Spaces:
Sleeping
Sleeping
File size: 26,575 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 |
from collections import defaultdict
from functools import reduce
from math import prod
from sympy.core.function import expand_log, count_ops, _coeff_isneg
from sympy.core import sympify, Basic, Dummy, S, Add, Mul, Pow, expand_mul, factor_terms
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.numbers import Integer, Rational
from sympy.core.mul import _keep_coeff
from sympy.core.rules import Transform
from sympy.functions import exp_polar, exp, log, root, polarify, unpolarify
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.polys import lcm, gcd
from sympy.ntheory.factor_ import multiplicity
def powsimp(expr, deep=False, combine='all', force=False, measure=count_ops):
"""
Reduce expression by combining powers with similar bases and exponents.
Explanation
===========
If ``deep`` is ``True`` then powsimp() will also simplify arguments of
functions. By default ``deep`` is set to ``False``.
If ``force`` is ``True`` then bases will be combined without checking for
assumptions, e.g. sqrt(x)*sqrt(y) -> sqrt(x*y) which is not true
if x and y are both negative.
You can make powsimp() only combine bases or only combine exponents by
changing combine='base' or combine='exp'. By default, combine='all',
which does both. combine='base' will only combine::
a a a 2x x
x * y => (x*y) as well as things like 2 => 4
and combine='exp' will only combine
::
a b (a + b)
x * x => x
combine='exp' will strictly only combine exponents in the way that used
to be automatic. Also use deep=True if you need the old behavior.
When combine='all', 'exp' is evaluated first. Consider the first
example below for when there could be an ambiguity relating to this.
This is done so things like the second example can be completely
combined. If you want 'base' combined first, do something like
powsimp(powsimp(expr, combine='base'), combine='exp').
Examples
========
>>> from sympy import powsimp, exp, log, symbols
>>> from sympy.abc import x, y, z, n
>>> powsimp(x**y*x**z*y**z, combine='all')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='exp')
x**(y + z)*y**z
>>> powsimp(x**y*x**z*y**z, combine='base', force=True)
x**y*(x*y)**z
>>> powsimp(x**z*x**y*n**z*n**y, combine='all', force=True)
(n*x)**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='exp')
n**(y + z)*x**(y + z)
>>> powsimp(x**z*x**y*n**z*n**y, combine='base', force=True)
(n*x)**y*(n*x)**z
>>> x, y = symbols('x y', positive=True)
>>> powsimp(log(exp(x)*exp(y)))
log(exp(x)*exp(y))
>>> powsimp(log(exp(x)*exp(y)), deep=True)
x + y
Radicals with Mul bases will be combined if combine='exp'
>>> from sympy import sqrt
>>> x, y = symbols('x y')
Two radicals are automatically joined through Mul:
>>> a=sqrt(x*sqrt(y))
>>> a*a**3 == a**4
True
But if an integer power of that radical has been
autoexpanded then Mul does not join the resulting factors:
>>> a**4 # auto expands to a Mul, no longer a Pow
x**2*y
>>> _*a # so Mul doesn't combine them
x**2*y*sqrt(x*sqrt(y))
>>> powsimp(_) # but powsimp will
(x*sqrt(y))**(5/2)
>>> powsimp(x*y*a) # but won't when doing so would violate assumptions
x*y*sqrt(x*sqrt(y))
"""
def recurse(arg, **kwargs):
_deep = kwargs.get('deep', deep)
_combine = kwargs.get('combine', combine)
_force = kwargs.get('force', force)
_measure = kwargs.get('measure', measure)
return powsimp(arg, _deep, _combine, _force, _measure)
expr = sympify(expr)
if (not isinstance(expr, Basic) or isinstance(expr, MatrixSymbol) or (
expr.is_Atom or expr in (exp_polar(0), exp_polar(1)))):
return expr
if deep or expr.is_Add or expr.is_Mul and _y not in expr.args:
expr = expr.func(*[recurse(w) for w in expr.args])
if expr.is_Pow:
return recurse(expr*_y, deep=False)/_y
if not expr.is_Mul:
return expr
# handle the Mul
if combine in ('exp', 'all'):
# Collect base/exp data, while maintaining order in the
# non-commutative parts of the product
c_powers = defaultdict(list)
nc_part = []
newexpr = []
coeff = S.One
for term in expr.args:
if term.is_Rational:
coeff *= term
continue
if term.is_Pow:
term = _denest_pow(term)
if term.is_commutative:
b, e = term.as_base_exp()
if deep:
b, e = [recurse(i) for i in [b, e]]
if b.is_Pow or isinstance(b, exp):
# don't let smthg like sqrt(x**a) split into x**a, 1/2
# or else it will be joined as x**(a/2) later
b, e = b**e, S.One
c_powers[b].append(e)
else:
# This is the logic that combines exponents for equal,
# but non-commutative bases: A**x*A**y == A**(x+y).
if nc_part:
b1, e1 = nc_part[-1].as_base_exp()
b2, e2 = term.as_base_exp()
if (b1 == b2 and
e1.is_commutative and e2.is_commutative):
nc_part[-1] = Pow(b1, Add(e1, e2))
continue
nc_part.append(term)
# add up exponents of common bases
for b, e in ordered(iter(c_powers.items())):
# allow 2**x/4 -> 2**(x - 2); don't do this when b and e are
# Numbers since autoevaluation will undo it, e.g.
# 2**(1/3)/4 -> 2**(1/3 - 2) -> 2**(1/3)/4
if (b and b.is_Rational and not all(ei.is_Number for ei in e) and \
coeff is not S.One and
b not in (S.One, S.NegativeOne)):
m = multiplicity(abs(b), abs(coeff))
if m:
e.append(m)
coeff /= b**m
c_powers[b] = Add(*e)
if coeff is not S.One:
if coeff in c_powers:
c_powers[coeff] += S.One
else:
c_powers[coeff] = S.One
# convert to plain dictionary
c_powers = dict(c_powers)
# check for base and inverted base pairs
be = list(c_powers.items())
skip = set() # skip if we already saw them
for b, e in be:
if b in skip:
continue
bpos = b.is_positive or b.is_polar
if bpos:
binv = 1/b
if b != binv and binv in c_powers:
if b.as_numer_denom()[0] is S.One:
c_powers.pop(b)
c_powers[binv] -= e
else:
skip.add(binv)
e = c_powers.pop(binv)
c_powers[b] -= e
# check for base and negated base pairs
be = list(c_powers.items())
_n = S.NegativeOne
for b, e in be:
if (b.is_Symbol or b.is_Add) and -b in c_powers and b in c_powers:
if (b.is_positive is not None or e.is_integer):
if e.is_integer or b.is_negative:
c_powers[-b] += c_powers.pop(b)
else: # (-b).is_positive so use its e
e = c_powers.pop(-b)
c_powers[b] += e
if _n in c_powers:
c_powers[_n] += e
else:
c_powers[_n] = e
# filter c_powers and convert to a list
c_powers = [(b, e) for b, e in c_powers.items() if e]
# ==============================================================
# check for Mul bases of Rational powers that can be combined with
# separated bases, e.g. x*sqrt(x*y)*sqrt(x*sqrt(x*y)) ->
# (x*sqrt(x*y))**(3/2)
# ---------------- helper functions
def ratq(x):
'''Return Rational part of x's exponent as it appears in the bkey.
'''
return bkey(x)[0][1]
def bkey(b, e=None):
'''Return (b**s, c.q), c.p where e -> c*s. If e is not given then
it will be taken by using as_base_exp() on the input b.
e.g.
x**3/2 -> (x, 2), 3
x**y -> (x**y, 1), 1
x**(2*y/3) -> (x**y, 3), 2
exp(x/2) -> (exp(a), 2), 1
'''
if e is not None: # coming from c_powers or from below
if e.is_Integer:
return (b, S.One), e
elif e.is_Rational:
return (b, Integer(e.q)), Integer(e.p)
else:
c, m = e.as_coeff_Mul(rational=True)
if c is not S.One:
if m.is_integer:
return (b, Integer(c.q)), m*Integer(c.p)
return (b**m, Integer(c.q)), Integer(c.p)
else:
return (b**e, S.One), S.One
else:
return bkey(*b.as_base_exp())
def update(b):
'''Decide what to do with base, b. If its exponent is now an
integer multiple of the Rational denominator, then remove it
and put the factors of its base in the common_b dictionary or
update the existing bases if necessary. If it has been zeroed
out, simply remove the base.
'''
newe, r = divmod(common_b[b], b[1])
if not r:
common_b.pop(b)
if newe:
for m in Mul.make_args(b[0]**newe):
b, e = bkey(m)
if b not in common_b:
common_b[b] = 0
common_b[b] += e
if b[1] != 1:
bases.append(b)
# ---------------- end of helper functions
# assemble a dictionary of the factors having a Rational power
common_b = {}
done = []
bases = []
for b, e in c_powers:
b, e = bkey(b, e)
if b in common_b:
common_b[b] = common_b[b] + e
else:
common_b[b] = e
if b[1] != 1 and b[0].is_Mul:
bases.append(b)
bases.sort(key=default_sort_key) # this makes tie-breaking canonical
bases.sort(key=measure, reverse=True) # handle longest first
for base in bases:
if base not in common_b: # it may have been removed already
continue
b, exponent = base
last = False # True when no factor of base is a radical
qlcm = 1 # the lcm of the radical denominators
while True:
bstart = b
qstart = qlcm
bb = [] # list of factors
ee = [] # (factor's expo. and it's current value in common_b)
for bi in Mul.make_args(b):
bib, bie = bkey(bi)
if bib not in common_b or common_b[bib] < bie:
ee = bb = [] # failed
break
ee.append([bie, common_b[bib]])
bb.append(bib)
if ee:
# find the number of integral extractions possible
# e.g. [(1, 2), (2, 2)] -> min(2/1, 2/2) -> 1
min1 = ee[0][1]//ee[0][0]
for i in range(1, len(ee)):
rat = ee[i][1]//ee[i][0]
if rat < 1:
break
min1 = min(min1, rat)
else:
# update base factor counts
# e.g. if ee = [(2, 5), (3, 6)] then min1 = 2
# and the new base counts will be 5-2*2 and 6-2*3
for i in range(len(bb)):
common_b[bb[i]] -= min1*ee[i][0]
update(bb[i])
# update the count of the base
# e.g. x**2*y*sqrt(x*sqrt(y)) the count of x*sqrt(y)
# will increase by 4 to give bkey (x*sqrt(y), 2, 5)
common_b[base] += min1*qstart*exponent
if (last # no more radicals in base
or len(common_b) == 1 # nothing left to join with
or all(k[1] == 1 for k in common_b) # no rad's in common_b
):
break
# see what we can exponentiate base by to remove any radicals
# so we know what to search for
# e.g. if base were x**(1/2)*y**(1/3) then we should
# exponentiate by 6 and look for powers of x and y in the ratio
# of 2 to 3
qlcm = lcm([ratq(bi) for bi in Mul.make_args(bstart)])
if qlcm == 1:
break # we are done
b = bstart**qlcm
qlcm *= qstart
if all(ratq(bi) == 1 for bi in Mul.make_args(b)):
last = True # we are going to be done after this next pass
# this base no longer can find anything to join with and
# since it was longer than any other we are done with it
b, q = base
done.append((b, common_b.pop(base)*Rational(1, q)))
# update c_powers and get ready to continue with powsimp
c_powers = done
# there may be terms still in common_b that were bases that were
# identified as needing processing, so remove those, too
for (b, q), e in common_b.items():
if (b.is_Pow or isinstance(b, exp)) and \
q is not S.One and not b.exp.is_Rational:
b, be = b.as_base_exp()
b = b**(be/q)
else:
b = root(b, q)
c_powers.append((b, e))
check = len(c_powers)
c_powers = dict(c_powers)
assert len(c_powers) == check # there should have been no duplicates
# ==============================================================
# rebuild the expression
newexpr = expr.func(*(newexpr + [Pow(b, e) for b, e in c_powers.items()]))
if combine == 'exp':
return expr.func(newexpr, expr.func(*nc_part))
else:
return recurse(expr.func(*nc_part), combine='base') * \
recurse(newexpr, combine='base')
elif combine == 'base':
# Build c_powers and nc_part. These must both be lists not
# dicts because exp's are not combined.
c_powers = []
nc_part = []
for term in expr.args:
if term.is_commutative:
c_powers.append(list(term.as_base_exp()))
else:
nc_part.append(term)
# Pull out numerical coefficients from exponent if assumptions allow
# e.g., 2**(2*x) => 4**x
for i in range(len(c_powers)):
b, e = c_powers[i]
if not (all(x.is_nonnegative for x in b.as_numer_denom()) or e.is_integer or force or b.is_polar):
continue
exp_c, exp_t = e.as_coeff_Mul(rational=True)
if exp_c is not S.One and exp_t is not S.One:
c_powers[i] = [Pow(b, exp_c), exp_t]
# Combine bases whenever they have the same exponent and
# assumptions allow
# first gather the potential bases under the common exponent
c_exp = defaultdict(list)
for b, e in c_powers:
if deep:
e = recurse(e)
if e.is_Add and (b.is_positive or e.is_integer):
e = factor_terms(e)
if _coeff_isneg(e):
e = -e
b = 1/b
c_exp[e].append(b)
del c_powers
# Merge back in the results of the above to form a new product
c_powers = defaultdict(list)
for e in c_exp:
bases = c_exp[e]
# calculate the new base for e
if len(bases) == 1:
new_base = bases[0]
elif e.is_integer or force:
new_base = expr.func(*bases)
else:
# see which ones can be joined
unk = []
nonneg = []
neg = []
for bi in bases:
if bi.is_negative:
neg.append(bi)
elif bi.is_nonnegative:
nonneg.append(bi)
elif bi.is_polar:
nonneg.append(
bi) # polar can be treated like non-negative
else:
unk.append(bi)
if len(unk) == 1 and not neg or len(neg) == 1 and not unk:
# a single neg or a single unk can join the rest
nonneg.extend(unk + neg)
unk = neg = []
elif neg:
# their negative signs cancel in groups of 2*q if we know
# that e = p/q else we have to treat them as unknown
israt = False
if e.is_Rational:
israt = True
else:
p, d = e.as_numer_denom()
if p.is_integer and d.is_integer:
israt = True
if israt:
neg = [-w for w in neg]
unk.extend([S.NegativeOne]*len(neg))
else:
unk.extend(neg)
neg = []
del israt
# these shouldn't be joined
for b in unk:
c_powers[b].append(e)
# here is a new joined base
new_base = expr.func(*(nonneg + neg))
# if there are positive parts they will just get separated
# again unless some change is made
def _terms(e):
# return the number of terms of this expression
# when multiplied out -- assuming no joining of terms
if e.is_Add:
return sum(_terms(ai) for ai in e.args)
if e.is_Mul:
return prod([_terms(mi) for mi in e.args])
return 1
xnew_base = expand_mul(new_base, deep=False)
if len(Add.make_args(xnew_base)) < _terms(new_base):
new_base = factor_terms(xnew_base)
c_powers[new_base].append(e)
# break out the powers from c_powers now
c_part = [Pow(b, ei) for b, e in c_powers.items() for ei in e]
# we're done
return expr.func(*(c_part + nc_part))
else:
raise ValueError("combine must be one of ('all', 'exp', 'base').")
def powdenest(eq, force=False, polar=False):
r"""
Collect exponents on powers as assumptions allow.
Explanation
===========
Given ``(bb**be)**e``, this can be simplified as follows:
* if ``bb`` is positive, or
* ``e`` is an integer, or
* ``|be| < 1`` then this simplifies to ``bb**(be*e)``
Given a product of powers raised to a power, ``(bb1**be1 *
bb2**be2...)**e``, simplification can be done as follows:
- if e is positive, the gcd of all bei can be joined with e;
- all non-negative bb can be separated from those that are negative
and their gcd can be joined with e; autosimplification already
handles this separation.
- integer factors from powers that have integers in the denominator
of the exponent can be removed from any term and the gcd of such
integers can be joined with e
Setting ``force`` to ``True`` will make symbols that are not explicitly
negative behave as though they are positive, resulting in more
denesting.
Setting ``polar`` to ``True`` will do simplifications on the Riemann surface of
the logarithm, also resulting in more denestings.
When there are sums of logs in exp() then a product of powers may be
obtained e.g. ``exp(3*(log(a) + 2*log(b)))`` - > ``a**3*b**6``.
Examples
========
>>> from sympy.abc import a, b, x, y, z
>>> from sympy import Symbol, exp, log, sqrt, symbols, powdenest
>>> powdenest((x**(2*a/3))**(3*x))
(x**(2*a/3))**(3*x)
>>> powdenest(exp(3*x*log(2)))
2**(3*x)
Assumptions may prevent expansion:
>>> powdenest(sqrt(x**2))
sqrt(x**2)
>>> p = symbols('p', positive=True)
>>> powdenest(sqrt(p**2))
p
No other expansion is done.
>>> i, j = symbols('i,j', integer=True)
>>> powdenest((x**x)**(i + j)) # -X-> (x**x)**i*(x**x)**j
x**(x*(i + j))
But exp() will be denested by moving all non-log terms outside of
the function; this may result in the collapsing of the exp to a power
with a different base:
>>> powdenest(exp(3*y*log(x)))
x**(3*y)
>>> powdenest(exp(y*(log(a) + log(b))))
(a*b)**y
>>> powdenest(exp(3*(log(a) + log(b))))
a**3*b**3
If assumptions allow, symbols can also be moved to the outermost exponent:
>>> i = Symbol('i', integer=True)
>>> powdenest(((x**(2*i))**(3*y))**x)
((x**(2*i))**(3*y))**x
>>> powdenest(((x**(2*i))**(3*y))**x, force=True)
x**(6*i*x*y)
>>> powdenest(((x**(2*a/3))**(3*y/i))**x)
((x**(2*a/3))**(3*y/i))**x
>>> powdenest((x**(2*i)*y**(4*i))**z, force=True)
(x*y**2)**(2*i*z)
>>> n = Symbol('n', negative=True)
>>> powdenest((x**i)**y, force=True)
x**(i*y)
>>> powdenest((n**i)**x, force=True)
(n**i)**x
"""
from sympy.simplify.simplify import posify
if force:
def _denest(b, e):
if not isinstance(b, (Pow, exp)):
return b.is_positive, Pow(b, e, evaluate=False)
return _denest(b.base, b.exp*e)
reps = []
for p in eq.atoms(Pow, exp):
if isinstance(p.base, (Pow, exp)):
ok, dp = _denest(*p.args)
if ok is not False:
reps.append((p, dp))
if reps:
eq = eq.subs(reps)
eq, reps = posify(eq)
return powdenest(eq, force=False, polar=polar).xreplace(reps)
if polar:
eq, rep = polarify(eq)
return unpolarify(powdenest(unpolarify(eq, exponents_only=True)), rep)
new = powsimp(eq)
return new.xreplace(Transform(
_denest_pow, filter=lambda m: m.is_Pow or isinstance(m, exp)))
_y = Dummy('y')
def _denest_pow(eq):
"""
Denest powers.
This is a helper function for powdenest that performs the actual
transformation.
"""
from sympy.simplify.simplify import logcombine
b, e = eq.as_base_exp()
if b.is_Pow or isinstance(b, exp) and e != 1:
new = b._eval_power(e)
if new is not None:
eq = new
b, e = new.as_base_exp()
# denest exp with log terms in exponent
if b is S.Exp1 and e.is_Mul:
logs = []
other = []
for ei in e.args:
if any(isinstance(ai, log) for ai in Add.make_args(ei)):
logs.append(ei)
else:
other.append(ei)
logs = logcombine(Mul(*logs))
return Pow(exp(logs), Mul(*other))
_, be = b.as_base_exp()
if be is S.One and not (b.is_Mul or
b.is_Rational and b.q != 1 or
b.is_positive):
return eq
# denest eq which is either pos**e or Pow**e or Mul**e or
# Mul(b1**e1, b2**e2)
# handle polar numbers specially
polars, nonpolars = [], []
for bb in Mul.make_args(b):
if bb.is_polar:
polars.append(bb.as_base_exp())
else:
nonpolars.append(bb)
if len(polars) == 1 and not polars[0][0].is_Mul:
return Pow(polars[0][0], polars[0][1]*e)*powdenest(Mul(*nonpolars)**e)
elif polars:
return Mul(*[powdenest(bb**(ee*e)) for (bb, ee) in polars]) \
*powdenest(Mul(*nonpolars)**e)
if b.is_Integer:
# use log to see if there is a power here
logb = expand_log(log(b))
if logb.is_Mul:
c, logb = logb.args
e *= c
base = logb.args[0]
return Pow(base, e)
# if b is not a Mul or any factor is an atom then there is nothing to do
if not b.is_Mul or any(s.is_Atom for s in Mul.make_args(b)):
return eq
# let log handle the case of the base of the argument being a Mul, e.g.
# sqrt(x**(2*i)*y**(6*i)) -> x**i*y**(3**i) if x and y are positive; we
# will take the log, expand it, and then factor out the common powers that
# now appear as coefficient. We do this manually since terms_gcd pulls out
# fractions, terms_gcd(x+x*y/2) -> x*(y + 2)/2 and we don't want the 1/2;
# gcd won't pull out numerators from a fraction: gcd(3*x, 9*x/2) -> x but
# we want 3*x. Neither work with noncommutatives.
def nc_gcd(aa, bb):
a, b = [i.as_coeff_Mul() for i in [aa, bb]]
c = gcd(a[0], b[0]).as_numer_denom()[0]
g = Mul(*(a[1].args_cnc(cset=True)[0] & b[1].args_cnc(cset=True)[0]))
return _keep_coeff(c, g)
glogb = expand_log(log(b))
if glogb.is_Add:
args = glogb.args
g = reduce(nc_gcd, args)
if g != 1:
cg, rg = g.as_coeff_Mul()
glogb = _keep_coeff(cg, rg*Add(*[a/g for a in args]))
# now put the log back together again
if isinstance(glogb, log) or not glogb.is_Mul:
if glogb.args[0].is_Pow or isinstance(glogb.args[0], exp):
glogb = _denest_pow(glogb.args[0])
if (abs(glogb.exp) < 1) == True:
return Pow(glogb.base, glogb.exp*e)
return eq
# the log(b) was a Mul so join any adds with logcombine
add = []
other = []
for a in glogb.args:
if a.is_Add:
add.append(a)
else:
other.append(a)
return Pow(exp(logcombine(Mul(*add))), e*Mul(*other))
|