File size: 18,609 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
from sympy.core import Function, S, Mul, Pow, Add
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.function import expand_func
from sympy.core.symbol import Dummy
from sympy.functions import gamma, sqrt, sin
from sympy.polys import factor, cancel
from sympy.utilities.iterables import sift, uniq


def gammasimp(expr):
    r"""
    Simplify expressions with gamma functions.

    Explanation
    ===========

    This function takes as input an expression containing gamma
    functions or functions that can be rewritten in terms of gamma
    functions and tries to minimize the number of those functions and
    reduce the size of their arguments.

    The algorithm works by rewriting all gamma functions as expressions
    involving rising factorials (Pochhammer symbols) and applies
    recurrence relations and other transformations applicable to rising
    factorials, to reduce their arguments, possibly letting the resulting
    rising factorial to cancel. Rising factorials with the second argument
    being an integer are expanded into polynomial forms and finally all
    other rising factorial are rewritten in terms of gamma functions.

    Then the following two steps are performed.

    1. Reduce the number of gammas by applying the reflection theorem
       gamma(x)*gamma(1-x) == pi/sin(pi*x).
    2. Reduce the number of gammas by applying the multiplication theorem
       gamma(x)*gamma(x+1/n)*...*gamma(x+(n-1)/n) == C*gamma(n*x).

    It then reduces the number of prefactors by absorbing them into gammas
    where possible and expands gammas with rational argument.

    All transformation rules can be found (or were derived from) here:

    .. [1] https://functions.wolfram.com/GammaBetaErf/Pochhammer/17/01/02/
    .. [2] https://functions.wolfram.com/GammaBetaErf/Pochhammer/27/01/0005/

    Examples
    ========

    >>> from sympy.simplify import gammasimp
    >>> from sympy import gamma, Symbol
    >>> from sympy.abc import x
    >>> n = Symbol('n', integer = True)

    >>> gammasimp(gamma(x)/gamma(x - 3))
    (x - 3)*(x - 2)*(x - 1)
    >>> gammasimp(gamma(n + 3))
    gamma(n + 3)

    """

    expr = expr.rewrite(gamma)

    # compute_ST will be looking for Functions and we don't want
    # it looking for non-gamma functions: issue 22606
    # so we mask free, non-gamma functions
    f = expr.atoms(Function)
    # take out gammas
    gammas = {i for i in f if isinstance(i, gamma)}
    if not gammas:
        return expr  # avoid side effects like factoring
    f -= gammas
    # keep only those without bound symbols
    f = f & expr.as_dummy().atoms(Function)
    if f:
        dum, fun, simp = zip(*[
            (Dummy(), fi, fi.func(*[
                _gammasimp(a, as_comb=False) for a in fi.args]))
            for fi in ordered(f)])
        d = expr.xreplace(dict(zip(fun, dum)))
        return _gammasimp(d, as_comb=False).xreplace(dict(zip(dum, simp)))

    return _gammasimp(expr, as_comb=False)


def _gammasimp(expr, as_comb):
    """
    Helper function for gammasimp and combsimp.

    Explanation
    ===========

    Simplifies expressions written in terms of gamma function. If
    as_comb is True, it tries to preserve integer arguments. See
    docstring of gammasimp for more information. This was part of
    combsimp() in combsimp.py.
    """
    expr = expr.replace(gamma,
        lambda n: _rf(1, (n - 1).expand()))

    if as_comb:
        expr = expr.replace(_rf,
            lambda a, b: gamma(b + 1))
    else:
        expr = expr.replace(_rf,
            lambda a, b: gamma(a + b)/gamma(a))

    def rule_gamma(expr, level=0):
        """ Simplify products of gamma functions further. """

        if expr.is_Atom:
            return expr

        def gamma_rat(x):
            # helper to simplify ratios of gammas
            was = x.count(gamma)
            xx = x.replace(gamma, lambda n: _rf(1, (n - 1).expand()
                ).replace(_rf, lambda a, b: gamma(a + b)/gamma(a)))
            if xx.count(gamma) < was:
                x = xx
            return x

        def gamma_factor(x):
            # return True if there is a gamma factor in shallow args
            if isinstance(x, gamma):
                return True
            if x.is_Add or x.is_Mul:
                return any(gamma_factor(xi) for xi in x.args)
            if x.is_Pow and (x.exp.is_integer or x.base.is_positive):
                return gamma_factor(x.base)
            return False

        # recursion step
        if level == 0:
            expr = expr.func(*[rule_gamma(x, level + 1) for x in expr.args])
            level += 1

        if not expr.is_Mul:
            return expr

        # non-commutative step
        if level == 1:
            args, nc = expr.args_cnc()
            if not args:
                return expr
            if nc:
                return rule_gamma(Mul._from_args(args), level + 1)*Mul._from_args(nc)
            level += 1

        # pure gamma handling, not factor absorption
        if level == 2:
            T, F = sift(expr.args, gamma_factor, binary=True)
            gamma_ind = Mul(*F)
            d = Mul(*T)

            nd, dd = d.as_numer_denom()
            for ipass in range(2):
                args = list(ordered(Mul.make_args(nd)))
                for i, ni in enumerate(args):
                    if ni.is_Add:
                        ni, dd = Add(*[
                            rule_gamma(gamma_rat(a/dd), level + 1) for a in ni.args]
                            ).as_numer_denom()
                        args[i] = ni
                        if not dd.has(gamma):
                            break
                nd = Mul(*args)
                if ipass ==  0 and not gamma_factor(nd):
                    break
                nd, dd = dd, nd  # now process in reversed order
            expr = gamma_ind*nd/dd
            if not (expr.is_Mul and (gamma_factor(dd) or gamma_factor(nd))):
                return expr
            level += 1

        # iteration until constant
        if level == 3:
            while True:
                was = expr
                expr = rule_gamma(expr, 4)
                if expr == was:
                    return expr

        numer_gammas = []
        denom_gammas = []
        numer_others = []
        denom_others = []
        def explicate(p):
            if p is S.One:
                return None, []
            b, e = p.as_base_exp()
            if e.is_Integer:
                if isinstance(b, gamma):
                    return True, [b.args[0]]*e
                else:
                    return False, [b]*e
            else:
                return False, [p]

        newargs = list(ordered(expr.args))
        while newargs:
            n, d = newargs.pop().as_numer_denom()
            isg, l = explicate(n)
            if isg:
                numer_gammas.extend(l)
            elif isg is False:
                numer_others.extend(l)
            isg, l = explicate(d)
            if isg:
                denom_gammas.extend(l)
            elif isg is False:
                denom_others.extend(l)

        # =========== level 2 work: pure gamma manipulation =========

        if not as_comb:
            # Try to reduce the number of gamma factors by applying the
            # reflection formula gamma(x)*gamma(1-x) = pi/sin(pi*x)
            for gammas, numer, denom in [(
                numer_gammas, numer_others, denom_others),
                    (denom_gammas, denom_others, numer_others)]:
                new = []
                while gammas:
                    g1 = gammas.pop()
                    if g1.is_integer:
                        new.append(g1)
                        continue
                    for i, g2 in enumerate(gammas):
                        n = g1 + g2 - 1
                        if not n.is_Integer:
                            continue
                        numer.append(S.Pi)
                        denom.append(sin(S.Pi*g1))
                        gammas.pop(i)
                        if n > 0:
                            for k in range(n):
                                numer.append(1 - g1 + k)
                        elif n < 0:
                            for k in range(-n):
                                denom.append(-g1 - k)
                        break
                    else:
                        new.append(g1)
                # /!\ updating IN PLACE
                gammas[:] = new

            # Try to reduce the number of gammas by using the duplication
            # theorem to cancel an upper and lower: gamma(2*s)/gamma(s) =
            # 2**(2*s + 1)/(4*sqrt(pi))*gamma(s + 1/2). Although this could
            # be done with higher argument ratios like gamma(3*x)/gamma(x),
            # this would not reduce the number of gammas as in this case.
            for ng, dg, no, do in [(numer_gammas, denom_gammas, numer_others,
                                    denom_others),
                                   (denom_gammas, numer_gammas, denom_others,
                                    numer_others)]:

                while True:
                    for x in ng:
                        for y in dg:
                            n = x - 2*y
                            if n.is_Integer:
                                break
                        else:
                            continue
                        break
                    else:
                        break
                    ng.remove(x)
                    dg.remove(y)
                    if n > 0:
                        for k in range(n):
                            no.append(2*y + k)
                    elif n < 0:
                        for k in range(-n):
                            do.append(2*y - 1 - k)
                    ng.append(y + S.Half)
                    no.append(2**(2*y - 1))
                    do.append(sqrt(S.Pi))

            # Try to reduce the number of gamma factors by applying the
            # multiplication theorem (used when n gammas with args differing
            # by 1/n mod 1 are encountered).
            #
            # run of 2 with args differing by 1/2
            #
            # >>> gammasimp(gamma(x)*gamma(x+S.Half))
            # 2*sqrt(2)*2**(-2*x - 1/2)*sqrt(pi)*gamma(2*x)
            #
            # run of 3 args differing by 1/3 (mod 1)
            #
            # >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(2)/3))
            # 6*3**(-3*x - 1/2)*pi*gamma(3*x)
            # >>> gammasimp(gamma(x)*gamma(x+S(1)/3)*gamma(x+S(5)/3))
            # 2*3**(-3*x - 1/2)*pi*(3*x + 2)*gamma(3*x)
            #
            def _run(coeffs):
                # find runs in coeffs such that the difference in terms (mod 1)
                # of t1, t2, ..., tn is 1/n
                u = list(uniq(coeffs))
                for i in range(len(u)):
                    dj = ([((u[j] - u[i]) % 1, j) for j in range(i + 1, len(u))])
                    for one, j in dj:
                        if one.p == 1 and one.q != 1:
                            n = one.q
                            got = [i]
                            get = list(range(1, n))
                            for d, j in dj:
                                m = n*d
                                if m.is_Integer and m in get:
                                    get.remove(m)
                                    got.append(j)
                                    if not get:
                                        break
                            else:
                                continue
                            for i, j in enumerate(got):
                                c = u[j]
                                coeffs.remove(c)
                                got[i] = c
                            return one.q, got[0], got[1:]

            def _mult_thm(gammas, numer, denom):
                # pull off and analyze the leading coefficient from each gamma arg
                # looking for runs in those Rationals

                # expr -> coeff + resid -> rats[resid] = coeff
                rats = {}
                for g in gammas:
                    c, resid = g.as_coeff_Add()
                    rats.setdefault(resid, []).append(c)

                # look for runs in Rationals for each resid
                keys = sorted(rats, key=default_sort_key)
                for resid in keys:
                    coeffs = sorted(rats[resid])
                    new = []
                    while True:
                        run = _run(coeffs)
                        if run is None:
                            break

                        # process the sequence that was found:
                        # 1) convert all the gamma functions to have the right
                        #    argument (could be off by an integer)
                        # 2) append the factors corresponding to the theorem
                        # 3) append the new gamma function

                        n, ui, other = run

                        # (1)
                        for u in other:
                            con = resid + u - 1
                            for k in range(int(u - ui)):
                                numer.append(con - k)

                        con = n*(resid + ui)  # for (2) and (3)

                        # (2)
                        numer.append((2*S.Pi)**(S(n - 1)/2)*
                                     n**(S.Half - con))
                        # (3)
                        new.append(con)

                    # restore resid to coeffs
                    rats[resid] = [resid + c for c in coeffs] + new

                # rebuild the gamma arguments
                g = []
                for resid in keys:
                    g += rats[resid]
                # /!\ updating IN PLACE
                gammas[:] = g

            for l, numer, denom in [(numer_gammas, numer_others, denom_others),
                                    (denom_gammas, denom_others, numer_others)]:
                _mult_thm(l, numer, denom)

        # =========== level >= 2 work: factor absorption =========

        if level >= 2:
            # Try to absorb factors into the gammas: x*gamma(x) -> gamma(x + 1)
            # and gamma(x)/(x - 1) -> gamma(x - 1)
            # This code (in particular repeated calls to find_fuzzy) can be very
            # slow.
            def find_fuzzy(l, x):
                if not l:
                    return
                S1, T1 = compute_ST(x)
                for y in l:
                    S2, T2 = inv[y]
                    if T1 != T2 or (not S1.intersection(S2) and
                                    (S1 != set() or S2 != set())):
                        continue
                    # XXX we want some simplification (e.g. cancel or
                    # simplify) but no matter what it's slow.
                    a = len(cancel(x/y).free_symbols)
                    b = len(x.free_symbols)
                    c = len(y.free_symbols)
                    # TODO is there a better heuristic?
                    if a == 0 and (b > 0 or c > 0):
                        return y

            # We thus try to avoid expensive calls by building the following
            # "invariants": For every factor or gamma function argument
            #   - the set of free symbols S
            #   - the set of functional components T
            # We will only try to absorb if T1==T2 and (S1 intersect S2 != emptyset
            # or S1 == S2 == emptyset)
            inv = {}

            def compute_ST(expr):
                if expr in inv:
                    return inv[expr]
                return (expr.free_symbols, expr.atoms(Function).union(
                        {e.exp for e in expr.atoms(Pow)}))

            def update_ST(expr):
                inv[expr] = compute_ST(expr)
            for expr in numer_gammas + denom_gammas + numer_others + denom_others:
                update_ST(expr)

            for gammas, numer, denom in [(
                numer_gammas, numer_others, denom_others),
                    (denom_gammas, denom_others, numer_others)]:
                new = []
                while gammas:
                    g = gammas.pop()
                    cont = True
                    while cont:
                        cont = False
                        y = find_fuzzy(numer, g)
                        if y is not None:
                            numer.remove(y)
                            if y != g:
                                numer.append(y/g)
                                update_ST(y/g)
                            g += 1
                            cont = True
                        y = find_fuzzy(denom, g - 1)
                        if y is not None:
                            denom.remove(y)
                            if y != g - 1:
                                numer.append((g - 1)/y)
                                update_ST((g - 1)/y)
                            g -= 1
                            cont = True
                    new.append(g)
                # /!\ updating IN PLACE
                gammas[:] = new

        # =========== rebuild expr ==================================

        return Mul(*[gamma(g) for g in numer_gammas]) \
            / Mul(*[gamma(g) for g in denom_gammas]) \
            * Mul(*numer_others) / Mul(*denom_others)

    was = factor(expr)
    # (for some reason we cannot use Basic.replace in this case)
    expr = rule_gamma(was)
    if expr != was:
        expr = factor(expr)

    expr = expr.replace(gamma,
        lambda n: expand_func(gamma(n)) if n.is_Rational else gamma(n))

    return expr


class _rf(Function):
    @classmethod
    def eval(cls, a, b):
        if b.is_Integer:
            if not b:
                return S.One

            n = int(b)

            if n > 0:
                return Mul(*[a + i for i in range(n)])
            elif n < 0:
                return 1/Mul(*[a - i for i in range(1, -n + 1)])
        else:
            if b.is_Add:
                c, _b = b.as_coeff_Add()

                if c.is_Integer:
                    if c > 0:
                        return _rf(a, _b)*_rf(a + _b, c)
                    elif c < 0:
                        return _rf(a, _b)/_rf(a + _b + c, -c)

            if a.is_Add:
                c, _a = a.as_coeff_Add()

                if c.is_Integer:
                    if c > 0:
                        return _rf(_a, b)*_rf(_a + b, c)/_rf(_a, c)
                    elif c < 0:
                        return _rf(_a, b)*_rf(_a + c, -c)/_rf(_a + b + c, -c)