File size: 62,310 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
from collections import defaultdict

from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.exprtools import Factors, gcd_terms, factor_terms
from sympy.core.function import expand_mul
from sympy.core.mul import Mul
from sympy.core.numbers import pi, I
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.core.traversal import bottom_up
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.hyperbolic import (
    cosh, sinh, tanh, coth, sech, csch, HyperbolicFunction)
from sympy.functions.elementary.trigonometric import (
    cos, sin, tan, cot, sec, csc, sqrt, TrigonometricFunction)
from sympy.ntheory.factor_ import perfect_power
from sympy.polys.polytools import factor
from sympy.strategies.tree import greedy
from sympy.strategies.core import identity, debug

from sympy import SYMPY_DEBUG


# ================== Fu-like tools ===========================


def TR0(rv):
    """Simplification of rational polynomials, trying to simplify
    the expression, e.g. combine things like 3*x + 2*x, etc....
    """
    # although it would be nice to use cancel, it doesn't work
    # with noncommutatives
    return rv.normal().factor().expand()


def TR1(rv):
    """Replace sec, csc with 1/cos, 1/sin

    Examples
    ========

    >>> from sympy.simplify.fu import TR1, sec, csc
    >>> from sympy.abc import x
    >>> TR1(2*csc(x) + sec(x))
    1/cos(x) + 2/sin(x)
    """

    def f(rv):
        if isinstance(rv, sec):
            a = rv.args[0]
            return S.One/cos(a)
        elif isinstance(rv, csc):
            a = rv.args[0]
            return S.One/sin(a)
        return rv

    return bottom_up(rv, f)


def TR2(rv):
    """Replace tan and cot with sin/cos and cos/sin

    Examples
    ========

    >>> from sympy.simplify.fu import TR2
    >>> from sympy.abc import x
    >>> from sympy import tan, cot, sin, cos
    >>> TR2(tan(x))
    sin(x)/cos(x)
    >>> TR2(cot(x))
    cos(x)/sin(x)
    >>> TR2(tan(tan(x) - sin(x)/cos(x)))
    0

    """

    def f(rv):
        if isinstance(rv, tan):
            a = rv.args[0]
            return sin(a)/cos(a)
        elif isinstance(rv, cot):
            a = rv.args[0]
            return cos(a)/sin(a)
        return rv

    return bottom_up(rv, f)


def TR2i(rv, half=False):
    """Converts ratios involving sin and cos as follows::
        sin(x)/cos(x) -> tan(x)
        sin(x)/(cos(x) + 1) -> tan(x/2) if half=True

    Examples
    ========

    >>> from sympy.simplify.fu import TR2i
    >>> from sympy.abc import x, a
    >>> from sympy import sin, cos
    >>> TR2i(sin(x)/cos(x))
    tan(x)

    Powers of the numerator and denominator are also recognized

    >>> TR2i(sin(x)**2/(cos(x) + 1)**2, half=True)
    tan(x/2)**2

    The transformation does not take place unless assumptions allow
    (i.e. the base must be positive or the exponent must be an integer
    for both numerator and denominator)

    >>> TR2i(sin(x)**a/(cos(x) + 1)**a)
    sin(x)**a/(cos(x) + 1)**a

    """

    def f(rv):
        if not rv.is_Mul:
            return rv

        n, d = rv.as_numer_denom()
        if n.is_Atom or d.is_Atom:
            return rv

        def ok(k, e):
            # initial filtering of factors
            return (
                (e.is_integer or k.is_positive) and (
                k.func in (sin, cos) or (half and
                k.is_Add and
                len(k.args) >= 2 and
                any(any(isinstance(ai, cos) or ai.is_Pow and ai.base is cos
                for ai in Mul.make_args(a)) for a in k.args))))

        n = n.as_powers_dict()
        ndone = [(k, n.pop(k)) for k in list(n.keys()) if not ok(k, n[k])]
        if not n:
            return rv

        d = d.as_powers_dict()
        ddone = [(k, d.pop(k)) for k in list(d.keys()) if not ok(k, d[k])]
        if not d:
            return rv

        # factoring if necessary

        def factorize(d, ddone):
            newk = []
            for k in d:
                if k.is_Add and len(k.args) > 1:
                    knew = factor(k) if half else factor_terms(k)
                    if knew != k:
                        newk.append((k, knew))
            if newk:
                for i, (k, knew) in enumerate(newk):
                    del d[k]
                    newk[i] = knew
                newk = Mul(*newk).as_powers_dict()
                for k in newk:
                    v = d[k] + newk[k]
                    if ok(k, v):
                        d[k] = v
                    else:
                        ddone.append((k, v))
                del newk
        factorize(n, ndone)
        factorize(d, ddone)

        # joining
        t = []
        for k in n:
            if isinstance(k, sin):
                a = cos(k.args[0], evaluate=False)
                if a in d and d[a] == n[k]:
                    t.append(tan(k.args[0])**n[k])
                    n[k] = d[a] = None
                elif half:
                    a1 = 1 + a
                    if a1 in d and d[a1] == n[k]:
                        t.append((tan(k.args[0]/2))**n[k])
                        n[k] = d[a1] = None
            elif isinstance(k, cos):
                a = sin(k.args[0], evaluate=False)
                if a in d and d[a] == n[k]:
                    t.append(tan(k.args[0])**-n[k])
                    n[k] = d[a] = None
            elif half and k.is_Add and k.args[0] is S.One and \
                    isinstance(k.args[1], cos):
                a = sin(k.args[1].args[0], evaluate=False)
                if a in d and d[a] == n[k] and (d[a].is_integer or \
                        a.is_positive):
                    t.append(tan(a.args[0]/2)**-n[k])
                    n[k] = d[a] = None

        if t:
            rv = Mul(*(t + [b**e for b, e in n.items() if e]))/\
                Mul(*[b**e for b, e in d.items() if e])
            rv *= Mul(*[b**e for b, e in ndone])/Mul(*[b**e for b, e in ddone])

        return rv

    return bottom_up(rv, f)


def TR3(rv):
    """Induced formula: example sin(-a) = -sin(a)

    Examples
    ========

    >>> from sympy.simplify.fu import TR3
    >>> from sympy.abc import x, y
    >>> from sympy import pi
    >>> from sympy import cos
    >>> TR3(cos(y - x*(y - x)))
    cos(x*(x - y) + y)
    >>> cos(pi/2 + x)
    -sin(x)
    >>> cos(30*pi/2 + x)
    -cos(x)

    """
    from sympy.simplify.simplify import signsimp

    # Negative argument (already automatic for funcs like sin(-x) -> -sin(x)
    # but more complicated expressions can use it, too). Also, trig angles
    # between pi/4 and pi/2 are not reduced to an angle between 0 and pi/4.
    # The following are automatically handled:
    #   Argument of type: pi/2 +/- angle
    #   Argument of type: pi +/- angle
    #   Argument of type : 2k*pi +/- angle

    def f(rv):
        if not isinstance(rv, TrigonometricFunction):
            return rv
        rv = rv.func(signsimp(rv.args[0]))
        if not isinstance(rv, TrigonometricFunction):
            return rv
        if (rv.args[0] - S.Pi/4).is_positive is (S.Pi/2 - rv.args[0]).is_positive is True:
            fmap = {cos: sin, sin: cos, tan: cot, cot: tan, sec: csc, csc: sec}
            rv = fmap[type(rv)](S.Pi/2 - rv.args[0])
        return rv

    # touch numbers iside of trig functions to let them automatically update
    rv = rv.replace(
        lambda x: isinstance(x, TrigonometricFunction),
        lambda x: x.replace(
            lambda n: n.is_number and n.is_Mul,
            lambda n: n.func(*n.args)))

    return bottom_up(rv, f)


def TR4(rv):
    """Identify values of special angles.

        a=  0   pi/6        pi/4        pi/3        pi/2
    ----------------------------------------------------
    sin(a)  0   1/2         sqrt(2)/2   sqrt(3)/2   1
    cos(a)  1   sqrt(3)/2   sqrt(2)/2   1/2         0
    tan(a)  0   sqt(3)/3    1           sqrt(3)     --

    Examples
    ========

    >>> from sympy import pi
    >>> from sympy import cos, sin, tan, cot
    >>> for s in (0, pi/6, pi/4, pi/3, pi/2):
    ...    print('%s %s %s %s' % (cos(s), sin(s), tan(s), cot(s)))
    ...
    1 0 0 zoo
    sqrt(3)/2 1/2 sqrt(3)/3 sqrt(3)
    sqrt(2)/2 sqrt(2)/2 1 1
    1/2 sqrt(3)/2 sqrt(3) sqrt(3)/3
    0 1 zoo 0
    """
    # special values at 0, pi/6, pi/4, pi/3, pi/2 already handled
    return rv.replace(
        lambda x:
            isinstance(x, TrigonometricFunction) and
            (r:=x.args[0]/pi).is_Rational and r.q in (1, 2, 3, 4, 6),
        lambda x:
            x.func(x.args[0].func(*x.args[0].args)))


def _TR56(rv, f, g, h, max, pow):
    """Helper for TR5 and TR6 to replace f**2 with h(g**2)

    Options
    =======

    max :   controls size of exponent that can appear on f
            e.g. if max=4 then f**4 will be changed to h(g**2)**2.
    pow :   controls whether the exponent must be a perfect power of 2
            e.g. if pow=True (and max >= 6) then f**6 will not be changed
            but f**8 will be changed to h(g**2)**4

    >>> from sympy.simplify.fu import _TR56 as T
    >>> from sympy.abc import x
    >>> from sympy import sin, cos
    >>> h = lambda x: 1 - x
    >>> T(sin(x)**3, sin, cos, h, 4, False)
    (1 - cos(x)**2)*sin(x)
    >>> T(sin(x)**6, sin, cos, h, 6, False)
    (1 - cos(x)**2)**3
    >>> T(sin(x)**6, sin, cos, h, 6, True)
    sin(x)**6
    >>> T(sin(x)**8, sin, cos, h, 10, True)
    (1 - cos(x)**2)**4
    """

    def _f(rv):
        # I'm not sure if this transformation should target all even powers
        # or only those expressible as powers of 2. Also, should it only
        # make the changes in powers that appear in sums -- making an isolated
        # change is not going to allow a simplification as far as I can tell.
        if not (rv.is_Pow and rv.base.func == f):
            return rv
        if not rv.exp.is_real:
            return rv

        if (rv.exp < 0) == True:
            return rv
        if (rv.exp > max) == True:
            return rv
        if rv.exp == 1:
            return rv
        if rv.exp == 2:
            return h(g(rv.base.args[0])**2)
        else:
            if rv.exp % 2 == 1:
                e = rv.exp//2
                return f(rv.base.args[0])*h(g(rv.base.args[0])**2)**e
            elif rv.exp == 4:
                e = 2
            elif not pow:
                if rv.exp % 2:
                    return rv
                e = rv.exp//2
            else:
                p = perfect_power(rv.exp)
                if not p:
                    return rv
                e = rv.exp//2
            return h(g(rv.base.args[0])**2)**e

    return bottom_up(rv, _f)


def TR5(rv, max=4, pow=False):
    """Replacement of sin**2 with 1 - cos(x)**2.

    See _TR56 docstring for advanced use of ``max`` and ``pow``.

    Examples
    ========

    >>> from sympy.simplify.fu import TR5
    >>> from sympy.abc import x
    >>> from sympy import sin
    >>> TR5(sin(x)**2)
    1 - cos(x)**2
    >>> TR5(sin(x)**-2)  # unchanged
    sin(x)**(-2)
    >>> TR5(sin(x)**4)
    (1 - cos(x)**2)**2
    """
    return _TR56(rv, sin, cos, lambda x: 1 - x, max=max, pow=pow)


def TR6(rv, max=4, pow=False):
    """Replacement of cos**2 with 1 - sin(x)**2.

    See _TR56 docstring for advanced use of ``max`` and ``pow``.

    Examples
    ========

    >>> from sympy.simplify.fu import TR6
    >>> from sympy.abc import x
    >>> from sympy import cos
    >>> TR6(cos(x)**2)
    1 - sin(x)**2
    >>> TR6(cos(x)**-2)  #unchanged
    cos(x)**(-2)
    >>> TR6(cos(x)**4)
    (1 - sin(x)**2)**2
    """
    return _TR56(rv, cos, sin, lambda x: 1 - x, max=max, pow=pow)


def TR7(rv):
    """Lowering the degree of cos(x)**2.

    Examples
    ========

    >>> from sympy.simplify.fu import TR7
    >>> from sympy.abc import x
    >>> from sympy import cos
    >>> TR7(cos(x)**2)
    cos(2*x)/2 + 1/2
    >>> TR7(cos(x)**2 + 1)
    cos(2*x)/2 + 3/2

    """

    def f(rv):
        if not (rv.is_Pow and rv.base.func == cos and rv.exp == 2):
            return rv
        return (1 + cos(2*rv.base.args[0]))/2

    return bottom_up(rv, f)


def TR8(rv, first=True):
    """Converting products of ``cos`` and/or ``sin`` to a sum or
    difference of ``cos`` and or ``sin`` terms.

    Examples
    ========

    >>> from sympy.simplify.fu import TR8
    >>> from sympy import cos, sin
    >>> TR8(cos(2)*cos(3))
    cos(5)/2 + cos(1)/2
    >>> TR8(cos(2)*sin(3))
    sin(5)/2 + sin(1)/2
    >>> TR8(sin(2)*sin(3))
    -cos(5)/2 + cos(1)/2
    """

    def f(rv):
        if not (
            rv.is_Mul or
            rv.is_Pow and
            rv.base.func in (cos, sin) and
            (rv.exp.is_integer or rv.base.is_positive)):
            return rv

        if first:
            n, d = [expand_mul(i) for i in rv.as_numer_denom()]
            newn = TR8(n, first=False)
            newd = TR8(d, first=False)
            if newn != n or newd != d:
                rv = gcd_terms(newn/newd)
                if rv.is_Mul and rv.args[0].is_Rational and \
                        len(rv.args) == 2 and rv.args[1].is_Add:
                    rv = Mul(*rv.as_coeff_Mul())
            return rv

        args = {cos: [], sin: [], None: []}
        for a in Mul.make_args(rv):
            if a.func in (cos, sin):
                args[type(a)].append(a.args[0])
            elif (a.is_Pow and a.exp.is_Integer and a.exp > 0 and \
                    a.base.func in (cos, sin)):
                # XXX this is ok but pathological expression could be handled
                # more efficiently as in TRmorrie
                args[type(a.base)].extend([a.base.args[0]]*a.exp)
            else:
                args[None].append(a)
        c = args[cos]
        s = args[sin]
        if not (c and s or len(c) > 1 or len(s) > 1):
            return rv

        args = args[None]
        n = min(len(c), len(s))
        for i in range(n):
            a1 = s.pop()
            a2 = c.pop()
            args.append((sin(a1 + a2) + sin(a1 - a2))/2)
        while len(c) > 1:
            a1 = c.pop()
            a2 = c.pop()
            args.append((cos(a1 + a2) + cos(a1 - a2))/2)
        if c:
            args.append(cos(c.pop()))
        while len(s) > 1:
            a1 = s.pop()
            a2 = s.pop()
            args.append((-cos(a1 + a2) + cos(a1 - a2))/2)
        if s:
            args.append(sin(s.pop()))
        return TR8(expand_mul(Mul(*args)))

    return bottom_up(rv, f)


def TR9(rv):
    """Sum of ``cos`` or ``sin`` terms as a product of ``cos`` or ``sin``.

    Examples
    ========

    >>> from sympy.simplify.fu import TR9
    >>> from sympy import cos, sin
    >>> TR9(cos(1) + cos(2))
    2*cos(1/2)*cos(3/2)
    >>> TR9(cos(1) + 2*sin(1) + 2*sin(2))
    cos(1) + 4*sin(3/2)*cos(1/2)

    If no change is made by TR9, no re-arrangement of the
    expression will be made. For example, though factoring
    of common term is attempted, if the factored expression
    was not changed, the original expression will be returned:

    >>> TR9(cos(3) + cos(3)*cos(2))
    cos(3) + cos(2)*cos(3)

    """

    def f(rv):
        if not rv.is_Add:
            return rv

        def do(rv, first=True):
            # cos(a)+/-cos(b) can be combined into a product of cosines and
            # sin(a)+/-sin(b) can be combined into a product of cosine and
            # sine.
            #
            # If there are more than two args, the pairs which "work" will
            # have a gcd extractable and the remaining two terms will have
            # the above structure -- all pairs must be checked to find the
            # ones that work. args that don't have a common set of symbols
            # are skipped since this doesn't lead to a simpler formula and
            # also has the arbitrariness of combining, for example, the x
            # and y term instead of the y and z term in something like
            # cos(x) + cos(y) + cos(z).

            if not rv.is_Add:
                return rv

            args = list(ordered(rv.args))
            if len(args) != 2:
                hit = False
                for i in range(len(args)):
                    ai = args[i]
                    if ai is None:
                        continue
                    for j in range(i + 1, len(args)):
                        aj = args[j]
                        if aj is None:
                            continue
                        was = ai + aj
                        new = do(was)
                        if new != was:
                            args[i] = new  # update in place
                            args[j] = None
                            hit = True
                            break  # go to next i
                if hit:
                    rv = Add(*[_f for _f in args if _f])
                    if rv.is_Add:
                        rv = do(rv)

                return rv

            # two-arg Add
            split = trig_split(*args)
            if not split:
                return rv
            gcd, n1, n2, a, b, iscos = split

            # application of rule if possible
            if iscos:
                if n1 == n2:
                    return gcd*n1*2*cos((a + b)/2)*cos((a - b)/2)
                if n1 < 0:
                    a, b = b, a
                return -2*gcd*sin((a + b)/2)*sin((a - b)/2)
            else:
                if n1 == n2:
                    return gcd*n1*2*sin((a + b)/2)*cos((a - b)/2)
                if n1 < 0:
                    a, b = b, a
                return 2*gcd*cos((a + b)/2)*sin((a - b)/2)

        return process_common_addends(rv, do)  # DON'T sift by free symbols

    return bottom_up(rv, f)


def TR10(rv, first=True):
    """Separate sums in ``cos`` and ``sin``.

    Examples
    ========

    >>> from sympy.simplify.fu import TR10
    >>> from sympy.abc import a, b, c
    >>> from sympy import cos, sin
    >>> TR10(cos(a + b))
    -sin(a)*sin(b) + cos(a)*cos(b)
    >>> TR10(sin(a + b))
    sin(a)*cos(b) + sin(b)*cos(a)
    >>> TR10(sin(a + b + c))
    (-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \
    (sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
    """

    def f(rv):
        if rv.func not in (cos, sin):
            return rv

        f = rv.func
        arg = rv.args[0]
        if arg.is_Add:
            if first:
                args = list(ordered(arg.args))
            else:
                args = list(arg.args)
            a = args.pop()
            b = Add._from_args(args)
            if b.is_Add:
                if f == sin:
                    return sin(a)*TR10(cos(b), first=False) + \
                        cos(a)*TR10(sin(b), first=False)
                else:
                    return cos(a)*TR10(cos(b), first=False) - \
                        sin(a)*TR10(sin(b), first=False)
            else:
                if f == sin:
                    return sin(a)*cos(b) + cos(a)*sin(b)
                else:
                    return cos(a)*cos(b) - sin(a)*sin(b)
        return rv

    return bottom_up(rv, f)


def TR10i(rv):
    """Sum of products to function of sum.

    Examples
    ========

    >>> from sympy.simplify.fu import TR10i
    >>> from sympy import cos, sin, sqrt
    >>> from sympy.abc import x

    >>> TR10i(cos(1)*cos(3) + sin(1)*sin(3))
    cos(2)
    >>> TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3))
    cos(3) + sin(4)
    >>> TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x)
    2*sqrt(2)*x*sin(x + pi/6)

    """
    global _ROOT2, _ROOT3, _invROOT3
    if _ROOT2 is None:
        _roots()

    def f(rv):
        if not rv.is_Add:
            return rv

        def do(rv, first=True):
            # args which can be expressed as A*(cos(a)*cos(b)+/-sin(a)*sin(b))
            # or B*(cos(a)*sin(b)+/-cos(b)*sin(a)) can be combined into
            # A*f(a+/-b) where f is either sin or cos.
            #
            # If there are more than two args, the pairs which "work" will have
            # a gcd extractable and the remaining two terms will have the above
            # structure -- all pairs must be checked to find the ones that
            # work.

            if not rv.is_Add:
                return rv

            args = list(ordered(rv.args))
            if len(args) != 2:
                hit = False
                for i in range(len(args)):
                    ai = args[i]
                    if ai is None:
                        continue
                    for j in range(i + 1, len(args)):
                        aj = args[j]
                        if aj is None:
                            continue
                        was = ai + aj
                        new = do(was)
                        if new != was:
                            args[i] = new  # update in place
                            args[j] = None
                            hit = True
                            break  # go to next i
                if hit:
                    rv = Add(*[_f for _f in args if _f])
                    if rv.is_Add:
                        rv = do(rv)

                return rv

            # two-arg Add
            split = trig_split(*args, two=True)
            if not split:
                return rv
            gcd, n1, n2, a, b, same = split

            # identify and get c1 to be cos then apply rule if possible
            if same:  # coscos, sinsin
                gcd = n1*gcd
                if n1 == n2:
                    return gcd*cos(a - b)
                return gcd*cos(a + b)
            else:  #cossin, cossin
                gcd = n1*gcd
                if n1 == n2:
                    return gcd*sin(a + b)
                return gcd*sin(b - a)

        rv = process_common_addends(
            rv, do, lambda x: tuple(ordered(x.free_symbols)))

        # need to check for inducible pairs in ratio of sqrt(3):1 that
        # appeared in different lists when sorting by coefficient
        while rv.is_Add:
            byrad = defaultdict(list)
            for a in rv.args:
                hit = 0
                if a.is_Mul:
                    for ai in a.args:
                        if ai.is_Pow and ai.exp is S.Half and \
                                ai.base.is_Integer:
                            byrad[ai].append(a)
                            hit = 1
                            break
                if not hit:
                    byrad[S.One].append(a)

            # no need to check all pairs -- just check for the onees
            # that have the right ratio
            args = []
            for a in byrad:
                for b in [_ROOT3*a, _invROOT3]:
                    if b in byrad:
                        for i in range(len(byrad[a])):
                            if byrad[a][i] is None:
                                continue
                            for j in range(len(byrad[b])):
                                if byrad[b][j] is None:
                                    continue
                                was = Add(byrad[a][i] + byrad[b][j])
                                new = do(was)
                                if new != was:
                                    args.append(new)
                                    byrad[a][i] = None
                                    byrad[b][j] = None
                                    break
            if args:
                rv = Add(*(args + [Add(*[_f for _f in v if _f])
                    for v in byrad.values()]))
            else:
                rv = do(rv)  # final pass to resolve any new inducible pairs
                break

        return rv

    return bottom_up(rv, f)


def TR11(rv, base=None):
    """Function of double angle to product. The ``base`` argument can be used
    to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base
    then cosine and sine functions with argument 6*pi/7 will be replaced.

    Examples
    ========

    >>> from sympy.simplify.fu import TR11
    >>> from sympy import cos, sin, pi
    >>> from sympy.abc import x
    >>> TR11(sin(2*x))
    2*sin(x)*cos(x)
    >>> TR11(cos(2*x))
    -sin(x)**2 + cos(x)**2
    >>> TR11(sin(4*x))
    4*(-sin(x)**2 + cos(x)**2)*sin(x)*cos(x)
    >>> TR11(sin(4*x/3))
    4*(-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3)

    If the arguments are simply integers, no change is made
    unless a base is provided:

    >>> TR11(cos(2))
    cos(2)
    >>> TR11(cos(4), 2)
    -sin(2)**2 + cos(2)**2

    There is a subtle issue here in that autosimplification will convert
    some higher angles to lower angles

    >>> cos(6*pi/7) + cos(3*pi/7)
    -cos(pi/7) + cos(3*pi/7)

    The 6*pi/7 angle is now pi/7 but can be targeted with TR11 by supplying
    the 3*pi/7 base:

    >>> TR11(_, 3*pi/7)
    -sin(3*pi/7)**2 + cos(3*pi/7)**2 + cos(3*pi/7)

    """

    def f(rv):
        if rv.func not in (cos, sin):
            return rv

        if base:
            f = rv.func
            t = f(base*2)
            co = S.One
            if t.is_Mul:
                co, t = t.as_coeff_Mul()
            if t.func not in (cos, sin):
                return rv
            if rv.args[0] == t.args[0]:
                c = cos(base)
                s = sin(base)
                if f is cos:
                    return (c**2 - s**2)/co
                else:
                    return 2*c*s/co
            return rv

        elif not rv.args[0].is_Number:
            # make a change if the leading coefficient's numerator is
            # divisible by 2
            c, m = rv.args[0].as_coeff_Mul(rational=True)
            if c.p % 2 == 0:
                arg = c.p//2*m/c.q
                c = TR11(cos(arg))
                s = TR11(sin(arg))
                if rv.func == sin:
                    rv = 2*s*c
                else:
                    rv = c**2 - s**2
        return rv

    return bottom_up(rv, f)


def _TR11(rv):
    """
    Helper for TR11 to find half-arguments for sin in factors of
    num/den that appear in cos or sin factors in the den/num.

    Examples
    ========

    >>> from sympy.simplify.fu import TR11, _TR11
    >>> from sympy import cos, sin
    >>> from sympy.abc import x
    >>> TR11(sin(x/3)/(cos(x/6)))
    sin(x/3)/cos(x/6)
    >>> _TR11(sin(x/3)/(cos(x/6)))
    2*sin(x/6)
    >>> TR11(sin(x/6)/(sin(x/3)))
    sin(x/6)/sin(x/3)
    >>> _TR11(sin(x/6)/(sin(x/3)))
    1/(2*cos(x/6))

    """
    def f(rv):
        if not isinstance(rv, Expr):
            return rv

        def sincos_args(flat):
            # find arguments of sin and cos that
            # appears as bases in args of flat
            # and have Integer exponents
            args = defaultdict(set)
            for fi in Mul.make_args(flat):
                b, e = fi.as_base_exp()
                if e.is_Integer and e > 0:
                    if b.func in (cos, sin):
                        args[type(b)].add(b.args[0])
            return args
        num_args, den_args = map(sincos_args, rv.as_numer_denom())
        def handle_match(rv, num_args, den_args):
            # for arg in sin args of num_args, look for arg/2
            # in den_args and pass this half-angle to TR11
            # for handling in rv
            for narg in num_args[sin]:
                half = narg/2
                if half in den_args[cos]:
                    func = cos
                elif half in den_args[sin]:
                    func = sin
                else:
                    continue
                rv = TR11(rv, half)
                den_args[func].remove(half)
            return rv
        # sin in num, sin or cos in den
        rv = handle_match(rv, num_args, den_args)
        # sin in den, sin or cos in num
        rv = handle_match(rv, den_args, num_args)
        return rv

    return bottom_up(rv, f)


def TR12(rv, first=True):
    """Separate sums in ``tan``.

    Examples
    ========

    >>> from sympy.abc import x, y
    >>> from sympy import tan
    >>> from sympy.simplify.fu import TR12
    >>> TR12(tan(x + y))
    (tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
    """

    def f(rv):
        if not rv.func == tan:
            return rv

        arg = rv.args[0]
        if arg.is_Add:
            if first:
                args = list(ordered(arg.args))
            else:
                args = list(arg.args)
            a = args.pop()
            b = Add._from_args(args)
            if b.is_Add:
                tb = TR12(tan(b), first=False)
            else:
                tb = tan(b)
            return (tan(a) + tb)/(1 - tan(a)*tb)
        return rv

    return bottom_up(rv, f)


def TR12i(rv):
    """Combine tan arguments as
    (tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y).

    Examples
    ========

    >>> from sympy.simplify.fu import TR12i
    >>> from sympy import tan
    >>> from sympy.abc import a, b, c
    >>> ta, tb, tc = [tan(i) for i in (a, b, c)]
    >>> TR12i((ta + tb)/(-ta*tb + 1))
    tan(a + b)
    >>> TR12i((ta + tb)/(ta*tb - 1))
    -tan(a + b)
    >>> TR12i((-ta - tb)/(ta*tb - 1))
    tan(a + b)
    >>> eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
    >>> TR12i(eq.expand())
    -3*tan(a + b)*tan(a + c)/(2*(tan(a) + tan(b) - 1))
    """
    def f(rv):
        if not (rv.is_Add or rv.is_Mul or rv.is_Pow):
            return rv

        n, d = rv.as_numer_denom()
        if not d.args or not n.args:
            return rv

        dok = {}

        def ok(di):
            m = as_f_sign_1(di)
            if m:
                g, f, s = m
                if s is S.NegativeOne and f.is_Mul and len(f.args) == 2 and \
                        all(isinstance(fi, tan) for fi in f.args):
                    return g, f

        d_args = list(Mul.make_args(d))
        for i, di in enumerate(d_args):
            m = ok(di)
            if m:
                g, t = m
                s = Add(*[_.args[0] for _ in t.args])
                dok[s] = S.One
                d_args[i] = g
                continue
            if di.is_Add:
                di = factor(di)
                if di.is_Mul:
                    d_args.extend(di.args)
                    d_args[i] = S.One
            elif di.is_Pow and (di.exp.is_integer or di.base.is_positive):
                m = ok(di.base)
                if m:
                    g, t = m
                    s = Add(*[_.args[0] for _ in t.args])
                    dok[s] = di.exp
                    d_args[i] = g**di.exp
                else:
                    di = factor(di)
                    if di.is_Mul:
                        d_args.extend(di.args)
                        d_args[i] = S.One
        if not dok:
            return rv

        def ok(ni):
            if ni.is_Add and len(ni.args) == 2:
                a, b = ni.args
                if isinstance(a, tan) and isinstance(b, tan):
                    return a, b
        n_args = list(Mul.make_args(factor_terms(n)))
        hit = False
        for i, ni in enumerate(n_args):
            m = ok(ni)
            if not m:
                m = ok(-ni)
                if m:
                    n_args[i] = S.NegativeOne
                else:
                    if ni.is_Add:
                        ni = factor(ni)
                        if ni.is_Mul:
                            n_args.extend(ni.args)
                            n_args[i] = S.One
                        continue
                    elif ni.is_Pow and (
                            ni.exp.is_integer or ni.base.is_positive):
                        m = ok(ni.base)
                        if m:
                            n_args[i] = S.One
                        else:
                            ni = factor(ni)
                            if ni.is_Mul:
                                n_args.extend(ni.args)
                                n_args[i] = S.One
                            continue
                    else:
                        continue
            else:
                n_args[i] = S.One
            hit = True
            s = Add(*[_.args[0] for _ in m])
            ed = dok[s]
            newed = ed.extract_additively(S.One)
            if newed is not None:
                if newed:
                    dok[s] = newed
                else:
                    dok.pop(s)
            n_args[i] *= -tan(s)

        if hit:
            rv = Mul(*n_args)/Mul(*d_args)/Mul(*[(Add(*[
                tan(a) for a in i.args]) - 1)**e for i, e in dok.items()])

        return rv

    return bottom_up(rv, f)


def TR13(rv):
    """Change products of ``tan`` or ``cot``.

    Examples
    ========

    >>> from sympy.simplify.fu import TR13
    >>> from sympy import tan, cot
    >>> TR13(tan(3)*tan(2))
    -tan(2)/tan(5) - tan(3)/tan(5) + 1
    >>> TR13(cot(3)*cot(2))
    cot(2)*cot(5) + 1 + cot(3)*cot(5)
    """

    def f(rv):
        if not rv.is_Mul:
            return rv

        # XXX handle products of powers? or let power-reducing handle it?
        args = {tan: [], cot: [], None: []}
        for a in Mul.make_args(rv):
            if a.func in (tan, cot):
                args[type(a)].append(a.args[0])
            else:
                args[None].append(a)
        t = args[tan]
        c = args[cot]
        if len(t) < 2 and len(c) < 2:
            return rv
        args = args[None]
        while len(t) > 1:
            t1 = t.pop()
            t2 = t.pop()
            args.append(1 - (tan(t1)/tan(t1 + t2) + tan(t2)/tan(t1 + t2)))
        if t:
            args.append(tan(t.pop()))
        while len(c) > 1:
            t1 = c.pop()
            t2 = c.pop()
            args.append(1 + cot(t1)*cot(t1 + t2) + cot(t2)*cot(t1 + t2))
        if c:
            args.append(cot(c.pop()))
        return Mul(*args)

    return bottom_up(rv, f)


def TRmorrie(rv):
    """Returns cos(x)*cos(2*x)*...*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x))

    Examples
    ========

    >>> from sympy.simplify.fu import TRmorrie, TR8, TR3
    >>> from sympy.abc import x
    >>> from sympy import Mul, cos, pi
    >>> TRmorrie(cos(x)*cos(2*x))
    sin(4*x)/(4*sin(x))
    >>> TRmorrie(7*Mul(*[cos(x) for x in range(10)]))
    7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))

    Sometimes autosimplification will cause a power to be
    not recognized. e.g. in the following, cos(4*pi/7) automatically
    simplifies to -cos(3*pi/7) so only 2 of the 3 terms are
    recognized:

    >>> TRmorrie(cos(pi/7)*cos(2*pi/7)*cos(4*pi/7))
    -sin(3*pi/7)*cos(3*pi/7)/(4*sin(pi/7))

    A touch by TR8 resolves the expression to a Rational

    >>> TR8(_)
    -1/8

    In this case, if eq is unsimplified, the answer is obtained
    directly:

    >>> eq = cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9)
    >>> TRmorrie(eq)
    1/16

    But if angles are made canonical with TR3 then the answer
    is not simplified without further work:

    >>> TR3(eq)
    sin(pi/18)*cos(pi/9)*cos(2*pi/9)/2
    >>> TRmorrie(_)
    sin(pi/18)*sin(4*pi/9)/(8*sin(pi/9))
    >>> TR8(_)
    cos(7*pi/18)/(16*sin(pi/9))
    >>> TR3(_)
    1/16

    The original expression would have resolve to 1/16 directly with TR8,
    however:

    >>> TR8(eq)
    1/16

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Morrie%27s_law

    """

    def f(rv, first=True):
        if not rv.is_Mul:
            return rv
        if first:
            n, d = rv.as_numer_denom()
            return f(n, 0)/f(d, 0)

        args = defaultdict(list)
        coss = {}
        other = []
        for c in rv.args:
            b, e = c.as_base_exp()
            if e.is_Integer and isinstance(b, cos):
                co, a = b.args[0].as_coeff_Mul()
                args[a].append(co)
                coss[b] = e
            else:
                other.append(c)

        new = []
        for a in args:
            c = args[a]
            c.sort()
            while c:
                k = 0
                cc = ci = c[0]
                while cc in c:
                    k += 1
                    cc *= 2
                if k > 1:
                    newarg = sin(2**k*ci*a)/2**k/sin(ci*a)
                    # see how many times this can be taken
                    take = None
                    ccs = []
                    for i in range(k):
                        cc /= 2
                        key = cos(a*cc, evaluate=False)
                        ccs.append(cc)
                        take = min(coss[key], take or coss[key])
                    # update exponent counts
                    for i in range(k):
                        cc = ccs.pop()
                        key = cos(a*cc, evaluate=False)
                        coss[key] -= take
                        if not coss[key]:
                            c.remove(cc)
                    new.append(newarg**take)
                else:
                    b = cos(c.pop(0)*a)
                    other.append(b**coss[b])

        if new:
            rv = Mul(*(new + other + [
                cos(k*a, evaluate=False) for a in args for k in args[a]]))

        return rv

    return bottom_up(rv, f)


def TR14(rv, first=True):
    """Convert factored powers of sin and cos identities into simpler
    expressions.

    Examples
    ========

    >>> from sympy.simplify.fu import TR14
    >>> from sympy.abc import x, y
    >>> from sympy import cos, sin
    >>> TR14((cos(x) - 1)*(cos(x) + 1))
    -sin(x)**2
    >>> TR14((sin(x) - 1)*(sin(x) + 1))
    -cos(x)**2
    >>> p1 = (cos(x) + 1)*(cos(x) - 1)
    >>> p2 = (cos(y) - 1)*2*(cos(y) + 1)
    >>> p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1))
    >>> TR14(p1*p2*p3*(x - 1))
    -18*(x - 1)*sin(x)**2*sin(y)**4

    """

    def f(rv):
        if not rv.is_Mul:
            return rv

        if first:
            # sort them by location in numerator and denominator
            # so the code below can just deal with positive exponents
            n, d = rv.as_numer_denom()
            if d is not S.One:
                newn = TR14(n, first=False)
                newd = TR14(d, first=False)
                if newn != n or newd != d:
                    rv = newn/newd
                return rv

        other = []
        process = []
        for a in rv.args:
            if a.is_Pow:
                b, e = a.as_base_exp()
                if not (e.is_integer or b.is_positive):
                    other.append(a)
                    continue
                a = b
            else:
                e = S.One
            m = as_f_sign_1(a)
            if not m or m[1].func not in (cos, sin):
                if e is S.One:
                    other.append(a)
                else:
                    other.append(a**e)
                continue
            g, f, si = m
            process.append((g, e.is_Number, e, f, si, a))

        # sort them to get like terms next to each other
        process = list(ordered(process))

        # keep track of whether there was any change
        nother = len(other)

        # access keys
        keys = (g, t, e, f, si, a) = list(range(6))

        while process:
            A = process.pop(0)
            if process:
                B = process[0]

                if A[e].is_Number and B[e].is_Number:
                    # both exponents are numbers
                    if A[f] == B[f]:
                        if A[si] != B[si]:
                            B = process.pop(0)
                            take = min(A[e], B[e])

                            # reinsert any remainder
                            # the B will likely sort after A so check it first
                            if B[e] != take:
                                rem = [B[i] for i in keys]
                                rem[e] -= take
                                process.insert(0, rem)
                            elif A[e] != take:
                                rem = [A[i] for i in keys]
                                rem[e] -= take
                                process.insert(0, rem)

                            if isinstance(A[f], cos):
                                t = sin
                            else:
                                t = cos
                            other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take)
                            continue

                elif A[e] == B[e]:
                    # both exponents are equal symbols
                    if A[f] == B[f]:
                        if A[si] != B[si]:
                            B = process.pop(0)
                            take = A[e]
                            if isinstance(A[f], cos):
                                t = sin
                            else:
                                t = cos
                            other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take)
                            continue

            # either we are done or neither condition above applied
            other.append(A[a]**A[e])

        if len(other) != nother:
            rv = Mul(*other)

        return rv

    return bottom_up(rv, f)


def TR15(rv, max=4, pow=False):
    """Convert sin(x)**-2 to 1 + cot(x)**2.

    See _TR56 docstring for advanced use of ``max`` and ``pow``.

    Examples
    ========

    >>> from sympy.simplify.fu import TR15
    >>> from sympy.abc import x
    >>> from sympy import sin
    >>> TR15(1 - 1/sin(x)**2)
    -cot(x)**2

    """

    def f(rv):
        if not (isinstance(rv, Pow) and isinstance(rv.base, sin)):
            return rv

        e = rv.exp
        if e % 2 == 1:
            return TR15(rv.base**(e + 1))/rv.base

        ia = 1/rv
        a = _TR56(ia, sin, cot, lambda x: 1 + x, max=max, pow=pow)
        if a != ia:
            rv = a
        return rv

    return bottom_up(rv, f)


def TR16(rv, max=4, pow=False):
    """Convert cos(x)**-2 to 1 + tan(x)**2.

    See _TR56 docstring for advanced use of ``max`` and ``pow``.

    Examples
    ========

    >>> from sympy.simplify.fu import TR16
    >>> from sympy.abc import x
    >>> from sympy import cos
    >>> TR16(1 - 1/cos(x)**2)
    -tan(x)**2

    """

    def f(rv):
        if not (isinstance(rv, Pow) and isinstance(rv.base, cos)):
            return rv

        e = rv.exp
        if e % 2 == 1:
            return TR15(rv.base**(e + 1))/rv.base

        ia = 1/rv
        a = _TR56(ia, cos, tan, lambda x: 1 + x, max=max, pow=pow)
        if a != ia:
            rv = a
        return rv

    return bottom_up(rv, f)


def TR111(rv):
    """Convert f(x)**-i to g(x)**i where either ``i`` is an integer
    or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec.

    Examples
    ========

    >>> from sympy.simplify.fu import TR111
    >>> from sympy.abc import x
    >>> from sympy import tan
    >>> TR111(1 - 1/tan(x)**2)
    1 - cot(x)**2

    """

    def f(rv):
        if not (
            isinstance(rv, Pow) and
            (rv.base.is_positive or rv.exp.is_integer and rv.exp.is_negative)):
            return rv

        if isinstance(rv.base, tan):
            return cot(rv.base.args[0])**-rv.exp
        elif isinstance(rv.base, sin):
            return csc(rv.base.args[0])**-rv.exp
        elif isinstance(rv.base, cos):
            return sec(rv.base.args[0])**-rv.exp
        return rv

    return bottom_up(rv, f)


def TR22(rv, max=4, pow=False):
    """Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1.

    See _TR56 docstring for advanced use of ``max`` and ``pow``.

    Examples
    ========

    >>> from sympy.simplify.fu import TR22
    >>> from sympy.abc import x
    >>> from sympy import tan, cot
    >>> TR22(1 + tan(x)**2)
    sec(x)**2
    >>> TR22(1 + cot(x)**2)
    csc(x)**2

    """

    def f(rv):
        if not (isinstance(rv, Pow) and rv.base.func in (cot, tan)):
            return rv

        rv = _TR56(rv, tan, sec, lambda x: x - 1, max=max, pow=pow)
        rv = _TR56(rv, cot, csc, lambda x: x - 1, max=max, pow=pow)
        return rv

    return bottom_up(rv, f)


def TRpower(rv):
    """Convert sin(x)**n and cos(x)**n with positive n to sums.

    Examples
    ========

    >>> from sympy.simplify.fu import TRpower
    >>> from sympy.abc import x
    >>> from sympy import cos, sin
    >>> TRpower(sin(x)**6)
    -15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 + 5/16
    >>> TRpower(sin(x)**3*cos(2*x)**4)
    (3*sin(x)/4 - sin(3*x)/4)*(cos(4*x)/2 + cos(8*x)/8 + 3/8)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Power-reduction_formulae

    """

    def f(rv):
        if not (isinstance(rv, Pow) and isinstance(rv.base, (sin, cos))):
            return rv
        b, n = rv.as_base_exp()
        x = b.args[0]
        if n.is_Integer and n.is_positive:
            if n.is_odd and isinstance(b, cos):
                rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x)
                    for k in range((n + 1)/2)])
            elif n.is_odd and isinstance(b, sin):
                rv = 2**(1-n)*S.NegativeOne**((n-1)/2)*Add(*[binomial(n, k)*
                    S.NegativeOne**k*sin((n - 2*k)*x) for k in range((n + 1)/2)])
            elif n.is_even and isinstance(b, cos):
                rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x)
                    for k in range(n/2)])
            elif n.is_even and isinstance(b, sin):
                rv = 2**(1-n)*S.NegativeOne**(n/2)*Add(*[binomial(n, k)*
                    S.NegativeOne**k*cos((n - 2*k)*x) for k in range(n/2)])
            if n.is_even:
                rv += 2**(-n)*binomial(n, n/2)
        return rv

    return bottom_up(rv, f)


def L(rv):
    """Return count of trigonometric functions in expression.

    Examples
    ========

    >>> from sympy.simplify.fu import L
    >>> from sympy.abc import x
    >>> from sympy import cos, sin
    >>> L(cos(x)+sin(x))
    2
    """
    return S(rv.count(TrigonometricFunction))


# ============== end of basic Fu-like tools =====================

if SYMPY_DEBUG:
    (TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13,
    TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22
    )= list(map(debug,
    (TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13,
    TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22)))


# tuples are chains  --  (f, g) -> lambda x: g(f(x))
# lists are choices  --  [f, g] -> lambda x: min(f(x), g(x), key=objective)

CTR1 = [(TR5, TR0), (TR6, TR0), identity]

CTR2 = (TR11, [(TR5, TR0), (TR6, TR0), TR0])

CTR3 = [(TRmorrie, TR8, TR0), (TRmorrie, TR8, TR10i, TR0), identity]

CTR4 = [(TR4, TR10i), identity]

RL1 = (TR4, TR3, TR4, TR12, TR4, TR13, TR4, TR0)


# XXX it's a little unclear how this one is to be implemented
# see Fu paper of reference, page 7. What is the Union symbol referring to?
# The diagram shows all these as one chain of transformations, but the
# text refers to them being applied independently. Also, a break
# if L starts to increase has not been implemented.
RL2 = [
    (TR4, TR3, TR10, TR4, TR3, TR11),
    (TR5, TR7, TR11, TR4),
    (CTR3, CTR1, TR9, CTR2, TR4, TR9, TR9, CTR4),
    identity,
    ]


def fu(rv, measure=lambda x: (L(x), x.count_ops())):
    """Attempt to simplify expression by using transformation rules given
    in the algorithm by Fu et al.

    :func:`fu` will try to minimize the objective function ``measure``.
    By default this first minimizes the number of trig terms and then minimizes
    the number of total operations.

    Examples
    ========

    >>> from sympy.simplify.fu import fu
    >>> from sympy import cos, sin, tan, pi, S, sqrt
    >>> from sympy.abc import x, y, a, b

    >>> fu(sin(50)**2 + cos(50)**2 + sin(pi/6))
    3/2
    >>> fu(sqrt(6)*cos(x) + sqrt(2)*sin(x))
    2*sqrt(2)*sin(x + pi/3)

    CTR1 example

    >>> eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
    >>> fu(eq)
    cos(x)**4 - 2*cos(y)**2 + 2

    CTR2 example

    >>> fu(S.Half - cos(2*x)/2)
    sin(x)**2

    CTR3 example

    >>> fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b)))
    sqrt(2)*sin(a + b + pi/4)

    CTR4 example

    >>> fu(sqrt(3)*cos(x)/2 + sin(x)/2)
    sin(x + pi/3)

    Example 1

    >>> fu(1-sin(2*x)**2/4-sin(y)**2-cos(x)**4)
    -cos(x)**2 + cos(y)**2

    Example 2

    >>> fu(cos(4*pi/9))
    sin(pi/18)
    >>> fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9))
    1/16

    Example 3

    >>> fu(tan(7*pi/18)+tan(5*pi/18)-sqrt(3)*tan(5*pi/18)*tan(7*pi/18))
    -sqrt(3)

    Objective function example

    >>> fu(sin(x)/cos(x))  # default objective function
    tan(x)
    >>> fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) # maximize op count
    sin(x)/cos(x)

    References
    ==========

    .. [1] https://www.sciencedirect.com/science/article/pii/S0895717706001609
    """
    fRL1 = greedy(RL1, measure)
    fRL2 = greedy(RL2, measure)

    was = rv
    rv = sympify(rv)
    if not isinstance(rv, Expr):
        return rv.func(*[fu(a, measure=measure) for a in rv.args])
    rv = TR1(rv)
    if rv.has(tan, cot):
        rv1 = fRL1(rv)
        if (measure(rv1) < measure(rv)):
            rv = rv1
        if rv.has(tan, cot):
            rv = TR2(rv)
    if rv.has(sin, cos):
        rv1 = fRL2(rv)
        rv2 = TR8(TRmorrie(rv1))
        rv = min([was, rv, rv1, rv2], key=measure)
    return min(TR2i(rv), rv, key=measure)


def process_common_addends(rv, do, key2=None, key1=True):
    """Apply ``do`` to addends of ``rv`` that (if ``key1=True``) share at least
    a common absolute value of their coefficient and the value of ``key2`` when
    applied to the argument. If ``key1`` is False ``key2`` must be supplied and
    will be the only key applied.
    """

    # collect by absolute value of coefficient and key2
    absc = defaultdict(list)
    if key1:
        for a in rv.args:
            c, a = a.as_coeff_Mul()
            if c < 0:
                c = -c
                a = -a  # put the sign on `a`
            absc[(c, key2(a) if key2 else 1)].append(a)
    elif key2:
        for a in rv.args:
            absc[(S.One, key2(a))].append(a)
    else:
        raise ValueError('must have at least one key')

    args = []
    hit = False
    for k in absc:
        v = absc[k]
        c, _ = k
        if len(v) > 1:
            e = Add(*v, evaluate=False)
            new = do(e)
            if new != e:
                e = new
                hit = True
            args.append(c*e)
        else:
            args.append(c*v[0])
    if hit:
        rv = Add(*args)

    return rv


fufuncs = '''
    TR0 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR10i TR11
    TR12 TR13 L TR2i TRmorrie TR12i
    TR14 TR15 TR16 TR111 TR22'''.split()
FU = dict(list(zip(fufuncs, list(map(locals().get, fufuncs)))))


def _roots():
    global _ROOT2, _ROOT3, _invROOT3
    _ROOT2, _ROOT3 = sqrt(2), sqrt(3)
    _invROOT3 = 1/_ROOT3
_ROOT2 = None


def trig_split(a, b, two=False):
    """Return the gcd, s1, s2, a1, a2, bool where

    If two is False (default) then::
        a + b = gcd*(s1*f(a1) + s2*f(a2)) where f = cos if bool else sin
    else:
        if bool, a + b was +/- cos(a1)*cos(a2) +/- sin(a1)*sin(a2) and equals
            n1*gcd*cos(a - b) if n1 == n2 else
            n1*gcd*cos(a + b)
        else a + b was +/- cos(a1)*sin(a2) +/- sin(a1)*cos(a2) and equals
            n1*gcd*sin(a + b) if n1 = n2 else
            n1*gcd*sin(b - a)

    Examples
    ========

    >>> from sympy.simplify.fu import trig_split
    >>> from sympy.abc import x, y, z
    >>> from sympy import cos, sin, sqrt

    >>> trig_split(cos(x), cos(y))
    (1, 1, 1, x, y, True)
    >>> trig_split(2*cos(x), -2*cos(y))
    (2, 1, -1, x, y, True)
    >>> trig_split(cos(x)*sin(y), cos(y)*sin(y))
    (sin(y), 1, 1, x, y, True)

    >>> trig_split(cos(x), -sqrt(3)*sin(x), two=True)
    (2, 1, -1, x, pi/6, False)
    >>> trig_split(cos(x), sin(x), two=True)
    (sqrt(2), 1, 1, x, pi/4, False)
    >>> trig_split(cos(x), -sin(x), two=True)
    (sqrt(2), 1, -1, x, pi/4, False)
    >>> trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True)
    (2*sqrt(2), 1, -1, x, pi/6, False)
    >>> trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True)
    (-2*sqrt(2), 1, 1, x, pi/3, False)
    >>> trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True)
    (sqrt(6)/3, 1, 1, x, pi/6, False)
    >>> trig_split(-sqrt(6)*cos(x)*sin(y), -sqrt(2)*sin(x)*sin(y), two=True)
    (-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False)

    >>> trig_split(cos(x), sin(x))
    >>> trig_split(cos(x), sin(z))
    >>> trig_split(2*cos(x), -sin(x))
    >>> trig_split(cos(x), -sqrt(3)*sin(x))
    >>> trig_split(cos(x)*cos(y), sin(x)*sin(z))
    >>> trig_split(cos(x)*cos(y), sin(x)*sin(y))
    >>> trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True)
    """
    global _ROOT2, _ROOT3, _invROOT3
    if _ROOT2 is None:
        _roots()

    a, b = [Factors(i) for i in (a, b)]
    ua, ub = a.normal(b)
    gcd = a.gcd(b).as_expr()
    n1 = n2 = 1
    if S.NegativeOne in ua.factors:
        ua = ua.quo(S.NegativeOne)
        n1 = -n1
    elif S.NegativeOne in ub.factors:
        ub = ub.quo(S.NegativeOne)
        n2 = -n2
    a, b = [i.as_expr() for i in (ua, ub)]

    def pow_cos_sin(a, two):
        """Return ``a`` as a tuple (r, c, s) such that
        ``a = (r or 1)*(c or 1)*(s or 1)``.

        Three arguments are returned (radical, c-factor, s-factor) as
        long as the conditions set by ``two`` are met; otherwise None is
        returned. If ``two`` is True there will be one or two non-None
        values in the tuple: c and s or c and r or s and r or s or c with c
        being a cosine function (if possible) else a sine, and s being a sine
        function (if possible) else oosine. If ``two`` is False then there
        will only be a c or s term in the tuple.

        ``two`` also require that either two cos and/or sin be present (with
        the condition that if the functions are the same the arguments are
        different or vice versa) or that a single cosine or a single sine
        be present with an optional radical.

        If the above conditions dictated by ``two`` are not met then None
        is returned.
        """
        c = s = None
        co = S.One
        if a.is_Mul:
            co, a = a.as_coeff_Mul()
            if len(a.args) > 2 or not two:
                return None
            if a.is_Mul:
                args = list(a.args)
            else:
                args = [a]
            a = args.pop(0)
            if isinstance(a, cos):
                c = a
            elif isinstance(a, sin):
                s = a
            elif a.is_Pow and a.exp is S.Half:  # autoeval doesn't allow -1/2
                co *= a
            else:
                return None
            if args:
                b = args[0]
                if isinstance(b, cos):
                    if c:
                        s = b
                    else:
                        c = b
                elif isinstance(b, sin):
                    if s:
                        c = b
                    else:
                        s = b
                elif b.is_Pow and b.exp is S.Half:
                    co *= b
                else:
                    return None
            return co if co is not S.One else None, c, s
        elif isinstance(a, cos):
            c = a
        elif isinstance(a, sin):
            s = a
        if c is None and s is None:
            return
        co = co if co is not S.One else None
        return co, c, s

    # get the parts
    m = pow_cos_sin(a, two)
    if m is None:
        return
    coa, ca, sa = m
    m = pow_cos_sin(b, two)
    if m is None:
        return
    cob, cb, sb = m

    # check them
    if (not ca) and cb or ca and isinstance(ca, sin):
        coa, ca, sa, cob, cb, sb = cob, cb, sb, coa, ca, sa
        n1, n2 = n2, n1
    if not two:  # need cos(x) and cos(y) or sin(x) and sin(y)
        c = ca or sa
        s = cb or sb
        if not isinstance(c, s.func):
            return None
        return gcd, n1, n2, c.args[0], s.args[0], isinstance(c, cos)
    else:
        if not coa and not cob:
            if (ca and cb and sa and sb):
                if isinstance(ca, sa.func) is not isinstance(cb, sb.func):
                    return
                args = {j.args for j in (ca, sa)}
                if not all(i.args in args for i in (cb, sb)):
                    return
                return gcd, n1, n2, ca.args[0], sa.args[0], isinstance(ca, sa.func)
        if ca and sa or cb and sb or \
            two and (ca is None and sa is None or cb is None and sb is None):
            return
        c = ca or sa
        s = cb or sb
        if c.args != s.args:
            return
        if not coa:
            coa = S.One
        if not cob:
            cob = S.One
        if coa is cob:
            gcd *= _ROOT2
            return gcd, n1, n2, c.args[0], pi/4, False
        elif coa/cob == _ROOT3:
            gcd *= 2*cob
            return gcd, n1, n2, c.args[0], pi/3, False
        elif coa/cob == _invROOT3:
            gcd *= 2*coa
            return gcd, n1, n2, c.args[0], pi/6, False


def as_f_sign_1(e):
    """If ``e`` is a sum that can be written as ``g*(a + s)`` where
    ``s`` is ``+/-1``, return ``g``, ``a``, and ``s`` where ``a`` does
    not have a leading negative coefficient.

    Examples
    ========

    >>> from sympy.simplify.fu import as_f_sign_1
    >>> from sympy.abc import x
    >>> as_f_sign_1(x + 1)
    (1, x, 1)
    >>> as_f_sign_1(x - 1)
    (1, x, -1)
    >>> as_f_sign_1(-x + 1)
    (-1, x, -1)
    >>> as_f_sign_1(-x - 1)
    (-1, x, 1)
    >>> as_f_sign_1(2*x + 2)
    (2, x, 1)
    """
    if not e.is_Add or len(e.args) != 2:
        return
    # exact match
    a, b = e.args
    if a in (S.NegativeOne, S.One):
        g = S.One
        if b.is_Mul and b.args[0].is_Number and b.args[0] < 0:
            a, b = -a, -b
            g = -g
        return g, b, a
    # gcd match
    a, b = [Factors(i) for i in e.args]
    ua, ub = a.normal(b)
    gcd = a.gcd(b).as_expr()
    if S.NegativeOne in ua.factors:
        ua = ua.quo(S.NegativeOne)
        n1 = -1
        n2 = 1
    elif S.NegativeOne in ub.factors:
        ub = ub.quo(S.NegativeOne)
        n1 = 1
        n2 = -1
    else:
        n1 = n2 = 1
    a, b = [i.as_expr() for i in (ua, ub)]
    if a is S.One:
        a, b = b, a
        n1, n2 = n2, n1
    if n1 == -1:
        gcd = -gcd
        n2 = -n2

    if b is S.One:
        return gcd, a, n2


def _osborne(e, d):
    """Replace all hyperbolic functions with trig functions using
    the Osborne rule.

    Notes
    =====

    ``d`` is a dummy variable to prevent automatic evaluation
    of trigonometric/hyperbolic functions.


    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
    """

    def f(rv):
        if not isinstance(rv, HyperbolicFunction):
            return rv
        a = rv.args[0]
        a = a*d if not a.is_Add else Add._from_args([i*d for i in a.args])
        if isinstance(rv, sinh):
            return I*sin(a)
        elif isinstance(rv, cosh):
            return cos(a)
        elif isinstance(rv, tanh):
            return I*tan(a)
        elif isinstance(rv, coth):
            return cot(a)/I
        elif isinstance(rv, sech):
            return sec(a)
        elif isinstance(rv, csch):
            return csc(a)/I
        else:
            raise NotImplementedError('unhandled %s' % rv.func)

    return bottom_up(e, f)


def _osbornei(e, d):
    """Replace all trig functions with hyperbolic functions using
    the Osborne rule.

    Notes
    =====

    ``d`` is a dummy variable to prevent automatic evaluation
    of trigonometric/hyperbolic functions.

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
    """

    def f(rv):
        if not isinstance(rv, TrigonometricFunction):
            return rv
        const, x = rv.args[0].as_independent(d, as_Add=True)
        a = x.xreplace({d: S.One}) + const*I
        if isinstance(rv, sin):
            return sinh(a)/I
        elif isinstance(rv, cos):
            return cosh(a)
        elif isinstance(rv, tan):
            return tanh(a)/I
        elif isinstance(rv, cot):
            return coth(a)*I
        elif isinstance(rv, sec):
            return sech(a)
        elif isinstance(rv, csc):
            return csch(a)*I
        else:
            raise NotImplementedError('unhandled %s' % rv.func)

    return bottom_up(e, f)


def hyper_as_trig(rv):
    """Return an expression containing hyperbolic functions in terms
    of trigonometric functions. Any trigonometric functions initially
    present are replaced with Dummy symbols and the function to undo
    the masking and the conversion back to hyperbolics is also returned. It
    should always be true that::

        t, f = hyper_as_trig(expr)
        expr == f(t)

    Examples
    ========

    >>> from sympy.simplify.fu import hyper_as_trig, fu
    >>> from sympy.abc import x
    >>> from sympy import cosh, sinh
    >>> eq = sinh(x)**2 + cosh(x)**2
    >>> t, f = hyper_as_trig(eq)
    >>> f(fu(t))
    cosh(2*x)

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
    """
    from sympy.simplify.simplify import signsimp
    from sympy.simplify.radsimp import collect

    # mask off trig functions
    trigs = rv.atoms(TrigonometricFunction)
    reps = [(t, Dummy()) for t in trigs]
    masked = rv.xreplace(dict(reps))

    # get inversion substitutions in place
    reps = [(v, k) for k, v in reps]

    d = Dummy()

    return _osborne(masked, d), lambda x: collect(signsimp(
        _osbornei(x, d).xreplace(dict(reps))), S.ImaginaryUnit)


def sincos_to_sum(expr):
    """Convert products and powers of sin and cos to sums.

    Explanation
    ===========

    Applied power reduction TRpower first, then expands products, and
    converts products to sums with TR8.

    Examples
    ========

    >>> from sympy.simplify.fu import sincos_to_sum
    >>> from sympy.abc import x
    >>> from sympy import cos, sin
    >>> sincos_to_sum(16*sin(x)**3*cos(2*x)**2)
    7*sin(x) - 5*sin(3*x) + 3*sin(5*x) - sin(7*x)
    """

    if not expr.has(cos, sin):
        return expr
    else:
        return TR8(expand_mul(TRpower(expr)))