Spaces:
Sleeping
Sleeping
File size: 11,370 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
from sympy.core.expr import unchanged
from sympy.sets import (ConditionSet, Intersection, FiniteSet,
EmptySet, Union, Contains, ImageSet)
from sympy.sets.sets import SetKind
from sympy.core.function import (Function, Lambda)
from sympy.core.mod import Mod
from sympy.core.kind import NumberKind
from sympy.core.numbers import (oo, pi)
from sympy.core.relational import (Eq, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.trigonometric import (asin, sin)
from sympy.logic.boolalg import And
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.sets.sets import Interval
from sympy.testing.pytest import raises, warns_deprecated_sympy
w = Symbol('w')
x = Symbol('x')
y = Symbol('y')
z = Symbol('z')
f = Function('f')
def test_CondSet():
sin_sols_principal = ConditionSet(x, Eq(sin(x), 0),
Interval(0, 2*pi, False, True))
assert pi in sin_sols_principal
assert pi/2 not in sin_sols_principal
assert 3*pi not in sin_sols_principal
assert oo not in sin_sols_principal
assert 5 in ConditionSet(x, x**2 > 4, S.Reals)
assert 1 not in ConditionSet(x, x**2 > 4, S.Reals)
# in this case, 0 is not part of the base set so
# it can't be in any subset selected by the condition
assert 0 not in ConditionSet(x, y > 5, Interval(1, 7))
# since 'in' requires a true/false, the following raises
# an error because the given value provides no information
# for the condition to evaluate (since the condition does
# not depend on the dummy symbol): the result is `y > 5`.
# In this case, ConditionSet is just acting like
# Piecewise((Interval(1, 7), y > 5), (S.EmptySet, True)).
raises(TypeError, lambda: 6 in ConditionSet(x, y > 5,
Interval(1, 7)))
X = MatrixSymbol('X', 2, 2)
matrix_set = ConditionSet(X, Eq(X*Matrix([[1, 1], [1, 1]]), X))
Y = Matrix([[0, 0], [0, 0]])
assert matrix_set.contains(Y).doit() is S.true
Z = Matrix([[1, 2], [3, 4]])
assert matrix_set.contains(Z).doit() is S.false
assert isinstance(ConditionSet(x, x < 1, {x, y}).base_set,
FiniteSet)
raises(TypeError, lambda: ConditionSet(x, x + 1, {x, y}))
raises(TypeError, lambda: ConditionSet(x, x, 1))
I = S.Integers
U = S.UniversalSet
C = ConditionSet
assert C(x, False, I) is S.EmptySet
assert C(x, True, I) is I
assert C(x, x < 1, C(x, x < 2, I)
) == C(x, (x < 1) & (x < 2), I)
assert C(y, y < 1, C(x, y < 2, I)
) == C(x, (x < 1) & (y < 2), I), C(y, y < 1, C(x, y < 2, I))
assert C(y, y < 1, C(x, x < 2, I)
) == C(y, (y < 1) & (y < 2), I)
assert C(y, y < 1, C(x, y < x, I)
) == C(x, (x < 1) & (y < x), I)
assert unchanged(C, y, x < 1, C(x, y < x, I))
assert ConditionSet(x, x < 1).base_set is U
# arg checking is not done at instantiation but this
# will raise an error when containment is tested
assert ConditionSet((x,), x < 1).base_set is U
c = ConditionSet((x, y), x < y, I**2)
assert (1, 2) in c
assert (1, pi) not in c
raises(TypeError, lambda: C(x, x > 1, C((x, y), x > 1, I**2)))
# signature mismatch since only 3 args are accepted
raises(TypeError, lambda: C((x, y), x + y < 2, U, U))
def test_CondSet_intersect():
input_conditionset = ConditionSet(x, x**2 > 4, Interval(1, 4, False,
False))
other_domain = Interval(0, 3, False, False)
output_conditionset = ConditionSet(x, x**2 > 4, Interval(
1, 3, False, False))
assert Intersection(input_conditionset, other_domain
) == output_conditionset
def test_issue_9849():
assert ConditionSet(x, Eq(x, x), S.Naturals
) is S.Naturals
assert ConditionSet(x, Eq(Abs(sin(x)), -1), S.Naturals
) == S.EmptySet
def test_simplified_FiniteSet_in_CondSet():
assert ConditionSet(x, And(x < 1, x > -3), FiniteSet(0, 1, 2)
) == FiniteSet(0)
assert ConditionSet(x, x < 0, FiniteSet(0, 1, 2)) == EmptySet
assert ConditionSet(x, And(x < -3), EmptySet) == EmptySet
y = Symbol('y')
assert (ConditionSet(x, And(x > 0), FiniteSet(-1, 0, 1, y)) ==
Union(FiniteSet(1), ConditionSet(x, And(x > 0), FiniteSet(y))))
assert (ConditionSet(x, Eq(Mod(x, 3), 1), FiniteSet(1, 4, 2, y)) ==
Union(FiniteSet(1, 4), ConditionSet(x, Eq(Mod(x, 3), 1),
FiniteSet(y))))
def test_free_symbols():
assert ConditionSet(x, Eq(y, 0), FiniteSet(z)
).free_symbols == {y, z}
assert ConditionSet(x, Eq(x, 0), FiniteSet(z)
).free_symbols == {z}
assert ConditionSet(x, Eq(x, 0), FiniteSet(x, z)
).free_symbols == {x, z}
assert ConditionSet(x, Eq(x, 0), ImageSet(Lambda(y, y**2),
S.Integers)).free_symbols == set()
def test_bound_symbols():
assert ConditionSet(x, Eq(y, 0), FiniteSet(z)
).bound_symbols == [x]
assert ConditionSet(x, Eq(x, 0), FiniteSet(x, y)
).bound_symbols == [x]
assert ConditionSet(x, x < 10, ImageSet(Lambda(y, y**2), S.Integers)
).bound_symbols == [x]
assert ConditionSet(x, x < 10, ConditionSet(y, y > 1, S.Integers)
).bound_symbols == [x]
def test_as_dummy():
_0, _1 = symbols('_0 _1')
assert ConditionSet(x, x < 1, Interval(y, oo)
).as_dummy() == ConditionSet(_0, _0 < 1, Interval(y, oo))
assert ConditionSet(x, x < 1, Interval(x, oo)
).as_dummy() == ConditionSet(_0, _0 < 1, Interval(x, oo))
assert ConditionSet(x, x < 1, ImageSet(Lambda(y, y**2), S.Integers)
).as_dummy() == ConditionSet(
_0, _0 < 1, ImageSet(Lambda(_0, _0**2), S.Integers))
e = ConditionSet((x, y), x <= y, S.Reals**2)
assert e.bound_symbols == [x, y]
assert e.as_dummy() == ConditionSet((_0, _1), _0 <= _1, S.Reals**2)
assert e.as_dummy() == ConditionSet((y, x), y <= x, S.Reals**2
).as_dummy()
def test_subs_CondSet():
s = FiniteSet(z, y)
c = ConditionSet(x, x < 2, s)
assert c.subs(x, y) == c
assert c.subs(z, y) == ConditionSet(x, x < 2, FiniteSet(y))
assert c.xreplace({x: y}) == ConditionSet(y, y < 2, s)
assert ConditionSet(x, x < y, s
).subs(y, w) == ConditionSet(x, x < w, s.subs(y, w))
# if the user uses assumptions that cause the condition
# to evaluate, that can't be helped from SymPy's end
n = Symbol('n', negative=True)
assert ConditionSet(n, 0 < n, S.Integers) is S.EmptySet
p = Symbol('p', positive=True)
assert ConditionSet(n, n < y, S.Integers
).subs(n, x) == ConditionSet(n, n < y, S.Integers)
raises(ValueError, lambda: ConditionSet(
x + 1, x < 1, S.Integers))
assert ConditionSet(
p, n < x, Interval(-5, 5)).subs(x, p) == Interval(-5, 5), ConditionSet(
p, n < x, Interval(-5, 5)).subs(x, p)
assert ConditionSet(
n, n < x, Interval(-oo, 0)).subs(x, p
) == Interval(-oo, 0)
assert ConditionSet(f(x), f(x) < 1, {w, z}
).subs(f(x), y) == ConditionSet(f(x), f(x) < 1, {w, z})
# issue 17341
k = Symbol('k')
img1 = ImageSet(Lambda(k, 2*k*pi + asin(y)), S.Integers)
img2 = ImageSet(Lambda(k, 2*k*pi + asin(S.One/3)), S.Integers)
assert ConditionSet(x, Contains(
y, Interval(-1,1)), img1).subs(y, S.One/3).dummy_eq(img2)
assert (0, 1) in ConditionSet((x, y), x + y < 3, S.Integers**2)
raises(TypeError, lambda: ConditionSet(n, n < -10, Interval(0, 10)))
def test_subs_CondSet_tebr():
with warns_deprecated_sympy():
assert ConditionSet((x, y), {x + 1, x + y}, S.Reals**2) == \
ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
def test_dummy_eq():
C = ConditionSet
I = S.Integers
c = C(x, x < 1, I)
assert c.dummy_eq(C(y, y < 1, I))
assert c.dummy_eq(1) == False
assert c.dummy_eq(C(x, x < 1, S.Reals)) == False
c1 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
c2 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Reals**2)
c3 = ConditionSet((x, y), Eq(x + 1, 0) & Eq(x + y, 0), S.Complexes**2)
assert c1.dummy_eq(c2)
assert c1.dummy_eq(c3) is False
assert c.dummy_eq(c1) is False
assert c1.dummy_eq(c) is False
# issue 19496
m = Symbol('m')
n = Symbol('n')
a = Symbol('a')
d1 = ImageSet(Lambda(m, m*pi), S.Integers)
d2 = ImageSet(Lambda(n, n*pi), S.Integers)
c1 = ConditionSet(x, Ne(a, 0), d1)
c2 = ConditionSet(x, Ne(a, 0), d2)
assert c1.dummy_eq(c2)
def test_contains():
assert 6 in ConditionSet(x, x > 5, Interval(1, 7))
assert (8 in ConditionSet(x, y > 5, Interval(1, 7))) is False
# `in` should give True or False; in this case there is not
# enough information for that result
raises(TypeError,
lambda: 6 in ConditionSet(x, y > 5, Interval(1, 7)))
# here, there is enough information but the comparison is
# not defined
raises(TypeError, lambda: 0 in ConditionSet(x, 1/x >= 0, S.Reals))
assert ConditionSet(x, y > 5, Interval(1, 7)
).contains(6) == (y > 5)
assert ConditionSet(x, y > 5, Interval(1, 7)
).contains(8) is S.false
assert ConditionSet(x, y > 5, Interval(1, 7)
).contains(w) == And(Contains(w, Interval(1, 7)), y > 5)
# This returns an unevaluated Contains object
# because 1/0 should not be defined for 1 and 0 in the context of
# reals.
assert ConditionSet(x, 1/x >= 0, S.Reals).contains(0) == \
Contains(0, ConditionSet(x, 1/x >= 0, S.Reals), evaluate=False)
c = ConditionSet((x, y), x + y > 1, S.Integers**2)
assert not c.contains(1)
assert c.contains((2, 1))
assert not c.contains((0, 1))
c = ConditionSet((w, (x, y)), w + x + y > 1, S.Integers*S.Integers**2)
assert not c.contains(1)
assert not c.contains((1, 2))
assert not c.contains(((1, 2), 3))
assert not c.contains(((1, 2), (3, 4)))
assert c.contains((1, (3, 4)))
def test_as_relational():
assert ConditionSet((x, y), x > 1, S.Integers**2).as_relational((x, y)
) == (x > 1) & Contains(x, S.Integers) & Contains(y, S.Integers)
assert ConditionSet(x, x > 1, S.Integers).as_relational(x
) == Contains(x, S.Integers) & (x > 1)
def test_flatten():
"""Tests whether there is basic denesting functionality"""
inner = ConditionSet(x, sin(x) + x > 0)
outer = ConditionSet(x, Contains(x, inner), S.Reals)
assert outer == ConditionSet(x, sin(x) + x > 0, S.Reals)
inner = ConditionSet(y, sin(y) + y > 0)
outer = ConditionSet(x, Contains(y, inner), S.Reals)
assert outer != ConditionSet(x, sin(x) + x > 0, S.Reals)
inner = ConditionSet(x, sin(x) + x > 0).intersect(Interval(-1, 1))
outer = ConditionSet(x, Contains(x, inner), S.Reals)
assert outer == ConditionSet(x, sin(x) + x > 0, Interval(-1, 1))
def test_duplicate():
from sympy.core.function import BadSignatureError
# test coverage for line 95 in conditionset.py, check for duplicates in symbols
dup = symbols('a,a')
raises(BadSignatureError, lambda: ConditionSet(dup, x < 0))
def test_SetKind_ConditionSet():
assert ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi)).kind is SetKind(NumberKind)
assert ConditionSet(x, x < 0).kind is SetKind(NumberKind)
|