Spaces:
Sleeping
Sleeping
File size: 31,342 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 |
""" Tools for doing common subexpression elimination.
"""
from collections import defaultdict
from sympy.core import Basic, Mul, Add, Pow, sympify
from sympy.core.containers import Tuple, OrderedSet
from sympy.core.exprtools import factor_terms
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import symbols, Symbol
from sympy.matrices import (MatrixBase, Matrix, ImmutableMatrix,
SparseMatrix, ImmutableSparseMatrix)
from sympy.matrices.expressions import (MatrixExpr, MatrixSymbol, MatMul,
MatAdd, MatPow, Inverse)
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.polys.rootoftools import RootOf
from sympy.utilities.iterables import numbered_symbols, sift, \
topological_sort, iterable
from . import cse_opts
# (preprocessor, postprocessor) pairs which are commonly useful. They should
# each take a SymPy expression and return a possibly transformed expression.
# When used in the function ``cse()``, the target expressions will be transformed
# by each of the preprocessor functions in order. After the common
# subexpressions are eliminated, each resulting expression will have the
# postprocessor functions transform them in *reverse* order in order to undo the
# transformation if necessary. This allows the algorithm to operate on
# a representation of the expressions that allows for more optimization
# opportunities.
# ``None`` can be used to specify no transformation for either the preprocessor or
# postprocessor.
basic_optimizations = [(cse_opts.sub_pre, cse_opts.sub_post),
(factor_terms, None)]
# sometimes we want the output in a different format; non-trivial
# transformations can be put here for users
# ===============================================================
def reps_toposort(r):
"""Sort replacements ``r`` so (k1, v1) appears before (k2, v2)
if k2 is in v1's free symbols. This orders items in the
way that cse returns its results (hence, in order to use the
replacements in a substitution option it would make sense
to reverse the order).
Examples
========
>>> from sympy.simplify.cse_main import reps_toposort
>>> from sympy.abc import x, y
>>> from sympy import Eq
>>> for l, r in reps_toposort([(x, y + 1), (y, 2)]):
... print(Eq(l, r))
...
Eq(y, 2)
Eq(x, y + 1)
"""
r = sympify(r)
E = []
for c1, (k1, v1) in enumerate(r):
for c2, (k2, v2) in enumerate(r):
if k1 in v2.free_symbols:
E.append((c1, c2))
return [r[i] for i in topological_sort((range(len(r)), E))]
def cse_separate(r, e):
"""Move expressions that are in the form (symbol, expr) out of the
expressions and sort them into the replacements using the reps_toposort.
Examples
========
>>> from sympy.simplify.cse_main import cse_separate
>>> from sympy.abc import x, y, z
>>> from sympy import cos, exp, cse, Eq, symbols
>>> x0, x1 = symbols('x:2')
>>> eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1))
>>> cse([eq, Eq(x, z + 1), z - 2], postprocess=cse_separate) in [
... [[(x0, y + 1), (x, z + 1), (x1, x + 1)],
... [x1 + exp(x1/x0) + cos(x0), z - 2]],
... [[(x1, y + 1), (x, z + 1), (x0, x + 1)],
... [x0 + exp(x0/x1) + cos(x1), z - 2]]]
...
True
"""
d = sift(e, lambda w: w.is_Equality and w.lhs.is_Symbol)
r = r + [w.args for w in d[True]]
e = d[False]
return [reps_toposort(r), e]
def cse_release_variables(r, e):
"""
Return tuples giving ``(a, b)`` where ``a`` is a symbol and ``b`` is
either an expression or None. The value of None is used when a
symbol is no longer needed for subsequent expressions.
Use of such output can reduce the memory footprint of lambdified
expressions that contain large, repeated subexpressions.
Examples
========
>>> from sympy import cse
>>> from sympy.simplify.cse_main import cse_release_variables
>>> from sympy.abc import x, y
>>> eqs = [(x + y - 1)**2, x, x + y, (x + y)/(2*x + 1) + (x + y - 1)**2, (2*x + 1)**(x + y)]
>>> defs, rvs = cse_release_variables(*cse(eqs))
>>> for i in defs:
... print(i)
...
(x0, x + y)
(x1, (x0 - 1)**2)
(x2, 2*x + 1)
(_3, x0/x2 + x1)
(_4, x2**x0)
(x2, None)
(_0, x1)
(x1, None)
(_2, x0)
(x0, None)
(_1, x)
>>> print(rvs)
(_0, _1, _2, _3, _4)
"""
if not r:
return r, e
s, p = zip(*r)
esyms = symbols('_:%d' % len(e))
syms = list(esyms)
s = list(s)
in_use = set(s)
p = list(p)
# sort e so those with most sub-expressions appear first
e = [(e[i], syms[i]) for i in range(len(e))]
e, syms = zip(*sorted(e,
key=lambda x: -sum(p[s.index(i)].count_ops()
for i in x[0].free_symbols & in_use)))
syms = list(syms)
p += e
rv = []
i = len(p) - 1
while i >= 0:
_p = p.pop()
c = in_use & _p.free_symbols
if c: # sorting for canonical results
rv.extend([(s, None) for s in sorted(c, key=str)])
if i >= len(r):
rv.append((syms.pop(), _p))
else:
rv.append((s[i], _p))
in_use -= c
i -= 1
rv.reverse()
return rv, esyms
# ====end of cse postprocess idioms===========================
def preprocess_for_cse(expr, optimizations):
""" Preprocess an expression to optimize for common subexpression
elimination.
Parameters
==========
expr : SymPy expression
The target expression to optimize.
optimizations : list of (callable, callable) pairs
The (preprocessor, postprocessor) pairs.
Returns
=======
expr : SymPy expression
The transformed expression.
"""
for pre, post in optimizations:
if pre is not None:
expr = pre(expr)
return expr
def postprocess_for_cse(expr, optimizations):
"""Postprocess an expression after common subexpression elimination to
return the expression to canonical SymPy form.
Parameters
==========
expr : SymPy expression
The target expression to transform.
optimizations : list of (callable, callable) pairs, optional
The (preprocessor, postprocessor) pairs. The postprocessors will be
applied in reversed order to undo the effects of the preprocessors
correctly.
Returns
=======
expr : SymPy expression
The transformed expression.
"""
for pre, post in reversed(optimizations):
if post is not None:
expr = post(expr)
return expr
class FuncArgTracker:
"""
A class which manages a mapping from functions to arguments and an inverse
mapping from arguments to functions.
"""
def __init__(self, funcs):
# To minimize the number of symbolic comparisons, all function arguments
# get assigned a value number.
self.value_numbers = {}
self.value_number_to_value = []
# Both of these maps use integer indices for arguments / functions.
self.arg_to_funcset = []
self.func_to_argset = []
for func_i, func in enumerate(funcs):
func_argset = OrderedSet()
for func_arg in func.args:
arg_number = self.get_or_add_value_number(func_arg)
func_argset.add(arg_number)
self.arg_to_funcset[arg_number].add(func_i)
self.func_to_argset.append(func_argset)
def get_args_in_value_order(self, argset):
"""
Return the list of arguments in sorted order according to their value
numbers.
"""
return [self.value_number_to_value[argn] for argn in sorted(argset)]
def get_or_add_value_number(self, value):
"""
Return the value number for the given argument.
"""
nvalues = len(self.value_numbers)
value_number = self.value_numbers.setdefault(value, nvalues)
if value_number == nvalues:
self.value_number_to_value.append(value)
self.arg_to_funcset.append(OrderedSet())
return value_number
def stop_arg_tracking(self, func_i):
"""
Remove the function func_i from the argument to function mapping.
"""
for arg in self.func_to_argset[func_i]:
self.arg_to_funcset[arg].remove(func_i)
def get_common_arg_candidates(self, argset, min_func_i=0):
"""Return a dict whose keys are function numbers. The entries of the dict are
the number of arguments said function has in common with
``argset``. Entries have at least 2 items in common. All keys have
value at least ``min_func_i``.
"""
count_map = defaultdict(lambda: 0)
if not argset:
return count_map
funcsets = [self.arg_to_funcset[arg] for arg in argset]
# As an optimization below, we handle the largest funcset separately from
# the others.
largest_funcset = max(funcsets, key=len)
for funcset in funcsets:
if largest_funcset is funcset:
continue
for func_i in funcset:
if func_i >= min_func_i:
count_map[func_i] += 1
# We pick the smaller of the two containers (count_map, largest_funcset)
# to iterate over to reduce the number of iterations needed.
(smaller_funcs_container,
larger_funcs_container) = sorted(
[largest_funcset, count_map],
key=len)
for func_i in smaller_funcs_container:
# Not already in count_map? It can't possibly be in the output, so
# skip it.
if count_map[func_i] < 1:
continue
if func_i in larger_funcs_container:
count_map[func_i] += 1
return {k: v for k, v in count_map.items() if v >= 2}
def get_subset_candidates(self, argset, restrict_to_funcset=None):
"""
Return a set of functions each of which whose argument list contains
``argset``, optionally filtered only to contain functions in
``restrict_to_funcset``.
"""
iarg = iter(argset)
indices = OrderedSet(
fi for fi in self.arg_to_funcset[next(iarg)])
if restrict_to_funcset is not None:
indices &= restrict_to_funcset
for arg in iarg:
indices &= self.arg_to_funcset[arg]
return indices
def update_func_argset(self, func_i, new_argset):
"""
Update a function with a new set of arguments.
"""
new_args = OrderedSet(new_argset)
old_args = self.func_to_argset[func_i]
for deleted_arg in old_args - new_args:
self.arg_to_funcset[deleted_arg].remove(func_i)
for added_arg in new_args - old_args:
self.arg_to_funcset[added_arg].add(func_i)
self.func_to_argset[func_i].clear()
self.func_to_argset[func_i].update(new_args)
class Unevaluated:
def __init__(self, func, args):
self.func = func
self.args = args
def __str__(self):
return "Uneval<{}>({})".format(
self.func, ", ".join(str(a) for a in self.args))
def as_unevaluated_basic(self):
return self.func(*self.args, evaluate=False)
@property
def free_symbols(self):
return set().union(*[a.free_symbols for a in self.args])
__repr__ = __str__
def match_common_args(func_class, funcs, opt_subs):
"""
Recognize and extract common subexpressions of function arguments within a
set of function calls. For instance, for the following function calls::
x + z + y
sin(x + y)
this will extract a common subexpression of `x + y`::
w = x + y
w + z
sin(w)
The function we work with is assumed to be associative and commutative.
Parameters
==========
func_class: class
The function class (e.g. Add, Mul)
funcs: list of functions
A list of function calls.
opt_subs: dict
A dictionary of substitutions which this function may update.
"""
# Sort to ensure that whole-function subexpressions come before the items
# that use them.
funcs = sorted(funcs, key=lambda f: len(f.args))
arg_tracker = FuncArgTracker(funcs)
changed = OrderedSet()
for i in range(len(funcs)):
common_arg_candidates_counts = arg_tracker.get_common_arg_candidates(
arg_tracker.func_to_argset[i], min_func_i=i + 1)
# Sort the candidates in order of match size.
# This makes us try combining smaller matches first.
common_arg_candidates = OrderedSet(sorted(
common_arg_candidates_counts.keys(),
key=lambda k: (common_arg_candidates_counts[k], k)))
while common_arg_candidates:
j = common_arg_candidates.pop(last=False)
com_args = arg_tracker.func_to_argset[i].intersection(
arg_tracker.func_to_argset[j])
if len(com_args) <= 1:
# This may happen if a set of common arguments was already
# combined in a previous iteration.
continue
# For all sets, replace the common symbols by the function
# over them, to allow recursive matches.
diff_i = arg_tracker.func_to_argset[i].difference(com_args)
if diff_i:
# com_func needs to be unevaluated to allow for recursive matches.
com_func = Unevaluated(
func_class, arg_tracker.get_args_in_value_order(com_args))
com_func_number = arg_tracker.get_or_add_value_number(com_func)
arg_tracker.update_func_argset(i, diff_i | OrderedSet([com_func_number]))
changed.add(i)
else:
# Treat the whole expression as a CSE.
#
# The reason this needs to be done is somewhat subtle. Within
# tree_cse(), to_eliminate only contains expressions that are
# seen more than once. The problem is unevaluated expressions
# do not compare equal to the evaluated equivalent. So
# tree_cse() won't mark funcs[i] as a CSE if we use an
# unevaluated version.
com_func_number = arg_tracker.get_or_add_value_number(funcs[i])
diff_j = arg_tracker.func_to_argset[j].difference(com_args)
arg_tracker.update_func_argset(j, diff_j | OrderedSet([com_func_number]))
changed.add(j)
for k in arg_tracker.get_subset_candidates(
com_args, common_arg_candidates):
diff_k = arg_tracker.func_to_argset[k].difference(com_args)
arg_tracker.update_func_argset(k, diff_k | OrderedSet([com_func_number]))
changed.add(k)
if i in changed:
opt_subs[funcs[i]] = Unevaluated(func_class,
arg_tracker.get_args_in_value_order(arg_tracker.func_to_argset[i]))
arg_tracker.stop_arg_tracking(i)
def opt_cse(exprs, order='canonical'):
"""Find optimization opportunities in Adds, Muls, Pows and negative
coefficient Muls.
Parameters
==========
exprs : list of SymPy expressions
The expressions to optimize.
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. For large
expressions where speed is a concern, use the setting order='none'.
Returns
=======
opt_subs : dictionary of expression substitutions
The expression substitutions which can be useful to optimize CSE.
Examples
========
>>> from sympy.simplify.cse_main import opt_cse
>>> from sympy.abc import x
>>> opt_subs = opt_cse([x**-2])
>>> k, v = list(opt_subs.keys())[0], list(opt_subs.values())[0]
>>> print((k, v.as_unevaluated_basic()))
(x**(-2), 1/(x**2))
"""
opt_subs = {}
adds = OrderedSet()
muls = OrderedSet()
seen_subexp = set()
collapsible_subexp = set()
def _find_opts(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return
if expr.is_Atom or expr.is_Order:
return
if iterable(expr):
list(map(_find_opts, expr))
return
if expr in seen_subexp:
return expr
seen_subexp.add(expr)
list(map(_find_opts, expr.args))
if not isinstance(expr, MatrixExpr) and expr.could_extract_minus_sign():
# XXX -expr does not always work rigorously for some expressions
# containing UnevaluatedExpr.
# https://github.com/sympy/sympy/issues/24818
if isinstance(expr, Add):
neg_expr = Add(*(-i for i in expr.args))
else:
neg_expr = -expr
if not neg_expr.is_Atom:
opt_subs[expr] = Unevaluated(Mul, (S.NegativeOne, neg_expr))
seen_subexp.add(neg_expr)
expr = neg_expr
if isinstance(expr, (Mul, MatMul)):
if len(expr.args) == 1:
collapsible_subexp.add(expr)
else:
muls.add(expr)
elif isinstance(expr, (Add, MatAdd)):
if len(expr.args) == 1:
collapsible_subexp.add(expr)
else:
adds.add(expr)
elif isinstance(expr, Inverse):
# Do not want to treat `Inverse` as a `MatPow`
pass
elif isinstance(expr, (Pow, MatPow)):
base, exp = expr.base, expr.exp
if exp.could_extract_minus_sign():
opt_subs[expr] = Unevaluated(Pow, (Pow(base, -exp), -1))
for e in exprs:
if isinstance(e, (Basic, Unevaluated)):
_find_opts(e)
# Handle collapsing of multinary operations with single arguments
edges = [(s, s.args[0]) for s in collapsible_subexp
if s.args[0] in collapsible_subexp]
for e in reversed(topological_sort((collapsible_subexp, edges))):
opt_subs[e] = opt_subs.get(e.args[0], e.args[0])
# split muls into commutative
commutative_muls = OrderedSet()
for m in muls:
c, nc = m.args_cnc(cset=False)
if c:
c_mul = m.func(*c)
if nc:
if c_mul == 1:
new_obj = m.func(*nc)
else:
if isinstance(m, MatMul):
new_obj = m.func(c_mul, *nc, evaluate=False)
else:
new_obj = m.func(c_mul, m.func(*nc), evaluate=False)
opt_subs[m] = new_obj
if len(c) > 1:
commutative_muls.add(c_mul)
match_common_args(Add, adds, opt_subs)
match_common_args(Mul, commutative_muls, opt_subs)
return opt_subs
def tree_cse(exprs, symbols, opt_subs=None, order='canonical', ignore=()):
"""Perform raw CSE on expression tree, taking opt_subs into account.
Parameters
==========
exprs : list of SymPy expressions
The expressions to reduce.
symbols : infinite iterator yielding unique Symbols
The symbols used to label the common subexpressions which are pulled
out.
opt_subs : dictionary of expression substitutions
The expressions to be substituted before any CSE action is performed.
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. For large
expressions where speed is a concern, use the setting order='none'.
ignore : iterable of Symbols
Substitutions containing any Symbol from ``ignore`` will be ignored.
"""
if opt_subs is None:
opt_subs = {}
## Find repeated sub-expressions
to_eliminate = set()
seen_subexp = set()
excluded_symbols = set()
def _find_repeated(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return
if isinstance(expr, RootOf):
return
if isinstance(expr, Basic) and (
expr.is_Atom or
expr.is_Order or
isinstance(expr, (MatrixSymbol, MatrixElement))):
if expr.is_Symbol:
excluded_symbols.add(expr.name)
return
if iterable(expr):
args = expr
else:
if expr in seen_subexp:
for ign in ignore:
if ign in expr.free_symbols:
break
else:
to_eliminate.add(expr)
return
seen_subexp.add(expr)
if expr in opt_subs:
expr = opt_subs[expr]
args = expr.args
list(map(_find_repeated, args))
for e in exprs:
if isinstance(e, Basic):
_find_repeated(e)
## Rebuild tree
# Remove symbols from the generator that conflict with names in the expressions.
symbols = (_ for _ in symbols if _.name not in excluded_symbols)
replacements = []
subs = {}
def _rebuild(expr):
if not isinstance(expr, (Basic, Unevaluated)):
return expr
if not expr.args:
return expr
if iterable(expr):
new_args = [_rebuild(arg) for arg in expr.args]
return expr.func(*new_args)
if expr in subs:
return subs[expr]
orig_expr = expr
if expr in opt_subs:
expr = opt_subs[expr]
# If enabled, parse Muls and Adds arguments by order to ensure
# replacement order independent from hashes
if order != 'none':
if isinstance(expr, (Mul, MatMul)):
c, nc = expr.args_cnc()
if c == [1]:
args = nc
else:
args = list(ordered(c)) + nc
elif isinstance(expr, (Add, MatAdd)):
args = list(ordered(expr.args))
else:
args = expr.args
else:
args = expr.args
new_args = list(map(_rebuild, args))
if isinstance(expr, Unevaluated) or new_args != args:
new_expr = expr.func(*new_args)
else:
new_expr = expr
if orig_expr in to_eliminate:
try:
sym = next(symbols)
except StopIteration:
raise ValueError("Symbols iterator ran out of symbols.")
if isinstance(orig_expr, MatrixExpr):
sym = MatrixSymbol(sym.name, orig_expr.rows,
orig_expr.cols)
subs[orig_expr] = sym
replacements.append((sym, new_expr))
return sym
else:
return new_expr
reduced_exprs = []
for e in exprs:
if isinstance(e, Basic):
reduced_e = _rebuild(e)
else:
reduced_e = e
reduced_exprs.append(reduced_e)
return replacements, reduced_exprs
def cse(exprs, symbols=None, optimizations=None, postprocess=None,
order='canonical', ignore=(), list=True):
""" Perform common subexpression elimination on an expression.
Parameters
==========
exprs : list of SymPy expressions, or a single SymPy expression
The expressions to reduce.
symbols : infinite iterator yielding unique Symbols
The symbols used to label the common subexpressions which are pulled
out. The ``numbered_symbols`` generator is useful. The default is a
stream of symbols of the form "x0", "x1", etc. This must be an
infinite iterator.
optimizations : list of (callable, callable) pairs
The (preprocessor, postprocessor) pairs of external optimization
functions. Optionally 'basic' can be passed for a set of predefined
basic optimizations. Such 'basic' optimizations were used by default
in old implementation, however they can be really slow on larger
expressions. Now, no pre or post optimizations are made by default.
postprocess : a function which accepts the two return values of cse and
returns the desired form of output from cse, e.g. if you want the
replacements reversed the function might be the following lambda:
lambda r, e: return reversed(r), e
order : string, 'none' or 'canonical'
The order by which Mul and Add arguments are processed. If set to
'canonical', arguments will be canonically ordered. If set to 'none',
ordering will be faster but dependent on expressions hashes, thus
machine dependent and variable. For large expressions where speed is a
concern, use the setting order='none'.
ignore : iterable of Symbols
Substitutions containing any Symbol from ``ignore`` will be ignored.
list : bool, (default True)
Returns expression in list or else with same type as input (when False).
Returns
=======
replacements : list of (Symbol, expression) pairs
All of the common subexpressions that were replaced. Subexpressions
earlier in this list might show up in subexpressions later in this
list.
reduced_exprs : list of SymPy expressions
The reduced expressions with all of the replacements above.
Examples
========
>>> from sympy import cse, SparseMatrix
>>> from sympy.abc import x, y, z, w
>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)
([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3])
List of expressions with recursive substitutions:
>>> m = SparseMatrix([x + y, x + y + z])
>>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m])
([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([
[x0],
[x1]])])
Note: the type and mutability of input matrices is retained.
>>> isinstance(_[1][-1], SparseMatrix)
True
The user may disallow substitutions containing certain symbols:
>>> cse([y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,))
([(x0, x + 1)], [x0*y**2, 3*x0*y**2])
The default return value for the reduced expression(s) is a list, even if there is only
one expression. The `list` flag preserves the type of the input in the output:
>>> cse(x)
([], [x])
>>> cse(x, list=False)
([], x)
"""
if not list:
return _cse_homogeneous(exprs,
symbols=symbols, optimizations=optimizations,
postprocess=postprocess, order=order, ignore=ignore)
if isinstance(exprs, (int, float)):
exprs = sympify(exprs)
# Handle the case if just one expression was passed.
if isinstance(exprs, (Basic, MatrixBase)):
exprs = [exprs]
copy = exprs
temp = []
for e in exprs:
if isinstance(e, (Matrix, ImmutableMatrix)):
temp.append(Tuple(*e.flat()))
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
temp.append(Tuple(*e.todok().items()))
else:
temp.append(e)
exprs = temp
del temp
if optimizations is None:
optimizations = []
elif optimizations == 'basic':
optimizations = basic_optimizations
# Preprocess the expressions to give us better optimization opportunities.
reduced_exprs = [preprocess_for_cse(e, optimizations) for e in exprs]
if symbols is None:
symbols = numbered_symbols(cls=Symbol)
else:
# In case we get passed an iterable with an __iter__ method instead of
# an actual iterator.
symbols = iter(symbols)
# Find other optimization opportunities.
opt_subs = opt_cse(reduced_exprs, order)
# Main CSE algorithm.
replacements, reduced_exprs = tree_cse(reduced_exprs, symbols, opt_subs,
order, ignore)
# Postprocess the expressions to return the expressions to canonical form.
exprs = copy
for i, (sym, subtree) in enumerate(replacements):
subtree = postprocess_for_cse(subtree, optimizations)
replacements[i] = (sym, subtree)
reduced_exprs = [postprocess_for_cse(e, optimizations)
for e in reduced_exprs]
# Get the matrices back
for i, e in enumerate(exprs):
if isinstance(e, (Matrix, ImmutableMatrix)):
reduced_exprs[i] = Matrix(e.rows, e.cols, reduced_exprs[i])
if isinstance(e, ImmutableMatrix):
reduced_exprs[i] = reduced_exprs[i].as_immutable()
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
m = SparseMatrix(e.rows, e.cols, {})
for k, v in reduced_exprs[i]:
m[k] = v
if isinstance(e, ImmutableSparseMatrix):
m = m.as_immutable()
reduced_exprs[i] = m
if postprocess is None:
return replacements, reduced_exprs
return postprocess(replacements, reduced_exprs)
def _cse_homogeneous(exprs, **kwargs):
"""
Same as ``cse`` but the ``reduced_exprs`` are returned
with the same type as ``exprs`` or a sympified version of the same.
Parameters
==========
exprs : an Expr, iterable of Expr or dictionary with Expr values
the expressions in which repeated subexpressions will be identified
kwargs : additional arguments for the ``cse`` function
Returns
=======
replacements : list of (Symbol, expression) pairs
All of the common subexpressions that were replaced. Subexpressions
earlier in this list might show up in subexpressions later in this
list.
reduced_exprs : list of SymPy expressions
The reduced expressions with all of the replacements above.
Examples
========
>>> from sympy.simplify.cse_main import cse
>>> from sympy import cos, Tuple, Matrix
>>> from sympy.abc import x
>>> output = lambda x: type(cse(x, list=False)[1])
>>> output(1)
<class 'sympy.core.numbers.One'>
>>> output('cos(x)')
<class 'str'>
>>> output(cos(x))
cos
>>> output(Tuple(1, x))
<class 'sympy.core.containers.Tuple'>
>>> output(Matrix([[1,0], [0,1]]))
<class 'sympy.matrices.dense.MutableDenseMatrix'>
>>> output([1, x])
<class 'list'>
>>> output((1, x))
<class 'tuple'>
>>> output({1, x})
<class 'set'>
"""
if isinstance(exprs, str):
replacements, reduced_exprs = _cse_homogeneous(
sympify(exprs), **kwargs)
return replacements, repr(reduced_exprs)
if isinstance(exprs, (list, tuple, set)):
replacements, reduced_exprs = cse(exprs, **kwargs)
return replacements, type(exprs)(reduced_exprs)
if isinstance(exprs, dict):
keys = list(exprs.keys()) # In order to guarantee the order of the elements.
replacements, values = cse([exprs[k] for k in keys], **kwargs)
reduced_exprs = dict(zip(keys, values))
return replacements, reduced_exprs
try:
replacements, (reduced_exprs,) = cse(exprs, **kwargs)
except TypeError: # For example 'mpf' objects
return [], exprs
else:
return replacements, reduced_exprs
|