Spaces:
Sleeping
Sleeping
File size: 7,641 Bytes
6a86ad5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
from sympy.core import Basic, Integer
import operator
class OmegaPower(Basic):
"""
Represents ordinal exponential and multiplication terms one of the
building blocks of the :class:`Ordinal` class.
In ``OmegaPower(a, b)``, ``a`` represents exponent and ``b`` represents multiplicity.
"""
def __new__(cls, a, b):
if isinstance(b, int):
b = Integer(b)
if not isinstance(b, Integer) or b <= 0:
raise TypeError("multiplicity must be a positive integer")
if not isinstance(a, Ordinal):
a = Ordinal.convert(a)
return Basic.__new__(cls, a, b)
@property
def exp(self):
return self.args[0]
@property
def mult(self):
return self.args[1]
def _compare_term(self, other, op):
if self.exp == other.exp:
return op(self.mult, other.mult)
else:
return op(self.exp, other.exp)
def __eq__(self, other):
if not isinstance(other, OmegaPower):
try:
other = OmegaPower(0, other)
except TypeError:
return NotImplemented
return self.args == other.args
def __hash__(self):
return Basic.__hash__(self)
def __lt__(self, other):
if not isinstance(other, OmegaPower):
try:
other = OmegaPower(0, other)
except TypeError:
return NotImplemented
return self._compare_term(other, operator.lt)
class Ordinal(Basic):
"""
Represents ordinals in Cantor normal form.
Internally, this class is just a list of instances of OmegaPower.
Examples
========
>>> from sympy import Ordinal, OmegaPower
>>> from sympy.sets.ordinals import omega
>>> w = omega
>>> w.is_limit_ordinal
True
>>> Ordinal(OmegaPower(w + 1, 1), OmegaPower(3, 2))
w**(w + 1) + w**3*2
>>> 3 + w
w
>>> (w + 1) * w
w**2
References
==========
.. [1] https://en.wikipedia.org/wiki/Ordinal_arithmetic
"""
def __new__(cls, *terms):
obj = super().__new__(cls, *terms)
powers = [i.exp for i in obj.args]
if not all(powers[i] >= powers[i+1] for i in range(len(powers) - 1)):
raise ValueError("powers must be in decreasing order")
return obj
@property
def terms(self):
return self.args
@property
def leading_term(self):
if self == ord0:
raise ValueError("ordinal zero has no leading term")
return self.terms[0]
@property
def trailing_term(self):
if self == ord0:
raise ValueError("ordinal zero has no trailing term")
return self.terms[-1]
@property
def is_successor_ordinal(self):
try:
return self.trailing_term.exp == ord0
except ValueError:
return False
@property
def is_limit_ordinal(self):
try:
return not self.trailing_term.exp == ord0
except ValueError:
return False
@property
def degree(self):
return self.leading_term.exp
@classmethod
def convert(cls, integer_value):
if integer_value == 0:
return ord0
return Ordinal(OmegaPower(0, integer_value))
def __eq__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
return self.terms == other.terms
def __hash__(self):
return hash(self.args)
def __lt__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
for term_self, term_other in zip(self.terms, other.terms):
if term_self != term_other:
return term_self < term_other
return len(self.terms) < len(other.terms)
def __le__(self, other):
return (self == other or self < other)
def __gt__(self, other):
return not self <= other
def __ge__(self, other):
return not self < other
def __str__(self):
net_str = ""
plus_count = 0
if self == ord0:
return 'ord0'
for i in self.terms:
if plus_count:
net_str += " + "
if i.exp == ord0:
net_str += str(i.mult)
elif i.exp == 1:
net_str += 'w'
elif len(i.exp.terms) > 1 or i.exp.is_limit_ordinal:
net_str += 'w**(%s)'%i.exp
else:
net_str += 'w**%s'%i.exp
if not i.mult == 1 and not i.exp == ord0:
net_str += '*%s'%i.mult
plus_count += 1
return(net_str)
__repr__ = __str__
def __add__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
if other == ord0:
return self
a_terms = list(self.terms)
b_terms = list(other.terms)
r = len(a_terms) - 1
b_exp = other.degree
while r >= 0 and a_terms[r].exp < b_exp:
r -= 1
if r < 0:
terms = b_terms
elif a_terms[r].exp == b_exp:
sum_term = OmegaPower(b_exp, a_terms[r].mult + other.leading_term.mult)
terms = a_terms[:r] + [sum_term] + b_terms[1:]
else:
terms = a_terms[:r+1] + b_terms
return Ordinal(*terms)
def __radd__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
return other + self
def __mul__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
if ord0 in (self, other):
return ord0
a_exp = self.degree
a_mult = self.leading_term.mult
summation = []
if other.is_limit_ordinal:
for arg in other.terms:
summation.append(OmegaPower(a_exp + arg.exp, arg.mult))
else:
for arg in other.terms[:-1]:
summation.append(OmegaPower(a_exp + arg.exp, arg.mult))
b_mult = other.trailing_term.mult
summation.append(OmegaPower(a_exp, a_mult*b_mult))
summation += list(self.terms[1:])
return Ordinal(*summation)
def __rmul__(self, other):
if not isinstance(other, Ordinal):
try:
other = Ordinal.convert(other)
except TypeError:
return NotImplemented
return other * self
def __pow__(self, other):
if not self == omega:
return NotImplemented
return Ordinal(OmegaPower(other, 1))
class OrdinalZero(Ordinal):
"""The ordinal zero.
OrdinalZero can be imported as ``ord0``.
"""
pass
class OrdinalOmega(Ordinal):
"""The ordinal omega which forms the base of all ordinals in cantor normal form.
OrdinalOmega can be imported as ``omega``.
Examples
========
>>> from sympy.sets.ordinals import omega
>>> omega + omega
w*2
"""
def __new__(cls):
return Ordinal.__new__(cls)
@property
def terms(self):
return (OmegaPower(1, 1),)
ord0 = OrdinalZero()
omega = OrdinalOmega()
|