)
    assert TR10i(cos(1)*sin(3) + sin(1)*cos(3)) == sin(4)
    assert TR10i(cos(1)*sin(3) + sin(1)*cos(3) + 7) == sin(4) + 7
    assert TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3)) == cos(3) + sin(4)
    assert TR10i(2*cos(1)*sin(3) + 2*sin(1)*cos(3) + cos(3)) == \
        2*sin(4) + cos(3)
    assert TR10i(cos(2)*cos(3) + sin(2)*(cos(1)*sin(2) + cos(2)*sin(1))) == \
        cos(1)
    eq = (cos(2)*cos(3) + sin(2)*(
        cos(1)*sin(2) + cos(2)*sin(1)))*cos(5) + sin(1)*sin(5)
    assert TR10i(eq) == TR10i(eq.expand()) == cos(4)
    assert TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x) == \
        2*sqrt(2)*x*sin(x + pi/6)
    assert TR10i(cos(x)/sqrt(6) + sin(x)/sqrt(2) +
            cos(x)/sqrt(6)/3 + sin(x)/sqrt(2)/3) == 4*sqrt(6)*sin(x + pi/6)/9
    assert TR10i(cos(x)/sqrt(6) + sin(x)/sqrt(2) +
            cos(y)/sqrt(6)/3 + sin(y)/sqrt(2)/3) == \
        sqrt(6)*sin(x + pi/6)/3 + sqrt(6)*sin(y + pi/6)/9
    assert TR10i(cos(x) + sqrt(3)*sin(x) + 2*sqrt(3)*cos(x + pi/6)) == 4*cos(x)
    assert TR10i(cos(x) + sqrt(3)*sin(x) +
            2*sqrt(3)*cos(x + pi/6) + 4*sin(x)) == 4*sqrt(2)*sin(x + pi/4)
    assert TR10i(cos(2)*sin(3) + sin(2)*cos(4)) == \
        sin(2)*cos(4) + sin(3)*cos(2)

    A = Symbol('A', commutative=False)
    assert TR10i(sqrt(2)*cos(x)*A + sqrt(6)*sin(x)*A) == \
        2*sqrt(2)*sin(x + pi/6)*A


    c = cos(x)
    s = sin(x)
    h = sin(y)
    r = cos(y)
    for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
        for argsi in ((c*r, s*h), (c*h, s*r)): # explicit 2-args
            args = zip(si, argsi)
            ex = Add(*[Mul(*ai) for ai in args])
            t = TR10i(ex)
            assert not (ex - t.expand(trig=True) or t.is_Add)

    c = cos(x)
    s = sin(x)
    h = sin(pi/6)
    r = cos(pi/6)
    for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
        for argsi in ((c*r, s*h), (c*h, s*r)): # induced
            args = zip(si, argsi)
            ex = Add(*[Mul(*ai) for ai in args])
            t = TR10i(ex)
            assert not (ex - t.expand(trig=True) or t.is_Add)


def test_TR11():

    assert TR11(sin(2*x)) == 2*sin(x)*cos(x)
    assert TR11(sin(4*x)) == 4*((-sin(x)**2 + cos(x)**2)*sin(x)*cos(x))
    assert TR11(sin(x*Rational(4, 3))) == \
        4*((-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3))

    assert TR11(cos(2*x)) == -sin(x)**2 + cos(x)**2
    assert TR11(cos(4*x)) == \
        (-sin(x)**2 + cos(x)**2)**2 - 4*sin(x)**2*cos(x)**2

    assert TR11(cos(2)) == cos(2)

    assert TR11(cos(pi*Rational(3, 7)), pi*Rational(2, 7)) == -cos(pi*Rational(2, 7))**2 + sin(pi*Rational(2, 7))**2
    assert TR11(cos(4), 2) == -sin(2)**2 + cos(2)**2
    assert TR11(cos(6), 2) == cos(6)
    assert TR11(sin(x)/cos(x/2), x/2) == 2*sin(x/2)

def test__TR11():

    assert _TR11(sin(x/3)*sin(2*x)*sin(x/4)/(cos(x/6)*cos(x/8))) == \
        4*sin(x/8)*sin(x/6)*sin(2*x),_TR11(sin(x/3)*sin(2*x)*sin(x/4)/(cos(x/6)*cos(x/8)))
    assert _TR11(sin(x/3)/cos(x/6)) == 2*sin(x/6)

    assert _TR11(cos(x/6)/sin(x/3)) == 1/(2*sin(x/6))
    assert _TR11(sin(2*x)*cos(x/8)/sin(x/4)) == sin(2*x)/(2*sin(x/8)), _TR11(sin(2*x)*cos(x/8)/sin(x/4))
    assert _TR11(sin(x)/sin(x/2)) == 2*cos(x/2)


def test_TR12():
    assert TR12(tan(x + y)) == (tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
    assert TR12(tan(x + y + z)) ==\
        (tan(z) + (tan(x) + tan(y))/(-tan(x)*tan(y) + 1))/(
        1 - (tan(x) + tan(y))*tan(z)/(-tan(x)*tan(y) + 1))
    assert TR12(tan(x*y)) == tan(x*y)


def test_TR13():
    assert TR13(tan(3)*tan(2)) == -tan(2)/tan(5) - tan(3)/tan(5) + 1
    assert TR13(cot(3)*cot(2)) == 1 + cot(3)*cot(5) + cot(2)*cot(5)
    assert TR13(tan(1)*tan(2)*tan(3)) == \
        (-tan(2)/tan(5) - tan(3)/tan(5) + 1)*tan(1)
    assert TR13(tan(1)*tan(2)*cot(3)) == \
        (-tan(2)/tan(3) + 1 - tan(1)/tan(3))*cot(3)


def test_L():
    assert L(cos(x) + sin(x)) == 2


def test_fu():

    assert fu(sin(50)**2 + cos(50)**2 + sin(pi/6)) == Rational(3, 2)
    assert fu(sqrt(6)*cos(x) + sqrt(2)*sin(x)) == 2*sqrt(2)*sin(x + pi/3)


    eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
    assert fu(eq) == cos(x)**4 - 2*cos(y)**2 + 2

    assert fu(S.Half - cos(2*x)/2) == sin(x)**2

    assert fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b))) == \
        sqrt(2)*sin(a + b + pi/4)

    assert fu(sqrt(3)*cos(x)/2 + sin(x)/2) == sin(x + pi/3)

    assert fu(1 - sin(2*x)**2/4 - sin(y)**2 - cos(x)**4) == \
        -cos(x)**2 + cos(y)**2

    assert fu(cos(pi*Rational(4, 9))) == sin(pi/18)
    assert fu(cos(pi/9)*cos(pi*Rational(2, 9))*cos(pi*Rational(3, 9))*cos(pi*Rational(4, 9))) == Rational(1, 16)

    assert fu(
        tan(pi*Rational(7, 18)) + tan(pi*Rational(5, 18)) - sqrt(3)*tan(pi*Rational(5, 18))*tan(pi*Rational(7, 18))) == \
        -sqrt(3)

    assert fu(tan(1)*tan(2)) == tan(1)*tan(2)

    expr = Mul(*[cos(2**i) for i in range(10)])
    assert fu(expr) == sin(1024)/(1024*sin(1))

    # issue #18059:
    assert fu(cos(x) + sqrt(sin(x)**2)) == cos(x) + sqrt(sin(x)**2)

    assert fu((-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/((cos(2*x) + 4))) == \
        7*sin(x) + 3*sqrt(3)*cos(x)


def test_objective():
    assert fu(sin(x)/cos(x), measure=lambda x: x.count_ops()) == \
            tan(x)
    assert fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) == \
            sin(x)/cos(x)


def test_process_common_addends():
    # this tests that the args are not evaluated as they are given to do
    # and that key2 works when key1 is False
    do = lambda x: Add(*[i**(i%2) for i in x.args])
    assert process_common_addends(Add(*[1, 2, 3, 4], evaluate=False), do,
        key2=lambda x: x%2, key1=False) == 1**1 + 3**1 + 2**0 + 4**0


def test_trig_split():
    assert trig_split(cos(x), cos(y)) == (1, 1, 1, x, y, True)
    assert trig_split(2*cos(x), -2*cos(y)) == (2, 1, -1, x, y, True)
    assert trig_split(cos(x)*sin(y), cos(y)*sin(y)) == \
        (sin(y), 1, 1, x, y, True)

    assert trig_split(cos(x), -sqrt(3)*sin(x), two=True) == \
        (2, 1, -1, x, pi/6, False)
    assert trig_split(cos(x), sin(x), two=True) == \
        (sqrt(2), 1, 1, x, pi/4, False)
    assert trig_split(cos(x), -sin(x), two=True) == \
        (sqrt(2), 1, -1, x, pi/4, False)
    assert trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True) == \
        (2*sqrt(2), 1, -1, x, pi/6, False)
    assert trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True) == \
        (-2*sqrt(2), 1, 1, x, pi/3, False)
    assert trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True) == \
        (sqrt(6)/3, 1, 1, x, pi/6, False)
    assert trig_split(-sqrt(6)*cos(x)*sin(y),
            -sqrt(2)*sin(x)*sin(y), two=True) == \
        (-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False)

    assert trig_split(cos(x), sin(x)) is None
    assert trig_split(cos(x), sin(z)) is None
    assert trig_split(2*cos(x), -sin(x)) is None
    assert trig_split(cos(x), -sqrt(3)*sin(x)) is None
    assert trig_split(cos(x)*cos(y), sin(x)*sin(z)) is None
    assert trig_split(cos(x)*cos(y), sin(x)*sin(y)) is None
    assert trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True) is \
        None

    assert trig_split(sqrt(3)*sqrt(x), cos(3), two=True) is None
    assert trig_split(sqrt(3)*root(x, 3), sin(3)*cos(2), two=True) is None
    assert trig_split(cos(5)*cos(6), cos(7)*sin(5), two=True) is None


def test_TRmorrie():
    assert TRmorrie(7*Mul(*[cos(i) for i in range(10)])) == \
        7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))
    assert TRmorrie(x) == x
    assert TRmorrie(2*x) == 2*x
    e = cos(pi/7)*cos(pi*Rational(2, 7))*cos(pi*Rational(4, 7))
    assert TR8(TRmorrie(e)) == Rational(-1, 8)
    e = Mul(*[cos(2**i*pi/17) for i in range(1, 17)])
    assert TR8(TR3(TRmorrie(e))) == Rational(1, 65536)
    # issue 17063
    eq = cos(x)/cos(x/2)
    assert TRmorrie(eq) == eq
    # issue #20430
    eq = cos(x/2)*sin(x/2)*cos(x)**3
    assert TRmorrie(eq) == sin(2*x)*cos(x)**2/4


def test_TRpower():
    assert TRpower(1/sin(x)**2) == 1/sin(x)**2
    assert TRpower(cos(x)**3*sin(x/2)**4) == \
        (3*cos(x)/4 + cos(3*x)/4)*(-cos(x)/2 + cos(2*x)/8 + Rational(3, 8))
    for k in range(2, 8):
        assert verify_numerically(sin(x)**k, TRpower(sin(x)**k))
        assert verify_numerically(cos(x)**k, TRpower(cos(x)**k))


def test_hyper_as_trig():
    from sympy.simplify.fu import _osborne, _osbornei

    eq = sinh(x)**2 + cosh(x)**2
    t, f = hyper_as_trig(eq)
    assert f(fu(t)) == cosh(2*x)
    e, f = hyper_as_trig(tanh(x + y))
    assert f(TR12(e)) == (tanh(x) + tanh(y))/(tanh(x)*tanh(y) + 1)

    d = Dummy()
    assert _osborne(sinh(x), d) == I*sin(x*d)
    assert _osborne(tanh(x), d) == I*tan(x*d)
    assert _osborne(coth(x), d) == cot(x*d)/I
    assert _osborne(cosh(x), d) == cos(x*d)
    assert _osborne(sech(x), d) == sec(x*d)
    assert _osborne(csch(x), d) == csc(x*d)/I
    for func in (sinh, cosh, tanh, coth, sech, csch):
        h = func(pi)
        assert _osbornei(_osborne(h, d), d) == h
    # /!\ the _osborne functions are not meant to work
    # in the o(i(trig, d), d) direction so we just check
    # that they work as they are supposed to work
    assert _osbornei(cos(x*y + z), y) == cosh(x + z*I)
    assert _osbornei(sin(x*y + z), y) == sinh(x + z*I)/I
    assert _osbornei(tan(x*y + z), y) == tanh(x + z*I)/I
    assert _osbornei(cot(x*y + z), y) == coth(x + z*I)*I
    assert _osbornei(sec(x*y + z), y) == sech(x + z*I)
    assert _osbornei(csc(x*y + z), y) == csch(x + z*I)*I


def test_TR12i():
    ta, tb, tc = [tan(i) for i in (a, b, c)]
    assert TR12i((ta + tb)/(-ta*tb + 1)) == tan(a + b)
    assert TR12i((ta + tb)/(ta*tb - 1)) == -tan(a + b)
    assert TR12i((-ta - tb)/(ta*tb - 1)) == tan(a + b)
    eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
    assert TR12i(eq.expand()) == \
        -3*tan(a + b)*tan(a + c)/(tan(a) + tan(b) - 1)/2
    assert TR12i(tan(x)/sin(x)) == tan(x)/sin(x)
    eq = (ta + cos(2))/(-ta*tb + 1)
    assert TR12i(eq) == eq
    eq = (ta + tb + 2)**2/(-ta*tb + 1)
    assert TR12i(eq) == eq
    eq = ta/(-ta*tb + 1)
    assert TR12i(eq) == eq
    eq = (((ta + tb)*(a + 1)).expand())**2/(ta*tb - 1)
    assert TR12i(eq) == -(a + 1)**2*tan(a + b)


def test_TR14():
    eq = (cos(x) - 1)*(cos(x) + 1)
    ans = -sin(x)**2
    assert TR14(eq) == ans
    assert TR14(1/eq) == 1/ans
    assert TR14((cos(x) - 1)**2*(cos(x) + 1)**2) == ans**2
    assert TR14((cos(x) - 1)**2*(cos(x) + 1)**3) == ans**2*(cos(x) + 1)
    assert TR14((cos(x) - 1)**3*(cos(x) + 1)**2) == ans**2*(cos(x) - 1)
    eq = (cos(x) - 1)**y*(cos(x) + 1)**y
    assert TR14(eq) == eq
    eq = (cos(x) - 2)**y*(cos(x) + 1)
    assert TR14(eq) == eq
    eq = (tan(x) - 2)**2*(cos(x) + 1)
    assert TR14(eq) == eq
    i = symbols('i', integer=True)
    assert TR14((cos(x) - 1)**i*(cos(x) + 1)**i) == ans**i
    assert TR14((sin(x) - 1)**i*(sin(x) + 1)**i) == (-cos(x)**2)**i
    # could use extraction in this case
    eq = (cos(x) - 1)**(i + 1)*(cos(x) + 1)**i
    assert TR14(eq) in [(cos(x) - 1)*ans**i, eq]

    assert TR14((sin(x) - 1)*(sin(x) + 1)) == -cos(x)**2
    p1 = (cos(x) + 1)*(cos(x) - 1)
    p2 = (cos(y) - 1)*2*(cos(y) + 1)
    p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1))
    assert TR14(p1*p2*p3*(x - 1)) == -18*((x - 1)*sin(x)**2*sin(y)**4)


def test_TR15_16_17():
    assert TR15(1 - 1/sin(x)**2) == -cot(x)**2
    assert TR16(1 - 1/cos(x)**2) == -tan(x)**2
    assert TR111(1 - 1/tan(x)**2) == 1 - cot(x)**2


def test_as_f_sign_1():
    assert as_f_sign_1(x + 1) == (1, x, 1)
    assert as_f_sign_1(x - 1) == (1, x, -1)
    assert as_f_sign_1(-x + 1) == (-1, x, -1)
    assert as_f_sign_1(-x - 1) == (-1, x, 1)
    assert as_f_sign_1(2*x + 2) == (2, x, 1)
    assert as_f_sign_1(x*y - y) == (y, x, -1)
    assert as_f_sign_1(-x*y + y) == (-y, x, -1)


def test_issue_25590():
    A = Symbol('A', commutative=False)
    B = Symbol('B', commutative=False)

    assert TR8(2*cos(x)*sin(x)*B*A) == sin(2*x)*B*A
    assert TR13(tan(2)*tan(3)*B*A) == (-tan(2)/tan(5) - tan(3)/tan(5) + 1)*B*A

    # XXX The result may not be optimal than
    # sin(2*x)*B*A + cos(x)**2 and may change in the future
    assert (2*cos(x)*sin(x)*B*A + cos(x)**2).simplify() == sin(2*x)*B*A + cos(2*x)/2 + S.One/2