File size: 72,929 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
from collections import defaultdict

from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core import (Basic, S, Add, Mul, Pow, Symbol, sympify,
                        expand_func, Function, Dummy, Expr, factor_terms,
                        expand_power_exp, Eq)
from sympy.core.exprtools import factor_nc
from sympy.core.parameters import global_parameters
from sympy.core.function import (expand_log, count_ops, _mexpand,
    nfloat, expand_mul, expand)
from sympy.core.numbers import Float, I, pi, Rational, equal_valued
from sympy.core.relational import Relational
from sympy.core.rules import Transform
from sympy.core.sorting import ordered
from sympy.core.sympify import _sympify
from sympy.core.traversal import bottom_up as _bottom_up, walk as _walk
from sympy.functions import gamma, exp, sqrt, log, exp_polar, re
from sympy.functions.combinatorial.factorials import CombinatorialFunction
from sympy.functions.elementary.complexes import unpolarify, Abs, sign
from sympy.functions.elementary.exponential import ExpBase
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.piecewise import (Piecewise, piecewise_fold,
                                                  piecewise_simplify)
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.functions.special.bessel import (BesselBase, besselj, besseli,
                                            besselk, bessely, jn)
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.integrals.integrals import Integral
from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul,
                                            MatPow, MatrixSymbol)
from sympy.polys import together, cancel, factor
from sympy.polys.numberfields.minpoly import _is_sum_surds, _minimal_polynomial_sq
from sympy.simplify.combsimp import combsimp
from sympy.simplify.cse_opts import sub_pre, sub_post
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.powsimp import powsimp
from sympy.simplify.radsimp import radsimp, fraction, collect_abs
from sympy.simplify.sqrtdenest import sqrtdenest
from sympy.simplify.trigsimp import trigsimp, exptrigsimp
from sympy.utilities.decorator import deprecated
from sympy.utilities.iterables import has_variety, sift, subsets, iterable
from sympy.utilities.misc import as_int

import mpmath


def separatevars(expr, symbols=[], dict=False, force=False):
    """
    Separates variables in an expression, if possible.  By
    default, it separates with respect to all symbols in an
    expression and collects constant coefficients that are
    independent of symbols.

    Explanation
    ===========

    If ``dict=True`` then the separated terms will be returned
    in a dictionary keyed to their corresponding symbols.
    By default, all symbols in the expression will appear as
    keys; if symbols are provided, then all those symbols will
    be used as keys, and any terms in the expression containing
    other symbols or non-symbols will be returned keyed to the
    string 'coeff'. (Passing None for symbols will return the
    expression in a dictionary keyed to 'coeff'.)

    If ``force=True``, then bases of powers will be separated regardless
    of assumptions on the symbols involved.

    Notes
    =====

    The order of the factors is determined by Mul, so that the
    separated expressions may not necessarily be grouped together.

    Although factoring is necessary to separate variables in some
    expressions, it is not necessary in all cases, so one should not
    count on the returned factors being factored.

    Examples
    ========

    >>> from sympy.abc import x, y, z, alpha
    >>> from sympy import separatevars, sin
    >>> separatevars((x*y)**y)
    (x*y)**y
    >>> separatevars((x*y)**y, force=True)
    x**y*y**y

    >>> e = 2*x**2*z*sin(y)+2*z*x**2
    >>> separatevars(e)
    2*x**2*z*(sin(y) + 1)
    >>> separatevars(e, symbols=(x, y), dict=True)
    {'coeff': 2*z, x: x**2, y: sin(y) + 1}
    >>> separatevars(e, [x, y, alpha], dict=True)
    {'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1}

    If the expression is not really separable, or is only partially
    separable, separatevars will do the best it can to separate it
    by using factoring.

    >>> separatevars(x + x*y - 3*x**2)
    -x*(3*x - y - 1)

    If the expression is not separable then expr is returned unchanged
    or (if dict=True) then None is returned.

    >>> eq = 2*x + y*sin(x)
    >>> separatevars(eq) == eq
    True
    >>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) is None
    True

    """
    expr = sympify(expr)
    if dict:
        return _separatevars_dict(_separatevars(expr, force), symbols)
    else:
        return _separatevars(expr, force)


def _separatevars(expr, force):
    if isinstance(expr, Abs):
        arg = expr.args[0]
        if arg.is_Mul and not arg.is_number:
            s = separatevars(arg, dict=True, force=force)
            if s is not None:
                return Mul(*map(expr.func, s.values()))
            else:
                return expr

    if len(expr.free_symbols) < 2:
        return expr

    # don't destroy a Mul since much of the work may already be done
    if expr.is_Mul:
        args = list(expr.args)
        changed = False
        for i, a in enumerate(args):
            args[i] = separatevars(a, force)
            changed = changed or args[i] != a
        if changed:
            expr = expr.func(*args)
        return expr

    # get a Pow ready for expansion
    if expr.is_Pow and expr.base != S.Exp1:
        expr = Pow(separatevars(expr.base, force=force), expr.exp)

    # First try other expansion methods
    expr = expr.expand(mul=False, multinomial=False, force=force)

    _expr, reps = posify(expr) if force else (expr, {})
    expr = factor(_expr).subs(reps)

    if not expr.is_Add:
        return expr

    # Find any common coefficients to pull out
    args = list(expr.args)
    commonc = args[0].args_cnc(cset=True, warn=False)[0]
    for i in args[1:]:
        commonc &= i.args_cnc(cset=True, warn=False)[0]
    commonc = Mul(*commonc)
    commonc = commonc.as_coeff_Mul()[1]  # ignore constants
    commonc_set = commonc.args_cnc(cset=True, warn=False)[0]

    # remove them
    for i, a in enumerate(args):
        c, nc = a.args_cnc(cset=True, warn=False)
        c = c - commonc_set
        args[i] = Mul(*c)*Mul(*nc)
    nonsepar = Add(*args)

    if len(nonsepar.free_symbols) > 1:
        _expr = nonsepar
        _expr, reps = posify(_expr) if force else (_expr, {})
        _expr = (factor(_expr)).subs(reps)

        if not _expr.is_Add:
            nonsepar = _expr

    return commonc*nonsepar


def _separatevars_dict(expr, symbols):
    if symbols:
        if not all(t.is_Atom for t in symbols):
            raise ValueError("symbols must be Atoms.")
        symbols = list(symbols)
    elif symbols is None:
        return {'coeff': expr}
    else:
        symbols = list(expr.free_symbols)
        if not symbols:
            return None

    ret = {i: [] for i in symbols + ['coeff']}

    for i in Mul.make_args(expr):
        expsym = i.free_symbols
        intersection = set(symbols).intersection(expsym)
        if len(intersection) > 1:
            return None
        if len(intersection) == 0:
            # There are no symbols, so it is part of the coefficient
            ret['coeff'].append(i)
        else:
            ret[intersection.pop()].append(i)

    # rebuild
    for k, v in ret.items():
        ret[k] = Mul(*v)

    return ret


def posify(eq):
    """Return ``eq`` (with generic symbols made positive) and a
    dictionary containing the mapping between the old and new
    symbols.

    Explanation
    ===========

    Any symbol that has positive=None will be replaced with a positive dummy
    symbol having the same name. This replacement will allow more symbolic
    processing of expressions, especially those involving powers and
    logarithms.

    A dictionary that can be sent to subs to restore ``eq`` to its original
    symbols is also returned.

    >>> from sympy import posify, Symbol, log, solve
    >>> from sympy.abc import x
    >>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True))
    (_x + n + p, {_x: x})

    >>> eq = 1/x
    >>> log(eq).expand()
    log(1/x)
    >>> log(posify(eq)[0]).expand()
    -log(_x)
    >>> p, rep = posify(eq)
    >>> log(p).expand().subs(rep)
    -log(x)

    It is possible to apply the same transformations to an iterable
    of expressions:

    >>> eq = x**2 - 4
    >>> solve(eq, x)
    [-2, 2]
    >>> eq_x, reps = posify([eq, x]); eq_x
    [_x**2 - 4, _x]
    >>> solve(*eq_x)
    [2]
    """
    eq = sympify(eq)
    if iterable(eq):
        f = type(eq)
        eq = list(eq)
        syms = set()
        for e in eq:
            syms = syms.union(e.atoms(Symbol))
        reps = {}
        for s in syms:
            reps.update({v: k for k, v in posify(s)[1].items()})
        for i, e in enumerate(eq):
            eq[i] = e.subs(reps)
        return f(eq), {r: s for s, r in reps.items()}

    reps = {s: Dummy(s.name, positive=True, **s.assumptions0)
                 for s in eq.free_symbols if s.is_positive is None}
    eq = eq.subs(reps)
    return eq, {r: s for s, r in reps.items()}


def hypersimp(f, k):
    """Given combinatorial term f(k) simplify its consecutive term ratio
       i.e. f(k+1)/f(k).  The input term can be composed of functions and
       integer sequences which have equivalent representation in terms
       of gamma special function.

       Explanation
       ===========

       The algorithm performs three basic steps:

       1. Rewrite all functions in terms of gamma, if possible.

       2. Rewrite all occurrences of gamma in terms of products
          of gamma and rising factorial with integer,  absolute
          constant exponent.

       3. Perform simplification of nested fractions, powers
          and if the resulting expression is a quotient of
          polynomials, reduce their total degree.

       If f(k) is hypergeometric then as result we arrive with a
       quotient of polynomials of minimal degree. Otherwise None
       is returned.

       For more information on the implemented algorithm refer to:

       1. W. Koepf, Algorithms for m-fold Hypergeometric Summation,
          Journal of Symbolic Computation (1995) 20, 399-417
    """
    f = sympify(f)

    g = f.subs(k, k + 1) / f

    g = g.rewrite(gamma)
    if g.has(Piecewise):
        g = piecewise_fold(g)
        g = g.args[-1][0]
    g = expand_func(g)
    g = powsimp(g, deep=True, combine='exp')

    if g.is_rational_function(k):
        return simplify(g, ratio=S.Infinity)
    else:
        return None


def hypersimilar(f, g, k):
    """
    Returns True if ``f`` and ``g`` are hyper-similar.

    Explanation
    ===========

    Similarity in hypergeometric sense means that a quotient of
    f(k) and g(k) is a rational function in ``k``. This procedure
    is useful in solving recurrence relations.

    For more information see hypersimp().

    """
    f, g = list(map(sympify, (f, g)))

    h = (f/g).rewrite(gamma)
    h = h.expand(func=True, basic=False)

    return h.is_rational_function(k)


def signsimp(expr, evaluate=None):
    """Make all Add sub-expressions canonical wrt sign.

    Explanation
    ===========

    If an Add subexpression, ``a``, can have a sign extracted,
    as determined by could_extract_minus_sign, it is replaced
    with Mul(-1, a, evaluate=False). This allows signs to be
    extracted from powers and products.

    Examples
    ========

    >>> from sympy import signsimp, exp, symbols
    >>> from sympy.abc import x, y
    >>> i = symbols('i', odd=True)
    >>> n = -1 + 1/x
    >>> n/x/(-n)**2 - 1/n/x
    (-1 + 1/x)/(x*(1 - 1/x)**2) - 1/(x*(-1 + 1/x))
    >>> signsimp(_)
    0
    >>> x*n + x*-n
    x*(-1 + 1/x) + x*(1 - 1/x)
    >>> signsimp(_)
    0

    Since powers automatically handle leading signs

    >>> (-2)**i
    -2**i

    signsimp can be used to put the base of a power with an integer
    exponent into canonical form:

    >>> n**i
    (-1 + 1/x)**i

    By default, signsimp does not leave behind any hollow simplification:
    if making an Add canonical wrt sign didn't change the expression, the
    original Add is restored. If this is not desired then the keyword
    ``evaluate`` can be set to False:

    >>> e = exp(y - x)
    >>> signsimp(e) == e
    True
    >>> signsimp(e, evaluate=False)
    exp(-(x - y))

    """
    if evaluate is None:
        evaluate = global_parameters.evaluate
    expr = sympify(expr)
    if not isinstance(expr, (Expr, Relational)) or expr.is_Atom:
        return expr
    # get rid of an pre-existing unevaluation regarding sign
    e = expr.replace(lambda x: x.is_Mul and -(-x) != x, lambda x: -(-x))
    e = sub_post(sub_pre(e))
    if not isinstance(e, (Expr, Relational)) or e.is_Atom:
        return e
    if e.is_Add:
        rv = e.func(*[signsimp(a) for a in e.args])
        if not evaluate and isinstance(rv, Add
                ) and rv.could_extract_minus_sign():
            return Mul(S.NegativeOne, -rv, evaluate=False)
        return rv
    if evaluate:
        e = e.replace(lambda x: x.is_Mul and -(-x) != x, lambda x: -(-x))
    return e


def simplify(expr, ratio=1.7, measure=count_ops, rational=False, inverse=False, doit=True, **kwargs):
    """Simplifies the given expression.

    Explanation
    ===========

    Simplification is not a well defined term and the exact strategies
    this function tries can change in the future versions of SymPy. If
    your algorithm relies on "simplification" (whatever it is), try to
    determine what you need exactly  -  is it powsimp()?, radsimp()?,
    together()?, logcombine()?, or something else? And use this particular
    function directly, because those are well defined and thus your algorithm
    will be robust.

    Nonetheless, especially for interactive use, or when you do not know
    anything about the structure of the expression, simplify() tries to apply
    intelligent heuristics to make the input expression "simpler".  For
    example:

    >>> from sympy import simplify, cos, sin
    >>> from sympy.abc import x, y
    >>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
    >>> a
    (x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
    >>> simplify(a)
    x + 1

    Note that we could have obtained the same result by using specific
    simplification functions:

    >>> from sympy import trigsimp, cancel
    >>> trigsimp(a)
    (x**2 + x)/x
    >>> cancel(_)
    x + 1

    In some cases, applying :func:`simplify` may actually result in some more
    complicated expression. The default ``ratio=1.7`` prevents more extreme
    cases: if (result length)/(input length) > ratio, then input is returned
    unmodified.  The ``measure`` parameter lets you specify the function used
    to determine how complex an expression is.  The function should take a
    single argument as an expression and return a number such that if
    expression ``a`` is more complex than expression ``b``, then
    ``measure(a) > measure(b)``.  The default measure function is
    :func:`~.count_ops`, which returns the total number of operations in the
    expression.

    For example, if ``ratio=1``, ``simplify`` output cannot be longer
    than input.

    ::

        >>> from sympy import sqrt, simplify, count_ops, oo
        >>> root = 1/(sqrt(2)+3)

    Since ``simplify(root)`` would result in a slightly longer expression,
    root is returned unchanged instead::

       >>> simplify(root, ratio=1) == root
       True

    If ``ratio=oo``, simplify will be applied anyway::

        >>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
        True

    Note that the shortest expression is not necessary the simplest, so
    setting ``ratio`` to 1 may not be a good idea.
    Heuristically, the default value ``ratio=1.7`` seems like a reasonable
    choice.

    You can easily define your own measure function based on what you feel
    should represent the "size" or "complexity" of the input expression.  Note
    that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
    good metrics, but have other problems (in this case, the measure function
    may slow down simplify too much for very large expressions).  If you do not
    know what a good metric would be, the default, ``count_ops``, is a good
    one.

    For example:

    >>> from sympy import symbols, log
    >>> a, b = symbols('a b', positive=True)
    >>> g = log(a) + log(b) + log(a)*log(1/b)
    >>> h = simplify(g)
    >>> h
    log(a*b**(1 - log(a)))
    >>> count_ops(g)
    8
    >>> count_ops(h)
    5

    So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
    However, we may not like how ``simplify`` (in this case, using
    ``logcombine``) has created the ``b**(log(1/a) + 1)`` term.  A simple way
    to reduce this would be to give more weight to powers as operations in
    ``count_ops``.  We can do this by using the ``visual=True`` option:

    >>> print(count_ops(g, visual=True))
    2*ADD + DIV + 4*LOG + MUL
    >>> print(count_ops(h, visual=True))
    2*LOG + MUL + POW + SUB

    >>> from sympy import Symbol, S
    >>> def my_measure(expr):
    ...     POW = Symbol('POW')
    ...     # Discourage powers by giving POW a weight of 10
    ...     count = count_ops(expr, visual=True).subs(POW, 10)
    ...     # Every other operation gets a weight of 1 (the default)
    ...     count = count.replace(Symbol, type(S.One))
    ...     return count
    >>> my_measure(g)
    8
    >>> my_measure(h)
    14
    >>> 15./8 > 1.7 # 1.7 is the default ratio
    True
    >>> simplify(g, measure=my_measure)
    -log(a)*log(b) + log(a) + log(b)

    Note that because ``simplify()`` internally tries many different
    simplification strategies and then compares them using the measure
    function, we get a completely different result that is still different
    from the input expression by doing this.

    If ``rational=True``, Floats will be recast as Rationals before simplification.
    If ``rational=None``, Floats will be recast as Rationals but the result will
    be recast as Floats. If rational=False(default) then nothing will be done
    to the Floats.

    If ``inverse=True``, it will be assumed that a composition of inverse
    functions, such as sin and asin, can be cancelled in any order.
    For example, ``asin(sin(x))`` will yield ``x`` without checking whether
    x belongs to the set where this relation is true. The default is
    False.

    Note that ``simplify()`` automatically calls ``doit()`` on the final
    expression. You can avoid this behavior by passing ``doit=False`` as
    an argument.

    Also, it should be noted that simplifying a boolean expression is not
    well defined. If the expression prefers automatic evaluation (such as
    :obj:`~.Eq()` or :obj:`~.Or()`), simplification will return ``True`` or
    ``False`` if truth value can be determined. If the expression is not
    evaluated by default (such as :obj:`~.Predicate()`), simplification will
    not reduce it and you should use :func:`~.refine()` or :func:`~.ask()`
    function. This inconsistency will be resolved in future version.

    See Also
    ========

    sympy.assumptions.refine.refine : Simplification using assumptions.
    sympy.assumptions.ask.ask : Query for boolean expressions using assumptions.
    """

    def shorter(*choices):
        """
        Return the choice that has the fewest ops. In case of a tie,
        the expression listed first is selected.
        """
        if not has_variety(choices):
            return choices[0]
        return min(choices, key=measure)

    def done(e):
        rv = e.doit() if doit else e
        return shorter(rv, collect_abs(rv))

    expr = sympify(expr, rational=rational)
    kwargs = {
        "ratio": kwargs.get('ratio', ratio),
        "measure": kwargs.get('measure', measure),
        "rational": kwargs.get('rational', rational),
        "inverse": kwargs.get('inverse', inverse),
        "doit": kwargs.get('doit', doit)}
    # no routine for Expr needs to check for is_zero
    if isinstance(expr, Expr) and expr.is_zero:
        return S.Zero if not expr.is_Number else expr

    _eval_simplify = getattr(expr, '_eval_simplify', None)
    if _eval_simplify is not None:
        return _eval_simplify(**kwargs)

    original_expr = expr = collect_abs(signsimp(expr))

    if not isinstance(expr, Basic) or not expr.args:  # XXX: temporary hack
        return expr

    if inverse and expr.has(Function):
        expr = inversecombine(expr)
        if not expr.args:  # simplified to atomic
            return expr

    # do deep simplification
    handled = Add, Mul, Pow, ExpBase
    expr = expr.replace(
        # here, checking for x.args is not enough because Basic has
        # args but Basic does not always play well with replace, e.g.
        # when simultaneous is True found expressions will be masked
        # off with a Dummy but not all Basic objects in an expression
        # can be replaced with a Dummy
        lambda x: isinstance(x, Expr) and x.args and not isinstance(
            x, handled),
        lambda x: x.func(*[simplify(i, **kwargs) for i in x.args]),
        simultaneous=False)
    if not isinstance(expr, handled):
        return done(expr)

    if not expr.is_commutative:
        expr = nc_simplify(expr)

    # TODO: Apply different strategies, considering expression pattern:
    # is it a purely rational function? Is there any trigonometric function?...
    # See also https://github.com/sympy/sympy/pull/185.


    # rationalize Floats
    floats = False
    if rational is not False and expr.has(Float):
        floats = True
        expr = nsimplify(expr, rational=True)

    expr = _bottom_up(expr, lambda w: getattr(w, 'normal', lambda: w)())
    expr = Mul(*powsimp(expr).as_content_primitive())
    _e = cancel(expr)
    expr1 = shorter(_e, _mexpand(_e).cancel())  # issue 6829
    expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))

    if ratio is S.Infinity:
        expr = expr2
    else:
        expr = shorter(expr2, expr1, expr)
    if not isinstance(expr, Basic):  # XXX: temporary hack
        return expr

    expr = factor_terms(expr, sign=False)

    # must come before `Piecewise` since this introduces more `Piecewise` terms
    if expr.has(sign):
        expr = expr.rewrite(Abs)

    # Deal with Piecewise separately to avoid recursive growth of expressions
    if expr.has(Piecewise):
        # Fold into a single Piecewise
        expr = piecewise_fold(expr)
        # Apply doit, if doit=True
        expr = done(expr)
        # Still a Piecewise?
        if expr.has(Piecewise):
            # Fold into a single Piecewise, in case doit lead to some
            # expressions being Piecewise
            expr = piecewise_fold(expr)
            # kroneckersimp also affects Piecewise
            if expr.has(KroneckerDelta):
                expr = kroneckersimp(expr)
            # Still a Piecewise?
            if expr.has(Piecewise):
                # Do not apply doit on the segments as it has already
                # been done above, but simplify
                expr = piecewise_simplify(expr, deep=True, doit=False)
                # Still a Piecewise?
                if expr.has(Piecewise):
                    # Try factor common terms
                    expr = shorter(expr, factor_terms(expr))
                    # As all expressions have been simplified above with the
                    # complete simplify, nothing more needs to be done here
                    return expr

    # hyperexpand automatically only works on hypergeometric terms
    # Do this after the Piecewise part to avoid recursive expansion
    expr = hyperexpand(expr)

    if expr.has(KroneckerDelta):
        expr = kroneckersimp(expr)

    if expr.has(BesselBase):
        expr = besselsimp(expr)

    if expr.has(TrigonometricFunction, HyperbolicFunction):
        expr = trigsimp(expr, deep=True)

    if expr.has(log):
        expr = shorter(expand_log(expr, deep=True), logcombine(expr))

    if expr.has(CombinatorialFunction, gamma):
        # expression with gamma functions or non-integer arguments is
        # automatically passed to gammasimp
        expr = combsimp(expr)

    if expr.has(Sum):
        expr = sum_simplify(expr, **kwargs)

    if expr.has(Integral):
        expr = expr.xreplace({
            i: factor_terms(i) for i in expr.atoms(Integral)})

    if expr.has(Product):
        expr = product_simplify(expr, **kwargs)

    from sympy.physics.units import Quantity

    if expr.has(Quantity):
        from sympy.physics.units.util import quantity_simplify
        expr = quantity_simplify(expr)

    short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
    short = shorter(short, cancel(short))
    short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
    if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase, exp):
        short = exptrigsimp(short)

    # get rid of hollow 2-arg Mul factorization
    hollow_mul = Transform(
        lambda x: Mul(*x.args),
        lambda x:
        x.is_Mul and
        len(x.args) == 2 and
        x.args[0].is_Number and
        x.args[1].is_Add and
        x.is_commutative)
    expr = short.xreplace(hollow_mul)

    numer, denom = expr.as_numer_denom()
    if denom.is_Add:
        n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
        if n is not S.One:
            expr = (numer*n).expand()/d

    if expr.could_extract_minus_sign():
        n, d = fraction(expr)
        if d != 0:
            expr = signsimp(-n/(-d))

    if measure(expr) > ratio*measure(original_expr):
        expr = original_expr

    # restore floats
    if floats and rational is None:
        expr = nfloat(expr, exponent=False)

    return done(expr)


def sum_simplify(s, **kwargs):
    """Main function for Sum simplification"""
    if not isinstance(s, Add):
        s = s.xreplace({a: sum_simplify(a, **kwargs)
            for a in s.atoms(Add) if a.has(Sum)})
    s = expand(s)
    if not isinstance(s, Add):
        return s

    terms = s.args
    s_t = [] # Sum Terms
    o_t = [] # Other Terms

    for term in terms:
        sum_terms, other = sift(Mul.make_args(term),
            lambda i: isinstance(i, Sum), binary=True)
        if not sum_terms:
            o_t.append(term)
            continue
        other = [Mul(*other)]
        s_t.append(Mul(*(other + [s._eval_simplify(**kwargs) for s in sum_terms])))

    result = Add(sum_combine(s_t), *o_t)

    return result


def sum_combine(s_t):
    """Helper function for Sum simplification

       Attempts to simplify a list of sums, by combining limits / sum function's
       returns the simplified sum
    """
    used = [False] * len(s_t)

    for method in range(2):
        for i, s_term1 in enumerate(s_t):
            if not used[i]:
                for j, s_term2 in enumerate(s_t):
                    if not used[j] and i != j:
                        temp = sum_add(s_term1, s_term2, method)
                        if isinstance(temp, (Sum, Mul)):
                            s_t[i] = temp
                            s_term1 = s_t[i]
                            used[j] = True

    result = S.Zero
    for i, s_term in enumerate(s_t):
        if not used[i]:
            result = Add(result, s_term)

    return result


def factor_sum(self, limits=None, radical=False, clear=False, fraction=False, sign=True):
    """Return Sum with constant factors extracted.

    If ``limits`` is specified then ``self`` is the summand; the other
    keywords are passed to ``factor_terms``.

    Examples
    ========

    >>> from sympy import Sum
    >>> from sympy.abc import x, y
    >>> from sympy.simplify.simplify import factor_sum
    >>> s = Sum(x*y, (x, 1, 3))
    >>> factor_sum(s)
    y*Sum(x, (x, 1, 3))
    >>> factor_sum(s.function, s.limits)
    y*Sum(x, (x, 1, 3))
    """
    # XXX deprecate in favor of direct call to factor_terms
    kwargs = {"radical": radical, "clear": clear,
        "fraction": fraction, "sign": sign}
    expr = Sum(self, *limits) if limits else self
    return factor_terms(expr, **kwargs)


def sum_add(self, other, method=0):
    """Helper function for Sum simplification"""
    #we know this is something in terms of a constant * a sum
    #so we temporarily put the constants inside for simplification
    #then simplify the result
    def __refactor(val):
        args = Mul.make_args(val)
        sumv = next(x for x in args if isinstance(x, Sum))
        constant = Mul(*[x for x in args if x != sumv])
        return Sum(constant * sumv.function, *sumv.limits)

    if isinstance(self, Mul):
        rself = __refactor(self)
    else:
        rself = self

    if isinstance(other, Mul):
        rother = __refactor(other)
    else:
        rother = other

    if type(rself) is type(rother):
        if method == 0:
            if rself.limits == rother.limits:
                return factor_sum(Sum(rself.function + rother.function, *rself.limits))
        elif method == 1:
            if simplify(rself.function - rother.function) == 0:
                if len(rself.limits) == len(rother.limits) == 1:
                    i = rself.limits[0][0]
                    x1 = rself.limits[0][1]
                    y1 = rself.limits[0][2]
                    j = rother.limits[0][0]
                    x2 = rother.limits[0][1]
                    y2 = rother.limits[0][2]

                    if i == j:
                        if x2 == y1 + 1:
                            return factor_sum(Sum(rself.function, (i, x1, y2)))
                        elif x1 == y2 + 1:
                            return factor_sum(Sum(rself.function, (i, x2, y1)))

    return Add(self, other)


def product_simplify(s, **kwargs):
    """Main function for Product simplification"""
    terms = Mul.make_args(s)
    p_t = [] # Product Terms
    o_t = [] # Other Terms

    deep = kwargs.get('deep', True)
    for term in terms:
        if isinstance(term, Product):
            if deep:
                p_t.append(Product(term.function.simplify(**kwargs),
                                   *term.limits))
            else:
                p_t.append(term)
        else:
            o_t.append(term)

    used = [False] * len(p_t)

    for method in range(2):
        for i, p_term1 in enumerate(p_t):
            if not used[i]:
                for j, p_term2 in enumerate(p_t):
                    if not used[j] and i != j:
                        tmp_prod = product_mul(p_term1, p_term2, method)
                        if isinstance(tmp_prod, Product):
                            p_t[i] = tmp_prod
                            used[j] = True

    result = Mul(*o_t)

    for i, p_term in enumerate(p_t):
        if not used[i]:
            result = Mul(result, p_term)

    return result


def product_mul(self, other, method=0):
    """Helper function for Product simplification"""
    if type(self) is type(other):
        if method == 0:
            if self.limits == other.limits:
                return Product(self.function * other.function, *self.limits)
        elif method == 1:
            if simplify(self.function - other.function) == 0:
                if len(self.limits) == len(other.limits) == 1:
                    i = self.limits[0][0]
                    x1 = self.limits[0][1]
                    y1 = self.limits[0][2]
                    j = other.limits[0][0]
                    x2 = other.limits[0][1]
                    y2 = other.limits[0][2]

                    if i == j:
                        if x2 == y1 + 1:
                            return Product(self.function, (i, x1, y2))
                        elif x1 == y2 + 1:
                            return Product(self.function, (i, x2, y1))

    return Mul(self, other)


def _nthroot_solve(p, n, prec):
    """
     helper function for ``nthroot``
     It denests ``p**Rational(1, n)`` using its minimal polynomial
    """
    from sympy.solvers import solve
    while n % 2 == 0:
        p = sqrtdenest(sqrt(p))
        n = n // 2
    if n == 1:
        return p
    pn = p**Rational(1, n)
    x = Symbol('x')
    f = _minimal_polynomial_sq(p, n, x)
    if f is None:
        return None
    sols = solve(f, x)
    for sol in sols:
        if abs(sol - pn).n() < 1./10**prec:
            sol = sqrtdenest(sol)
            if _mexpand(sol**n) == p:
                return sol


def logcombine(expr, force=False):
    """
    Takes logarithms and combines them using the following rules:

    - log(x) + log(y) == log(x*y) if both are positive
    - a*log(x) == log(x**a) if x is positive and a is real

    If ``force`` is ``True`` then the assumptions above will be assumed to hold if
    there is no assumption already in place on a quantity. For example, if
    ``a`` is imaginary or the argument negative, force will not perform a
    combination but if ``a`` is a symbol with no assumptions the change will
    take place.

    Examples
    ========

    >>> from sympy import Symbol, symbols, log, logcombine, I
    >>> from sympy.abc import a, x, y, z
    >>> logcombine(a*log(x) + log(y) - log(z))
    a*log(x) + log(y) - log(z)
    >>> logcombine(a*log(x) + log(y) - log(z), force=True)
    log(x**a*y/z)
    >>> x,y,z = symbols('x,y,z', positive=True)
    >>> a = Symbol('a', real=True)
    >>> logcombine(a*log(x) + log(y) - log(z))
    log(x**a*y/z)

    The transformation is limited to factors and/or terms that
    contain logs, so the result depends on the initial state of
    expansion:

    >>> eq = (2 + 3*I)*log(x)
    >>> logcombine(eq, force=True) == eq
    True
    >>> logcombine(eq.expand(), force=True)
    log(x**2) + I*log(x**3)

    See Also
    ========

    posify: replace all symbols with symbols having positive assumptions
    sympy.core.function.expand_log: expand the logarithms of products
        and powers; the opposite of logcombine

    """

    def f(rv):
        if not (rv.is_Add or rv.is_Mul):
            return rv

        def gooda(a):
            # bool to tell whether the leading ``a`` in ``a*log(x)``
            # could appear as log(x**a)
            return (a is not S.NegativeOne and  # -1 *could* go, but we disallow
                (a.is_extended_real or force and a.is_extended_real is not False))

        def goodlog(l):
            # bool to tell whether log ``l``'s argument can combine with others
            a = l.args[0]
            return a.is_positive or force and a.is_nonpositive is not False

        other = []
        logs = []
        log1 = defaultdict(list)
        for a in Add.make_args(rv):
            if isinstance(a, log) and goodlog(a):
                log1[()].append(([], a))
            elif not a.is_Mul:
                other.append(a)
            else:
                ot = []
                co = []
                lo = []
                for ai in a.args:
                    if ai.is_Rational and ai < 0:
                        ot.append(S.NegativeOne)
                        co.append(-ai)
                    elif isinstance(ai, log) and goodlog(ai):
                        lo.append(ai)
                    elif gooda(ai):
                        co.append(ai)
                    else:
                        ot.append(ai)
                if len(lo) > 1:
                    logs.append((ot, co, lo))
                elif lo:
                    log1[tuple(ot)].append((co, lo[0]))
                else:
                    other.append(a)

        # if there is only one log in other, put it with the
        # good logs
        if len(other) == 1 and isinstance(other[0], log):
            log1[()].append(([], other.pop()))
        # if there is only one log at each coefficient and none have
        # an exponent to place inside the log then there is nothing to do
        if not logs and all(len(log1[k]) == 1 and log1[k][0] == [] for k in log1):
            return rv

        # collapse multi-logs as far as possible in a canonical way
        # TODO: see if x*log(a)+x*log(a)*log(b) -> x*log(a)*(1+log(b))?
        # -- in this case, it's unambiguous, but if it were were a log(c) in
        # each term then it's arbitrary whether they are grouped by log(a) or
        # by log(c). So for now, just leave this alone; it's probably better to
        # let the user decide
        for o, e, l in logs:
            l = list(ordered(l))
            e = log(l.pop(0).args[0]**Mul(*e))
            while l:
                li = l.pop(0)
                e = log(li.args[0]**e)
            c, l = Mul(*o), e
            if isinstance(l, log):  # it should be, but check to be sure
                log1[(c,)].append(([], l))
            else:
                other.append(c*l)

        # logs that have the same coefficient can multiply
        for k in list(log1.keys()):
            log1[Mul(*k)] = log(logcombine(Mul(*[
                l.args[0]**Mul(*c) for c, l in log1.pop(k)]),
                force=force), evaluate=False)

        # logs that have oppositely signed coefficients can divide
        for k in ordered(list(log1.keys())):
            if k not in log1:  # already popped as -k
                continue
            if -k in log1:
                # figure out which has the minus sign; the one with
                # more op counts should be the one
                num, den = k, -k
                if num.count_ops() > den.count_ops():
                    num, den = den, num
                other.append(
                    num*log(log1.pop(num).args[0]/log1.pop(den).args[0],
                            evaluate=False))
            else:
                other.append(k*log1.pop(k))

        return Add(*other)

    return _bottom_up(expr, f)


def inversecombine(expr):
    """Simplify the composition of a function and its inverse.

    Explanation
    ===========

    No attention is paid to whether the inverse is a left inverse or a
    right inverse; thus, the result will in general not be equivalent
    to the original expression.

    Examples
    ========

    >>> from sympy.simplify.simplify import inversecombine
    >>> from sympy import asin, sin, log, exp
    >>> from sympy.abc import x
    >>> inversecombine(asin(sin(x)))
    x
    >>> inversecombine(2*log(exp(3*x)))
    6*x
    """

    def f(rv):
        if isinstance(rv, log):
            if isinstance(rv.args[0], exp) or (rv.args[0].is_Pow and rv.args[0].base == S.Exp1):
                rv = rv.args[0].exp
        elif rv.is_Function and hasattr(rv, "inverse"):
            if (len(rv.args) == 1 and len(rv.args[0].args) == 1 and
               isinstance(rv.args[0], rv.inverse(argindex=1))):
                rv = rv.args[0].args[0]
        if rv.is_Pow and rv.base == S.Exp1:
            if isinstance(rv.exp, log):
                rv = rv.exp.args[0]
        return rv

    return _bottom_up(expr, f)


def kroneckersimp(expr):
    """
    Simplify expressions with KroneckerDelta.

    The only simplification currently attempted is to identify multiplicative cancellation:

    Examples
    ========

    >>> from sympy import KroneckerDelta, kroneckersimp
    >>> from sympy.abc import i
    >>> kroneckersimp(1 + KroneckerDelta(0, i) * KroneckerDelta(1, i))
    1
    """
    def args_cancel(args1, args2):
        for i1 in range(2):
            for i2 in range(2):
                a1 = args1[i1]
                a2 = args2[i2]
                a3 = args1[(i1 + 1) % 2]
                a4 = args2[(i2 + 1) % 2]
                if Eq(a1, a2) is S.true and Eq(a3, a4) is S.false:
                    return True
        return False

    def cancel_kronecker_mul(m):
        args = m.args
        deltas = [a for a in args if isinstance(a, KroneckerDelta)]
        for delta1, delta2 in subsets(deltas, 2):
            args1 = delta1.args
            args2 = delta2.args
            if args_cancel(args1, args2):
                return S.Zero * m # In case of oo etc
        return m

    if not expr.has(KroneckerDelta):
        return expr

    if expr.has(Piecewise):
        expr = expr.rewrite(KroneckerDelta)

    newexpr = expr
    expr = None

    while newexpr != expr:
        expr = newexpr
        newexpr = expr.replace(lambda e: isinstance(e, Mul), cancel_kronecker_mul)

    return expr


def besselsimp(expr):
    """
    Simplify bessel-type functions.

    Explanation
    ===========

    This routine tries to simplify bessel-type functions. Currently it only
    works on the Bessel J and I functions, however. It works by looking at all
    such functions in turn, and eliminating factors of "I" and "-1" (actually
    their polar equivalents) in front of the argument. Then, functions of
    half-integer order are rewritten using trigonometric functions and
    functions of integer order (> 1) are rewritten using functions
    of low order.  Finally, if the expression was changed, compute
    factorization of the result with factor().

    >>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S
    >>> from sympy.abc import z, nu
    >>> besselsimp(besselj(nu, z*polar_lift(-1)))
    exp(I*pi*nu)*besselj(nu, z)
    >>> besselsimp(besseli(nu, z*polar_lift(-I)))
    exp(-I*pi*nu/2)*besselj(nu, z)
    >>> besselsimp(besseli(S(-1)/2, z))
    sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
    >>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z))
    3*z*besseli(0, z)/2
    """
    # TODO
    # - better algorithm?
    # - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ...
    # - use contiguity relations?

    def replacer(fro, to, factors):
        factors = set(factors)

        def repl(nu, z):
            if factors.intersection(Mul.make_args(z)):
                return to(nu, z)
            return fro(nu, z)
        return repl

    def torewrite(fro, to):
        def tofunc(nu, z):
            return fro(nu, z).rewrite(to)
        return tofunc

    def tominus(fro):
        def tofunc(nu, z):
            return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z)
        return tofunc

    orig_expr = expr

    ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)]
    expr = expr.replace(
        besselj, replacer(besselj,
        torewrite(besselj, besseli), ifactors))
    expr = expr.replace(
        besseli, replacer(besseli,
        torewrite(besseli, besselj), ifactors))

    minusfactors = [-1, exp_polar(I*pi)]
    expr = expr.replace(
        besselj, replacer(besselj, tominus(besselj), minusfactors))
    expr = expr.replace(
        besseli, replacer(besseli, tominus(besseli), minusfactors))

    z0 = Dummy('z')

    def expander(fro):
        def repl(nu, z):
            if (nu % 1) == S.Half:
                return simplify(trigsimp(unpolarify(
                        fro(nu, z0).rewrite(besselj).rewrite(jn).expand(
                            func=True)).subs(z0, z)))
            elif nu.is_Integer and nu > 1:
                return fro(nu, z).expand(func=True)
            return fro(nu, z)
        return repl

    expr = expr.replace(besselj, expander(besselj))
    expr = expr.replace(bessely, expander(bessely))
    expr = expr.replace(besseli, expander(besseli))
    expr = expr.replace(besselk, expander(besselk))

    def _bessel_simp_recursion(expr):

        def _use_recursion(bessel, expr):
            while True:
                bessels = expr.find(lambda x: isinstance(x, bessel))
                try:
                    for ba in sorted(bessels, key=lambda x: re(x.args[0])):
                        a, x = ba.args
                        bap1 = bessel(a+1, x)
                        bap2 = bessel(a+2, x)
                        if expr.has(bap1) and expr.has(bap2):
                            expr = expr.subs(ba, 2*(a+1)/x*bap1 - bap2)
                            break
                    else:
                        return expr
                except (ValueError, TypeError):
                    return expr
        if expr.has(besselj):
            expr = _use_recursion(besselj, expr)
        if expr.has(bessely):
            expr = _use_recursion(bessely, expr)
        return expr

    expr = _bessel_simp_recursion(expr)
    if expr != orig_expr:
        expr = expr.factor()

    return expr


def nthroot(expr, n, max_len=4, prec=15):
    """
    Compute a real nth-root of a sum of surds.

    Parameters
    ==========

    expr : sum of surds
    n : integer
    max_len : maximum number of surds passed as constants to ``nsimplify``

    Algorithm
    =========

    First ``nsimplify`` is used to get a candidate root; if it is not a
    root the minimal polynomial is computed; the answer is one of its
    roots.

    Examples
    ========

    >>> from sympy.simplify.simplify import nthroot
    >>> from sympy import sqrt
    >>> nthroot(90 + 34*sqrt(7), 3)
    sqrt(7) + 3

    """
    expr = sympify(expr)
    n = sympify(n)
    p = expr**Rational(1, n)
    if not n.is_integer:
        return p
    if not _is_sum_surds(expr):
        return p
    surds = []
    coeff_muls = [x.as_coeff_Mul() for x in expr.args]
    for x, y in coeff_muls:
        if not x.is_rational:
            return p
        if y is S.One:
            continue
        if not (y.is_Pow and y.exp == S.Half and y.base.is_integer):
            return p
        surds.append(y)
    surds.sort()
    surds = surds[:max_len]
    if expr < 0 and n % 2 == 1:
        p = (-expr)**Rational(1, n)
        a = nsimplify(p, constants=surds)
        res = a if _mexpand(a**n) == _mexpand(-expr) else p
        return -res
    a = nsimplify(p, constants=surds)
    if _mexpand(a) is not _mexpand(p) and _mexpand(a**n) == _mexpand(expr):
        return _mexpand(a)
    expr = _nthroot_solve(expr, n, prec)
    if expr is None:
        return p
    return expr


def nsimplify(expr, constants=(), tolerance=None, full=False, rational=None,
    rational_conversion='base10'):
    """
    Find a simple representation for a number or, if there are free symbols or
    if ``rational=True``, then replace Floats with their Rational equivalents. If
    no change is made and rational is not False then Floats will at least be
    converted to Rationals.

    Explanation
    ===========

    For numerical expressions, a simple formula that numerically matches the
    given numerical expression is sought (and the input should be possible
    to evalf to a precision of at least 30 digits).

    Optionally, a list of (rationally independent) constants to
    include in the formula may be given.

    A lower tolerance may be set to find less exact matches. If no tolerance
    is given then the least precise value will set the tolerance (e.g. Floats
    default to 15 digits of precision, so would be tolerance=10**-15).

    With ``full=True``, a more extensive search is performed
    (this is useful to find simpler numbers when the tolerance
    is set low).

    When converting to rational, if rational_conversion='base10' (the default), then
    convert floats to rationals using their base-10 (string) representation.
    When rational_conversion='exact' it uses the exact, base-2 representation.

    Examples
    ========

    >>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, pi
    >>> nsimplify(4/(1+sqrt(5)), [GoldenRatio])
    -2 + 2*GoldenRatio
    >>> nsimplify((1/(exp(3*pi*I/5)+1)))
    1/2 - I*sqrt(sqrt(5)/10 + 1/4)
    >>> nsimplify(I**I, [pi])
    exp(-pi/2)
    >>> nsimplify(pi, tolerance=0.01)
    22/7

    >>> nsimplify(0.333333333333333, rational=True, rational_conversion='exact')
    6004799503160655/18014398509481984
    >>> nsimplify(0.333333333333333, rational=True)
    1/3

    See Also
    ========

    sympy.core.function.nfloat

    """
    try:
        return sympify(as_int(expr))
    except (TypeError, ValueError):
        pass
    expr = sympify(expr).xreplace({
        Float('inf'): S.Infinity,
        Float('-inf'): S.NegativeInfinity,
        })
    if expr is S.Infinity or expr is S.NegativeInfinity:
        return expr
    if rational or expr.free_symbols:
        return _real_to_rational(expr, tolerance, rational_conversion)

    # SymPy's default tolerance for Rationals is 15; other numbers may have
    # lower tolerances set, so use them to pick the largest tolerance if None
    # was given
    if tolerance is None:
        tolerance = 10**-min([15] +
             [mpmath.libmp.libmpf.prec_to_dps(n._prec)
             for n in expr.atoms(Float)])
    # XXX should prec be set independent of tolerance or should it be computed
    # from tolerance?
    prec = 30
    bprec = int(prec*3.33)

    constants_dict = {}
    for constant in constants:
        constant = sympify(constant)
        v = constant.evalf(prec)
        if not v.is_Float:
            raise ValueError("constants must be real-valued")
        constants_dict[str(constant)] = v._to_mpmath(bprec)

    exprval = expr.evalf(prec, chop=True)
    re, im = exprval.as_real_imag()

    # safety check to make sure that this evaluated to a number
    if not (re.is_Number and im.is_Number):
        return expr

    def nsimplify_real(x):
        orig = mpmath.mp.dps
        xv = x._to_mpmath(bprec)
        try:
            # We'll be happy with low precision if a simple fraction
            if not (tolerance or full):
                mpmath.mp.dps = 15
                rat = mpmath.pslq([xv, 1])
                if rat is not None:
                    return Rational(-int(rat[1]), int(rat[0]))
            mpmath.mp.dps = prec
            newexpr = mpmath.identify(xv, constants=constants_dict,
                tol=tolerance, full=full)
            if not newexpr:
                raise ValueError
            if full:
                newexpr = newexpr[0]
            expr = sympify(newexpr)
            if x and not expr:  # don't let x become 0
                raise ValueError
            if expr.is_finite is False and xv not in [mpmath.inf, mpmath.ninf]:
                raise ValueError
            return expr
        finally:
            # even though there are returns above, this is executed
            # before leaving
            mpmath.mp.dps = orig
    try:
        if re:
            re = nsimplify_real(re)
        if im:
            im = nsimplify_real(im)
    except ValueError:
        if rational is None:
            return _real_to_rational(expr, rational_conversion=rational_conversion)
        return expr

    rv = re + im*S.ImaginaryUnit
    # if there was a change or rational is explicitly not wanted
    # return the value, else return the Rational representation
    if rv != expr or rational is False:
        return rv
    return _real_to_rational(expr, rational_conversion=rational_conversion)


def _real_to_rational(expr, tolerance=None, rational_conversion='base10'):
    """
    Replace all reals in expr with rationals.

    Examples
    ========

    >>> from sympy.simplify.simplify import _real_to_rational
    >>> from sympy.abc import x

    >>> _real_to_rational(.76 + .1*x**.5)
    sqrt(x)/10 + 19/25

    If rational_conversion='base10', this uses the base-10 string. If
    rational_conversion='exact', the exact, base-2 representation is used.

    >>> _real_to_rational(0.333333333333333, rational_conversion='exact')
    6004799503160655/18014398509481984
    >>> _real_to_rational(0.333333333333333)
    1/3

    """
    expr = _sympify(expr)
    inf = Float('inf')
    p = expr
    reps = {}
    reduce_num = None
    if tolerance is not None and tolerance < 1:
        reduce_num = ceiling(1/tolerance)
    for fl in p.atoms(Float):
        key = fl
        if reduce_num is not None:
            r = Rational(fl).limit_denominator(reduce_num)
        elif (tolerance is not None and tolerance >= 1 and
                fl.is_Integer is False):
            r = Rational(tolerance*round(fl/tolerance)
                ).limit_denominator(int(tolerance))
        else:
            if rational_conversion == 'exact':
                r = Rational(fl)
                reps[key] = r
                continue
            elif rational_conversion != 'base10':
                raise ValueError("rational_conversion must be 'base10' or 'exact'")

            r = nsimplify(fl, rational=False)
            # e.g. log(3).n() -> log(3) instead of a Rational
            if fl and not r:
                r = Rational(fl)
            elif not r.is_Rational:
                if fl in (inf, -inf):
                    r = S.ComplexInfinity
                elif fl < 0:
                    fl = -fl
                    d = Pow(10, int(mpmath.log(fl)/mpmath.log(10)))
                    r = -Rational(str(fl/d))*d
                elif fl > 0:
                    d = Pow(10, int(mpmath.log(fl)/mpmath.log(10)))
                    r = Rational(str(fl/d))*d
                else:
                    r = S.Zero
        reps[key] = r
    return p.subs(reps, simultaneous=True)


def clear_coefficients(expr, rhs=S.Zero):
    """Return `p, r` where `p` is the expression obtained when Rational
    additive and multiplicative coefficients of `expr` have been stripped
    away in a naive fashion (i.e. without simplification). The operations
    needed to remove the coefficients will be applied to `rhs` and returned
    as `r`.

    Examples
    ========

    >>> from sympy.simplify.simplify import clear_coefficients
    >>> from sympy.abc import x, y
    >>> from sympy import Dummy
    >>> expr = 4*y*(6*x + 3)
    >>> clear_coefficients(expr - 2)
    (y*(2*x + 1), 1/6)

    When solving 2 or more expressions like `expr = a`,
    `expr = b`, etc..., it is advantageous to provide a Dummy symbol
    for `rhs` and  simply replace it with `a`, `b`, etc... in `r`.

    >>> rhs = Dummy('rhs')
    >>> clear_coefficients(expr, rhs)
    (y*(2*x + 1), _rhs/12)
    >>> _[1].subs(rhs, 2)
    1/6
    """
    was = None
    free = expr.free_symbols
    if expr.is_Rational:
        return (S.Zero, rhs - expr)
    while expr and was != expr:
        was = expr
        m, expr = (
            expr.as_content_primitive()
            if free else
            factor_terms(expr).as_coeff_Mul(rational=True))
        rhs /= m
        c, expr = expr.as_coeff_Add(rational=True)
        rhs -= c
    expr = signsimp(expr, evaluate = False)
    if expr.could_extract_minus_sign():
        expr = -expr
        rhs = -rhs
    return expr, rhs

def nc_simplify(expr, deep=True):
    '''
    Simplify a non-commutative expression composed of multiplication
    and raising to a power by grouping repeated subterms into one power.
    Priority is given to simplifications that give the fewest number
    of arguments in the end (for example, in a*b*a*b*c*a*b*c simplifying
    to (a*b)**2*c*a*b*c gives 5 arguments while a*b*(a*b*c)**2 has 3).
    If ``expr`` is a sum of such terms, the sum of the simplified terms
    is returned.

    Keyword argument ``deep`` controls whether or not subexpressions
    nested deeper inside the main expression are simplified. See examples
    below. Setting `deep` to `False` can save time on nested expressions
    that do not need simplifying on all levels.

    Examples
    ========

    >>> from sympy import symbols
    >>> from sympy.simplify.simplify import nc_simplify
    >>> a, b, c = symbols("a b c", commutative=False)
    >>> nc_simplify(a*b*a*b*c*a*b*c)
    a*b*(a*b*c)**2
    >>> expr = a**2*b*a**4*b*a**4
    >>> nc_simplify(expr)
    a**2*(b*a**4)**2
    >>> nc_simplify(a*b*a*b*c**2*(a*b)**2*c**2)
    ((a*b)**2*c**2)**2
    >>> nc_simplify(a*b*a*b + 2*a*c*a**2*c*a**2*c*a)
    (a*b)**2 + 2*(a*c*a)**3
    >>> nc_simplify(b**-1*a**-1*(a*b)**2)
    a*b
    >>> nc_simplify(a**-1*b**-1*c*a)
    (b*a)**(-1)*c*a
    >>> expr = (a*b*a*b)**2*a*c*a*c
    >>> nc_simplify(expr)
    (a*b)**4*(a*c)**2
    >>> nc_simplify(expr, deep=False)
    (a*b*a*b)**2*(a*c)**2

    '''
    if isinstance(expr, MatrixExpr):
        expr = expr.doit(inv_expand=False)
        _Add, _Mul, _Pow, _Symbol = MatAdd, MatMul, MatPow, MatrixSymbol
    else:
        _Add, _Mul, _Pow, _Symbol = Add, Mul, Pow, Symbol

    # =========== Auxiliary functions ========================
    def _overlaps(args):
        # Calculate a list of lists m such that m[i][j] contains the lengths
        # of all possible overlaps between args[:i+1] and args[i+1+j:].
        # An overlap is a suffix of the prefix that matches a prefix
        # of the suffix.
        # For example, let expr=c*a*b*a*b*a*b*a*b. Then m[3][0] contains
        # the lengths of overlaps of c*a*b*a*b with a*b*a*b. The overlaps
        # are a*b*a*b, a*b and the empty word so that m[3][0]=[4,2,0].
        # All overlaps rather than only the longest one are recorded
        # because this information helps calculate other overlap lengths.
        m = [[([1, 0] if a == args[0] else [0]) for a in args[1:]]]
        for i in range(1, len(args)):
            overlaps = []
            j = 0
            for j in range(len(args) - i - 1):
                overlap = []
                for v in m[i-1][j+1]:
                    if j + i + 1 + v < len(args) and args[i] == args[j+i+1+v]:
                        overlap.append(v + 1)
                overlap += [0]
                overlaps.append(overlap)
            m.append(overlaps)
        return m

    def _reduce_inverses(_args):
        # replace consecutive negative powers by an inverse
        # of a product of positive powers, e.g. a**-1*b**-1*c
        # will simplify to (a*b)**-1*c;
        # return that new args list and the number of negative
        # powers in it (inv_tot)
        inv_tot = 0 # total number of inverses
        inverses = []
        args = []
        for arg in _args:
            if isinstance(arg, _Pow) and arg.args[1].is_extended_negative:
                inverses = [arg**-1] + inverses
                inv_tot += 1
            else:
                if len(inverses) == 1:
                    args.append(inverses[0]**-1)
                elif len(inverses) > 1:
                    args.append(_Pow(_Mul(*inverses), -1))
                    inv_tot -= len(inverses) - 1
                inverses = []
                args.append(arg)
        if inverses:
            args.append(_Pow(_Mul(*inverses), -1))
            inv_tot -= len(inverses) - 1
        return inv_tot, tuple(args)

    def get_score(s):
        # compute the number of arguments of s
        # (including in nested expressions) overall
        # but ignore exponents
        if isinstance(s, _Pow):
            return get_score(s.args[0])
        elif isinstance(s, (_Add, _Mul)):
            return sum(get_score(a) for a in s.args)
        return 1

    def compare(s, alt_s):
        # compare two possible simplifications and return a
        # "better" one
        if s != alt_s and get_score(alt_s) < get_score(s):
            return alt_s
        return s
    # ========================================================

    if not isinstance(expr, (_Add, _Mul, _Pow)) or expr.is_commutative:
        return expr
    args = expr.args[:]
    if isinstance(expr, _Pow):
        if deep:
            return _Pow(nc_simplify(args[0]), args[1]).doit()
        else:
            return expr
    elif isinstance(expr, _Add):
        return _Add(*[nc_simplify(a, deep=deep) for a in args]).doit()
    else:
        # get the non-commutative part
        c_args, args = expr.args_cnc()
        com_coeff = Mul(*c_args)
        if not equal_valued(com_coeff, 1):
            return com_coeff*nc_simplify(expr/com_coeff, deep=deep)

    inv_tot, args = _reduce_inverses(args)
    # if most arguments are negative, work with the inverse
    # of the expression, e.g. a**-1*b*a**-1*c**-1 will become
    # (c*a*b**-1*a)**-1 at the end so can work with c*a*b**-1*a
    invert = False
    if inv_tot > len(args)/2:
        invert = True
        args = [a**-1 for a in args[::-1]]

    if deep:
        args = tuple(nc_simplify(a) for a in args)

    m = _overlaps(args)

    # simps will be {subterm: end} where `end` is the ending
    # index of a sequence of repetitions of subterm;
    # this is for not wasting time with subterms that are part
    # of longer, already considered sequences
    simps = {}

    post = 1
    pre = 1

    # the simplification coefficient is the number of
    # arguments by which contracting a given sequence
    # would reduce the word; e.g. in a*b*a*b*c*a*b*c,
    # contracting a*b*a*b to (a*b)**2 removes 3 arguments
    # while a*b*c*a*b*c to (a*b*c)**2 removes 6. It's
    # better to contract the latter so simplification
    # with a maximum simplification coefficient will be chosen
    max_simp_coeff = 0
    simp = None # information about future simplification

    for i in range(1, len(args)):
        simp_coeff = 0
        l = 0 # length of a subterm
        p = 0 # the power of a subterm
        if i < len(args) - 1:
            rep = m[i][0]
        start = i # starting index of the repeated sequence
        end = i+1 # ending index of the repeated sequence
        if i == len(args)-1 or rep == [0]:
            # no subterm is repeated at this stage, at least as
            # far as the arguments are concerned - there may be
            # a repetition if powers are taken into account
            if (isinstance(args[i], _Pow) and
                            not isinstance(args[i].args[0], _Symbol)):
                subterm = args[i].args[0].args
                l = len(subterm)
                if args[i-l:i] == subterm:
                    # e.g. a*b in a*b*(a*b)**2 is not repeated
                    # in args (= [a, b, (a*b)**2]) but it
                    # can be matched here
                    p += 1
                    start -= l
                if args[i+1:i+1+l] == subterm:
                    # e.g. a*b in (a*b)**2*a*b
                    p += 1
                    end += l
            if p:
                p += args[i].args[1]
            else:
                continue
        else:
            l = rep[0] # length of the longest repeated subterm at this point
            start -= l - 1
            subterm = args[start:end]
            p = 2
            end += l

        if subterm in simps and simps[subterm] >= start:
            # the subterm is part of a sequence that
            # has already been considered
            continue

        # count how many times it's repeated
        while end < len(args):
            if l in m[end-1][0]:
                p += 1
                end += l
            elif isinstance(args[end], _Pow) and args[end].args[0].args == subterm:
                # for cases like a*b*a*b*(a*b)**2*a*b
                p += args[end].args[1]
                end += 1
            else:
                break

        # see if another match can be made, e.g.
        # for b*a**2 in b*a**2*b*a**3 or a*b in
        # a**2*b*a*b

        pre_exp = 0
        pre_arg = 1
        if start - l >= 0 and args[start-l+1:start] == subterm[1:]:
            if isinstance(subterm[0], _Pow):
                pre_arg = subterm[0].args[0]
                exp = subterm[0].args[1]
            else:
                pre_arg = subterm[0]
                exp = 1
            if isinstance(args[start-l], _Pow) and args[start-l].args[0] == pre_arg:
                pre_exp = args[start-l].args[1] - exp
                start -= l
                p += 1
            elif args[start-l] == pre_arg:
                pre_exp = 1 - exp
                start -= l
                p += 1

        post_exp = 0
        post_arg = 1
        if end + l - 1 < len(args) and args[end:end+l-1] == subterm[:-1]:
            if isinstance(subterm[-1], _Pow):
                post_arg = subterm[-1].args[0]
                exp = subterm[-1].args[1]
            else:
                post_arg = subterm[-1]
                exp = 1
            if isinstance(args[end+l-1], _Pow) and args[end+l-1].args[0] == post_arg:
                post_exp = args[end+l-1].args[1] - exp
                end += l
                p += 1
            elif args[end+l-1] == post_arg:
                post_exp = 1 - exp
                end += l
                p += 1

        # Consider a*b*a**2*b*a**2*b*a:
        # b*a**2 is explicitly repeated, but note
        # that in this case a*b*a is also repeated
        # so there are two possible simplifications:
        # a*(b*a**2)**3*a**-1 or (a*b*a)**3
        # The latter is obviously simpler.
        # But in a*b*a**2*b**2*a**2 the simplifications are
        # a*(b*a**2)**2 and (a*b*a)**3*a in which case
        # it's better to stick with the shorter subterm
        if post_exp and exp % 2 == 0 and start > 0:
            exp = exp/2
            _pre_exp = 1
            _post_exp = 1
            if isinstance(args[start-1], _Pow) and args[start-1].args[0] == post_arg:
                _post_exp = post_exp + exp
                _pre_exp = args[start-1].args[1] - exp
            elif args[start-1] == post_arg:
                _post_exp = post_exp + exp
                _pre_exp = 1 - exp
            if _pre_exp == 0 or _post_exp == 0:
                if not pre_exp:
                    start -= 1
                post_exp = _post_exp
                pre_exp = _pre_exp
                pre_arg = post_arg
                subterm = (post_arg**exp,) + subterm[:-1] + (post_arg**exp,)

        simp_coeff += end-start

        if post_exp:
            simp_coeff -= 1
        if pre_exp:
            simp_coeff -= 1

        simps[subterm] = end

        if simp_coeff > max_simp_coeff:
            max_simp_coeff = simp_coeff
            simp = (start, _Mul(*subterm), p, end, l)
            pre = pre_arg**pre_exp
            post = post_arg**post_exp

    if simp:
        subterm = _Pow(nc_simplify(simp[1], deep=deep), simp[2])
        pre = nc_simplify(_Mul(*args[:simp[0]])*pre, deep=deep)
        post = post*nc_simplify(_Mul(*args[simp[3]:]), deep=deep)
        simp = pre*subterm*post
        if pre != 1 or post != 1:
            # new simplifications may be possible but no need
            # to recurse over arguments
            simp = nc_simplify(simp, deep=False)
    else:
        simp = _Mul(*args)

    if invert:
        simp = _Pow(simp, -1)

    # see if factor_nc(expr) is simplified better
    if not isinstance(expr, MatrixExpr):
        f_expr = factor_nc(expr)
        if f_expr != expr:
            alt_simp = nc_simplify(f_expr, deep=deep)
            simp = compare(simp, alt_simp)
    else:
        simp = simp.doit(inv_expand=False)
    return simp


def dotprodsimp(expr, withsimp=False):
    """Simplification for a sum of products targeted at the kind of blowup that
    occurs during summation of products. Intended to reduce expression blowup
    during matrix multiplication or other similar operations. Only works with
    algebraic expressions and does not recurse into non.

    Parameters
    ==========

    withsimp : bool, optional
        Specifies whether a flag should be returned along with the expression
        to indicate roughly whether simplification was successful. It is used
        in ``MatrixArithmetic._eval_pow_by_recursion`` to avoid attempting to
        simplify an expression repetitively which does not simplify.
    """

    def count_ops_alg(expr):
        """Optimized count algebraic operations with no recursion into
        non-algebraic args that ``core.function.count_ops`` does. Also returns
        whether rational functions may be present according to negative
        exponents of powers or non-number fractions.

        Returns
        =======

        ops, ratfunc : int, bool
            ``ops`` is the number of algebraic operations starting at the top
            level expression (not recursing into non-alg children). ``ratfunc``
            specifies whether the expression MAY contain rational functions
            which ``cancel`` MIGHT optimize.
        """

        ops     = 0
        args    = [expr]
        ratfunc = False

        while args:
            a = args.pop()

            if not isinstance(a, Basic):
                continue

            if a.is_Rational:
                if a is not S.One: # -1/3 = NEG + DIV
                    ops += bool (a.p < 0) + bool (a.q != 1)

            elif a.is_Mul:
                if a.could_extract_minus_sign():
                    ops += 1
                    if a.args[0] is S.NegativeOne:
                        a = a.as_two_terms()[1]
                    else:
                        a = -a

                n, d = fraction(a)

                if n.is_Integer:
                    ops += 1 + bool (n < 0)
                    args.append(d) # won't be -Mul but could be Add

                elif d is not S.One:
                    if not d.is_Integer:
                        args.append(d)
                        ratfunc=True

                    ops += 1
                    args.append(n) # could be -Mul

                else:
                    ops += len(a.args) - 1
                    args.extend(a.args)

            elif a.is_Add:
                laargs = len(a.args)
                negs   = 0

                for ai in a.args:
                    if ai.could_extract_minus_sign():
                        negs += 1
                        ai    = -ai
                    args.append(ai)

                ops += laargs - (negs != laargs) # -x - y = NEG + SUB

            elif a.is_Pow:
                ops += 1
                args.append(a.base)

                if not ratfunc:
                    ratfunc = a.exp.is_negative is not False

        return ops, ratfunc

    def nonalg_subs_dummies(expr, dummies):
        """Substitute dummy variables for non-algebraic expressions to avoid
        evaluation of non-algebraic terms that ``polys.polytools.cancel`` does.
        """

        if not expr.args:
            return expr

        if expr.is_Add or expr.is_Mul or expr.is_Pow:
            args = None

            for i, a in enumerate(expr.args):
                c = nonalg_subs_dummies(a, dummies)

                if c is a:
                    continue

                if args is None:
                    args = list(expr.args)

                args[i] = c

            if args is None:
                return expr

            return expr.func(*args)

        return dummies.setdefault(expr, Dummy())

    simplified = False # doesn't really mean simplified, rather "can simplify again"

    if isinstance(expr, Basic) and (expr.is_Add or expr.is_Mul or expr.is_Pow):
        expr2 = expr.expand(deep=True, modulus=None, power_base=False,
            power_exp=False, mul=True, log=False, multinomial=True, basic=False)

        if expr2 != expr:
            expr       = expr2
            simplified = True

        exprops, ratfunc = count_ops_alg(expr)

        if exprops >= 6: # empirically tested cutoff for expensive simplification
            if ratfunc:
                dummies = {}
                expr2   = nonalg_subs_dummies(expr, dummies)

                if expr2 is expr or count_ops_alg(expr2)[0] >= 6: # check again after substitution
                    expr3 = cancel(expr2)

                    if expr3 != expr2:
                        expr       = expr3.subs([(d, e) for e, d in dummies.items()])
                        simplified = True

        # very special case: x/(x-1) - 1/(x-1) -> 1
        elif (exprops == 5 and expr.is_Add and expr.args [0].is_Mul and
                expr.args [1].is_Mul and expr.args [0].args [-1].is_Pow and
                expr.args [1].args [-1].is_Pow and
                expr.args [0].args [-1].exp is S.NegativeOne and
                expr.args [1].args [-1].exp is S.NegativeOne):

            expr2    = together (expr)
            expr2ops = count_ops_alg(expr2)[0]

            if expr2ops < exprops:
                expr       = expr2
                simplified = True

        else:
            simplified = True

    return (expr, simplified) if withsimp else expr


bottom_up = deprecated(
    """
    Using bottom_up from the sympy.simplify.simplify submodule is
    deprecated.

    Instead, use bottom_up from the top-level sympy namespace, like

        sympy.bottom_up
    """,
    deprecated_since_version="1.10",
    active_deprecations_target="deprecated-traversal-functions-moved",
)(_bottom_up)


# XXX: This function really should either be private API or exported in the
# top-level sympy/__init__.py
walk = deprecated(
    """
    Using walk from the sympy.simplify.simplify submodule is
    deprecated.

    Instead, use walk from sympy.core.traversal.walk
    """,
    deprecated_since_version="1.10",
    active_deprecations_target="deprecated-traversal-functions-moved",
)(_walk)