File size: 48,169 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
from functools import reduce
from itertools import product

from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.logic import fuzzy_not, fuzzy_or, fuzzy_and
from sympy.core.mod import Mod
from sympy.core.intfunc import igcd
from sympy.core.numbers import oo, Rational
from sympy.core.relational import Eq, is_eq
from sympy.core.kind import NumberKind
from sympy.core.singleton import Singleton, S
from sympy.core.symbol import Dummy, symbols, Symbol
from sympy.core.sympify import _sympify, sympify, _sympy_converter
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.trigonometric import sin, cos
from sympy.logic.boolalg import And, Or
from .sets import tfn, Set, Interval, Union, FiniteSet, ProductSet, SetKind
from sympy.utilities.misc import filldedent


class Rationals(Set, metaclass=Singleton):
    """
    Represents the rational numbers. This set is also available as
    the singleton ``S.Rationals``.

    Examples
    ========

    >>> from sympy import S
    >>> S.Half in S.Rationals
    True
    >>> iterable = iter(S.Rationals)
    >>> [next(iterable) for i in range(12)]
    [0, 1, -1, 1/2, 2, -1/2, -2, 1/3, 3, -1/3, -3, 2/3]
    """

    is_iterable = True
    _inf = S.NegativeInfinity
    _sup = S.Infinity
    is_empty = False
    is_finite_set = False

    def _contains(self, other):
        if not isinstance(other, Expr):
            return S.false
        return tfn[other.is_rational]

    def __iter__(self):
        yield S.Zero
        yield S.One
        yield S.NegativeOne
        d = 2
        while True:
            for n in range(d):
                if igcd(n, d) == 1:
                    yield Rational(n, d)
                    yield Rational(d, n)
                    yield Rational(-n, d)
                    yield Rational(-d, n)
            d += 1

    @property
    def _boundary(self):
        return S.Reals

    def _kind(self):
        return SetKind(NumberKind)


class Naturals(Set, metaclass=Singleton):
    """
    Represents the natural numbers (or counting numbers) which are all
    positive integers starting from 1. This set is also available as
    the singleton ``S.Naturals``.

    Examples
    ========

    >>> from sympy import S, Interval, pprint
    >>> 5 in S.Naturals
    True
    >>> iterable = iter(S.Naturals)
    >>> next(iterable)
    1
    >>> next(iterable)
    2
    >>> next(iterable)
    3
    >>> pprint(S.Naturals.intersect(Interval(0, 10)))
    {1, 2, ..., 10}

    See Also
    ========

    Naturals0 : non-negative integers (i.e. includes 0, too)
    Integers : also includes negative integers
    """

    is_iterable = True
    _inf = S.One
    _sup = S.Infinity
    is_empty = False
    is_finite_set = False

    def _contains(self, other):
        if not isinstance(other, Expr):
            return S.false
        elif other.is_positive and other.is_integer:
            return S.true
        elif other.is_integer is False or other.is_positive is False:
            return S.false

    def _eval_is_subset(self, other):
        return Range(1, oo).is_subset(other)

    def _eval_is_superset(self, other):
        return Range(1, oo).is_superset(other)

    def __iter__(self):
        i = self._inf
        while True:
            yield i
            i = i + 1

    @property
    def _boundary(self):
        return self

    def as_relational(self, x):
        return And(Eq(floor(x), x), x >= self.inf, x < oo)

    def _kind(self):
        return SetKind(NumberKind)


class Naturals0(Naturals):
    """Represents the whole numbers which are all the non-negative integers,
    inclusive of zero.

    See Also
    ========

    Naturals : positive integers; does not include 0
    Integers : also includes the negative integers
    """
    _inf = S.Zero

    def _contains(self, other):
        if not isinstance(other, Expr):
            return S.false
        elif other.is_integer and other.is_nonnegative:
            return S.true
        elif other.is_integer is False or other.is_nonnegative is False:
            return S.false

    def _eval_is_subset(self, other):
        return Range(oo).is_subset(other)

    def _eval_is_superset(self, other):
        return Range(oo).is_superset(other)


class Integers(Set, metaclass=Singleton):
    """
    Represents all integers: positive, negative and zero. This set is also
    available as the singleton ``S.Integers``.

    Examples
    ========

    >>> from sympy import S, Interval, pprint
    >>> 5 in S.Naturals
    True
    >>> iterable = iter(S.Integers)
    >>> next(iterable)
    0
    >>> next(iterable)
    1
    >>> next(iterable)
    -1
    >>> next(iterable)
    2

    >>> pprint(S.Integers.intersect(Interval(-4, 4)))
    {-4, -3, ..., 4}

    See Also
    ========

    Naturals0 : non-negative integers
    Integers : positive and negative integers and zero
    """

    is_iterable = True
    is_empty = False
    is_finite_set = False

    def _contains(self, other):
        if not isinstance(other, Expr):
            return S.false
        return tfn[other.is_integer]

    def __iter__(self):
        yield S.Zero
        i = S.One
        while True:
            yield i
            yield -i
            i = i + 1

    @property
    def _inf(self):
        return S.NegativeInfinity

    @property
    def _sup(self):
        return S.Infinity

    @property
    def _boundary(self):
        return self

    def _kind(self):
        return SetKind(NumberKind)

    def as_relational(self, x):
        return And(Eq(floor(x), x), -oo < x, x < oo)

    def _eval_is_subset(self, other):
        return Range(-oo, oo).is_subset(other)

    def _eval_is_superset(self, other):
        return Range(-oo, oo).is_superset(other)


class Reals(Interval, metaclass=Singleton):
    """
    Represents all real numbers
    from negative infinity to positive infinity,
    including all integer, rational and irrational numbers.
    This set is also available as the singleton ``S.Reals``.


    Examples
    ========

    >>> from sympy import S, Rational, pi, I
    >>> 5 in S.Reals
    True
    >>> Rational(-1, 2) in S.Reals
    True
    >>> pi in S.Reals
    True
    >>> 3*I in S.Reals
    False
    >>> S.Reals.contains(pi)
    True


    See Also
    ========

    ComplexRegion
    """
    @property
    def start(self):
        return S.NegativeInfinity

    @property
    def end(self):
        return S.Infinity

    @property
    def left_open(self):
        return True

    @property
    def right_open(self):
        return True

    def __eq__(self, other):
        return other == Interval(S.NegativeInfinity, S.Infinity)

    def __hash__(self):
        return hash(Interval(S.NegativeInfinity, S.Infinity))


class ImageSet(Set):
    """
    Image of a set under a mathematical function. The transformation
    must be given as a Lambda function which has as many arguments
    as the elements of the set upon which it operates, e.g. 1 argument
    when acting on the set of integers or 2 arguments when acting on
    a complex region.

    This function is not normally called directly, but is called
    from ``imageset``.


    Examples
    ========

    >>> from sympy import Symbol, S, pi, Dummy, Lambda
    >>> from sympy import FiniteSet, ImageSet, Interval

    >>> x = Symbol('x')
    >>> N = S.Naturals
    >>> squares = ImageSet(Lambda(x, x**2), N) # {x**2 for x in N}
    >>> 4 in squares
    True
    >>> 5 in squares
    False

    >>> FiniteSet(0, 1, 2, 3, 4, 5, 6, 7, 9, 10).intersect(squares)
    {1, 4, 9}

    >>> square_iterable = iter(squares)
    >>> for i in range(4):
    ...     next(square_iterable)
    1
    4
    9
    16

    If you want to get value for `x` = 2, 1/2 etc. (Please check whether the
    `x` value is in ``base_set`` or not before passing it as args)

    >>> squares.lamda(2)
    4
    >>> squares.lamda(S(1)/2)
    1/4

    >>> n = Dummy('n')
    >>> solutions = ImageSet(Lambda(n, n*pi), S.Integers) # solutions of sin(x) = 0
    >>> dom = Interval(-1, 1)
    >>> dom.intersect(solutions)
    {0}

    See Also
    ========

    sympy.sets.sets.imageset
    """
    def __new__(cls, flambda, *sets):
        if not isinstance(flambda, Lambda):
            raise ValueError('First argument must be a Lambda')

        signature = flambda.signature

        if len(signature) != len(sets):
            raise ValueError('Incompatible signature')

        sets = [_sympify(s) for s in sets]

        if not all(isinstance(s, Set) for s in sets):
            raise TypeError("Set arguments to ImageSet should of type Set")

        if not all(cls._check_sig(sg, st) for sg, st in zip(signature, sets)):
            raise ValueError("Signature %s does not match sets %s" % (signature, sets))

        if flambda is S.IdentityFunction and len(sets) == 1:
            return sets[0]

        if not set(flambda.variables) & flambda.expr.free_symbols:
            is_empty = fuzzy_or(s.is_empty for s in sets)
            if is_empty == True:
                return S.EmptySet
            elif is_empty == False:
                return FiniteSet(flambda.expr)

        return Basic.__new__(cls, flambda, *sets)

    lamda = property(lambda self: self.args[0])
    base_sets = property(lambda self: self.args[1:])

    @property
    def base_set(self):
        # XXX: Maybe deprecate this? It is poorly defined in handling
        # the multivariate case...
        sets = self.base_sets
        if len(sets) == 1:
            return sets[0]
        else:
            return ProductSet(*sets).flatten()

    @property
    def base_pset(self):
        return ProductSet(*self.base_sets)

    @classmethod
    def _check_sig(cls, sig_i, set_i):
        if sig_i.is_symbol:
            return True
        elif isinstance(set_i, ProductSet):
            sets = set_i.sets
            if len(sig_i) != len(sets):
                return False
            # Recurse through the signature for nested tuples:
            return all(cls._check_sig(ts, ps) for ts, ps in zip(sig_i, sets))
        else:
            # XXX: Need a better way of checking whether a set is a set of
            # Tuples or not. For example a FiniteSet can contain Tuples
            # but so can an ImageSet or a ConditionSet. Others like
            # Integers, Reals etc can not contain Tuples. We could just
            # list the possibilities here... Current code for e.g.
            # _contains probably only works for ProductSet.
            return True # Give the benefit of the doubt

    def __iter__(self):
        already_seen = set()
        for i in self.base_pset:
            val = self.lamda(*i)
            if val in already_seen:
                continue
            else:
                already_seen.add(val)
                yield val

    def _is_multivariate(self):
        return len(self.lamda.variables) > 1

    def _contains(self, other):
        from sympy.solvers.solveset import _solveset_multi

        def get_symsetmap(signature, base_sets):
            '''Attempt to get a map of symbols to base_sets'''
            queue = list(zip(signature, base_sets))
            symsetmap = {}
            for sig, base_set in queue:
                if sig.is_symbol:
                    symsetmap[sig] = base_set
                elif base_set.is_ProductSet:
                    sets = base_set.sets
                    if len(sig) != len(sets):
                        raise ValueError("Incompatible signature")
                    # Recurse
                    queue.extend(zip(sig, sets))
                else:
                    # If we get here then we have something like sig = (x, y) and
                    # base_set = {(1, 2), (3, 4)}. For now we give up.
                    return None

            return symsetmap

        def get_equations(expr, candidate):
            '''Find the equations relating symbols in expr and candidate.'''
            queue = [(expr, candidate)]
            for e, c in queue:
                if not isinstance(e, Tuple):
                    yield Eq(e, c)
                elif not isinstance(c, Tuple) or len(e) != len(c):
                    yield False
                    return
                else:
                    queue.extend(zip(e, c))

        # Get the basic objects together:
        other = _sympify(other)
        expr = self.lamda.expr
        sig = self.lamda.signature
        variables = self.lamda.variables
        base_sets = self.base_sets

        # Use dummy symbols for ImageSet parameters so they don't match
        # anything in other
        rep = {v: Dummy(v.name) for v in variables}
        variables = [v.subs(rep) for v in variables]
        sig = sig.subs(rep)
        expr = expr.subs(rep)

        # Map the parts of other to those in the Lambda expr
        equations = []
        for eq in get_equations(expr, other):
            # Unsatisfiable equation?
            if eq is False:
                return S.false
            equations.append(eq)

        # Map the symbols in the signature to the corresponding domains
        symsetmap = get_symsetmap(sig, base_sets)
        if symsetmap is None:
            # Can't factor the base sets to a ProductSet
            return None

        # Which of the variables in the Lambda signature need to be solved for?
        symss = (eq.free_symbols for eq in equations)
        variables = set(variables) & reduce(set.union, symss, set())

        # Use internal multivariate solveset
        variables = tuple(variables)
        base_sets = [symsetmap[v] for v in variables]
        solnset = _solveset_multi(equations, variables, base_sets)
        if solnset is None:
            return None
        return tfn[fuzzy_not(solnset.is_empty)]

    @property
    def is_iterable(self):
        return all(s.is_iterable for s in self.base_sets)

    def doit(self, **hints):
        from sympy.sets.setexpr import SetExpr
        f = self.lamda
        sig = f.signature
        if len(sig) == 1 and sig[0].is_symbol and isinstance(f.expr, Expr):
            base_set = self.base_sets[0]
            return SetExpr(base_set)._eval_func(f).set
        if all(s.is_FiniteSet for s in self.base_sets):
            return FiniteSet(*(f(*a) for a in product(*self.base_sets)))
        return self

    def _kind(self):
        return SetKind(self.lamda.expr.kind)


class Range(Set):
    """
    Represents a range of integers. Can be called as ``Range(stop)``,
    ``Range(start, stop)``, or ``Range(start, stop, step)``; when ``step`` is
    not given it defaults to 1.

    ``Range(stop)`` is the same as ``Range(0, stop, 1)`` and the stop value
    (just as for Python ranges) is not included in the Range values.

        >>> from sympy import Range
        >>> list(Range(3))
        [0, 1, 2]

    The step can also be negative:

        >>> list(Range(10, 0, -2))
        [10, 8, 6, 4, 2]

    The stop value is made canonical so equivalent ranges always
    have the same args:

        >>> Range(0, 10, 3)
        Range(0, 12, 3)

    Infinite ranges are allowed. ``oo`` and ``-oo`` are never included in the
    set (``Range`` is always a subset of ``Integers``). If the starting point
    is infinite, then the final value is ``stop - step``. To iterate such a
    range, it needs to be reversed:

        >>> from sympy import oo
        >>> r = Range(-oo, 1)
        >>> r[-1]
        0
        >>> next(iter(r))
        Traceback (most recent call last):
        ...
        TypeError: Cannot iterate over Range with infinite start
        >>> next(iter(r.reversed))
        0

    Although ``Range`` is a :class:`Set` (and supports the normal set
    operations) it maintains the order of the elements and can
    be used in contexts where ``range`` would be used.

        >>> from sympy import Interval
        >>> Range(0, 10, 2).intersect(Interval(3, 7))
        Range(4, 8, 2)
        >>> list(_)
        [4, 6]

    Although slicing of a Range will always return a Range -- possibly
    empty -- an empty set will be returned from any intersection that
    is empty:

        >>> Range(3)[:0]
        Range(0, 0, 1)
        >>> Range(3).intersect(Interval(4, oo))
        EmptySet
        >>> Range(3).intersect(Range(4, oo))
        EmptySet

    Range will accept symbolic arguments but has very limited support
    for doing anything other than displaying the Range:

        >>> from sympy import Symbol, pprint
        >>> from sympy.abc import i, j, k
        >>> Range(i, j, k).start
        i
        >>> Range(i, j, k).inf
        Traceback (most recent call last):
        ...
        ValueError: invalid method for symbolic range

    Better success will be had when using integer symbols:

        >>> n = Symbol('n', integer=True)
        >>> r = Range(n, n + 20, 3)
        >>> r.inf
        n
        >>> pprint(r)
        {n, n + 3, ..., n + 18}
    """

    def __new__(cls, *args):
        if len(args) == 1:
            if isinstance(args[0], range):
                raise TypeError(
                    'use sympify(%s) to convert range to Range' % args[0])

        # expand range
        slc = slice(*args)

        if slc.step == 0:
            raise ValueError("step cannot be 0")

        start, stop, step = slc.start or 0, slc.stop, slc.step or 1
        try:
            ok = []
            for w in (start, stop, step):
                w = sympify(w)
                if w in [S.NegativeInfinity, S.Infinity] or (
                        w.has(Symbol) and w.is_integer != False):
                    ok.append(w)
                elif not w.is_Integer:
                    if w.is_infinite:
                        raise ValueError('infinite symbols not allowed')
                    raise ValueError
                else:
                    ok.append(w)
        except ValueError:
            raise ValueError(filldedent('''
    Finite arguments to Range must be integers; `imageset` can define
    other cases, e.g. use `imageset(i, i/10, Range(3))` to give
    [0, 1/10, 1/5].'''))
        start, stop, step = ok

        null = False
        if any(i.has(Symbol) for i in (start, stop, step)):
            dif = stop - start
            n = dif/step
            if n.is_Rational:
                if dif == 0:
                    null = True
                else:  # (x, x + 5, 2) or (x, 3*x, x)
                    n = floor(n)
                    end = start + n*step
                    if dif.is_Rational:  # (x, x + 5, 2)
                        if (end - stop).is_negative:
                            end += step
                    else:  # (x, 3*x, x)
                        if (end/stop - 1).is_negative:
                            end += step
            elif n.is_extended_negative:
                null = True
            else:
                end = stop  # other methods like sup and reversed must fail
        elif start.is_infinite:
            span = step*(stop - start)
            if span is S.NaN or span <= 0:
                null = True
            elif step.is_Integer and stop.is_infinite and abs(step) != 1:
                raise ValueError(filldedent('''
                    Step size must be %s in this case.''' % (1 if step > 0 else -1)))
            else:
                end = stop
        else:
            oostep = step.is_infinite
            if oostep:
                step = S.One if step > 0 else S.NegativeOne
            n = ceiling((stop - start)/step)
            if n <= 0:
                null = True
            elif oostep:
                step = S.One  # make it canonical
                end = start + step
            else:
                end = start + n*step
        if null:
            start = end = S.Zero
            step = S.One
        return Basic.__new__(cls, start, end, step)

    start = property(lambda self: self.args[0])
    stop = property(lambda self: self.args[1])
    step = property(lambda self: self.args[2])

    @property
    def reversed(self):
        """Return an equivalent Range in the opposite order.

        Examples
        ========

        >>> from sympy import Range
        >>> Range(10).reversed
        Range(9, -1, -1)
        """
        if self.has(Symbol):
            n = (self.stop - self.start)/self.step
            if not n.is_extended_positive or not all(
                    i.is_integer or i.is_infinite for i in self.args):
                raise ValueError('invalid method for symbolic range')
        if self.start == self.stop:
            return self
        return self.func(
            self.stop - self.step, self.start - self.step, -self.step)

    def _kind(self):
        return SetKind(NumberKind)

    def _contains(self, other):
        if self.start == self.stop:
            return S.false
        if other.is_infinite:
            return S.false
        if not other.is_integer:
            return tfn[other.is_integer]
        if self.has(Symbol):
            n = (self.stop - self.start)/self.step
            if not n.is_extended_positive or not all(
                    i.is_integer or i.is_infinite for i in self.args):
                return
        else:
            n = self.size
        if self.start.is_finite:
            ref = self.start
        elif self.stop.is_finite:
            ref = self.stop
        else:  # both infinite; step is +/- 1 (enforced by __new__)
            return S.true
        if n == 1:
            return Eq(other, self[0])
        res = (ref - other) % self.step
        if res == S.Zero:
            if self.has(Symbol):
                d = Dummy('i')
                return self.as_relational(d).subs(d, other)
            return And(other >= self.inf, other <= self.sup)
        elif res.is_Integer:  # off sequence
            return S.false
        else:  # symbolic/unsimplified residue modulo step
            return None

    def __iter__(self):
        n = self.size  # validate
        if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
            raise TypeError("Cannot iterate over symbolic Range")
        if self.start in [S.NegativeInfinity, S.Infinity]:
            raise TypeError("Cannot iterate over Range with infinite start")
        elif self.start != self.stop:
            i = self.start
            if n.is_infinite:
                while True:
                    yield i
                    i += self.step
            else:
                for _ in range(n):
                    yield i
                    i += self.step

    @property
    def is_iterable(self):
        # Check that size can be determined, used by __iter__
        dif = self.stop - self.start
        n = dif/self.step
        if not (n.has(S.Infinity) or n.has(S.NegativeInfinity) or n.is_Integer):
            return False
        if self.start in [S.NegativeInfinity, S.Infinity]:
            return False
        if not (n.is_extended_nonnegative and all(i.is_integer for i in self.args)):
            return False
        return True

    def __len__(self):
        rv = self.size
        if rv is S.Infinity:
            raise ValueError('Use .size to get the length of an infinite Range')
        return int(rv)

    @property
    def size(self):
        if self.start == self.stop:
            return S.Zero
        dif = self.stop - self.start
        n = dif/self.step
        if n.is_infinite:
            return S.Infinity
        if  n.is_extended_nonnegative and all(i.is_integer for i in self.args):
            return abs(floor(n))
        raise ValueError('Invalid method for symbolic Range')

    @property
    def is_finite_set(self):
        if self.start.is_integer and self.stop.is_integer:
            return True
        return self.size.is_finite

    @property
    def is_empty(self):
        try:
            return self.size.is_zero
        except ValueError:
            return None

    def __bool__(self):
        # this only distinguishes between definite null range
        # and non-null/unknown null; getting True doesn't mean
        # that it actually is not null
        b = is_eq(self.start, self.stop)
        if b is None:
            raise ValueError('cannot tell if Range is null or not')
        return not bool(b)

    def __getitem__(self, i):
        ooslice = "cannot slice from the end with an infinite value"
        zerostep = "slice step cannot be zero"
        infinite = "slicing not possible on range with infinite start"
        # if we had to take every other element in the following
        # oo, ..., 6, 4, 2, 0
        # we might get oo, ..., 4, 0 or oo, ..., 6, 2
        ambiguous = "cannot unambiguously re-stride from the end " + \
            "with an infinite value"
        if isinstance(i, slice):
            if self.size.is_finite:  # validates, too
                if self.start == self.stop:
                    return Range(0)
                start, stop, step = i.indices(self.size)
                n = ceiling((stop - start)/step)
                if n <= 0:
                    return Range(0)
                canonical_stop = start + n*step
                end = canonical_stop - step
                ss = step*self.step
                return Range(self[start], self[end] + ss, ss)
            else:  # infinite Range
                start = i.start
                stop = i.stop
                if i.step == 0:
                    raise ValueError(zerostep)
                step = i.step or 1
                ss = step*self.step
                #---------------------
                # handle infinite Range
                #   i.e. Range(-oo, oo) or Range(oo, -oo, -1)
                # --------------------
                if self.start.is_infinite and self.stop.is_infinite:
                    raise ValueError(infinite)
                #---------------------
                # handle infinite on right
                #   e.g. Range(0, oo) or Range(0, -oo, -1)
                # --------------------
                if self.stop.is_infinite:
                    # start and stop are not interdependent --
                    # they only depend on step --so we use the
                    # equivalent reversed values
                    return self.reversed[
                        stop if stop is None else -stop + 1:
                        start if start is None else -start:
                        step].reversed
                #---------------------
                # handle infinite on the left
                #   e.g. Range(oo, 0, -1) or Range(-oo, 0)
                # --------------------
                # consider combinations of
                # start/stop {== None, < 0, == 0, > 0} and
                # step {< 0, > 0}
                if start is None:
                    if stop is None:
                        if step < 0:
                            return Range(self[-1], self.start, ss)
                        elif step > 1:
                            raise ValueError(ambiguous)
                        else:  # == 1
                            return self
                    elif stop < 0:
                        if step < 0:
                            return Range(self[-1], self[stop], ss)
                        else:  # > 0
                            return Range(self.start, self[stop], ss)
                    elif stop == 0:
                        if step > 0:
                            return Range(0)
                        else:  # < 0
                            raise ValueError(ooslice)
                    elif stop == 1:
                        if step > 0:
                            raise ValueError(ooslice)  # infinite singleton
                        else:  # < 0
                            raise ValueError(ooslice)
                    else:  # > 1
                        raise ValueError(ooslice)
                elif start < 0:
                    if stop is None:
                        if step < 0:
                            return Range(self[start], self.start, ss)
                        else:  # > 0
                            return Range(self[start], self.stop, ss)
                    elif stop < 0:
                        return Range(self[start], self[stop], ss)
                    elif stop == 0:
                        if step < 0:
                            raise ValueError(ooslice)
                        else:  # > 0
                            return Range(0)
                    elif stop > 0:
                        raise ValueError(ooslice)
                elif start == 0:
                    if stop is None:
                        if step < 0:
                            raise ValueError(ooslice)  # infinite singleton
                        elif step > 1:
                            raise ValueError(ambiguous)
                        else:  # == 1
                            return self
                    elif stop < 0:
                        if step > 1:
                            raise ValueError(ambiguous)
                        elif step == 1:
                            return Range(self.start, self[stop], ss)
                        else:  # < 0
                            return Range(0)
                    else:  # >= 0
                        raise ValueError(ooslice)
                elif start > 0:
                    raise ValueError(ooslice)
        else:
            if self.start == self.stop:
                raise IndexError('Range index out of range')
            if not (all(i.is_integer or i.is_infinite
                    for i in self.args) and ((self.stop - self.start)/
                    self.step).is_extended_positive):
                raise ValueError('Invalid method for symbolic Range')
            if i == 0:
                if self.start.is_infinite:
                    raise ValueError(ooslice)
                return self.start
            if i == -1:
                if self.stop.is_infinite:
                    raise ValueError(ooslice)
                return self.stop - self.step
            n = self.size  # must be known for any other index
            rv = (self.stop if i < 0 else self.start) + i*self.step
            if rv.is_infinite:
                raise ValueError(ooslice)
            val = (rv - self.start)/self.step
            rel = fuzzy_or([val.is_infinite,
                            fuzzy_and([val.is_nonnegative, (n-val).is_nonnegative])])
            if rel:
                return rv
            if rel is None:
                raise ValueError('Invalid method for symbolic Range')
            raise IndexError("Range index out of range")

    @property
    def _inf(self):
        if not self:
            return S.EmptySet.inf
        if self.has(Symbol):
            if all(i.is_integer or i.is_infinite for i in self.args):
                dif = self.stop - self.start
                if self.step.is_positive and dif.is_positive:
                    return self.start
                elif self.step.is_negative and dif.is_negative:
                    return self.stop - self.step
            raise ValueError('invalid method for symbolic range')
        if self.step > 0:
            return self.start
        else:
            return self.stop - self.step

    @property
    def _sup(self):
        if not self:
            return S.EmptySet.sup
        if self.has(Symbol):
            if all(i.is_integer or i.is_infinite for i in self.args):
                dif = self.stop - self.start
                if self.step.is_positive and dif.is_positive:
                    return self.stop - self.step
                elif self.step.is_negative and dif.is_negative:
                    return self.start
            raise ValueError('invalid method for symbolic range')
        if self.step > 0:
            return self.stop - self.step
        else:
            return self.start

    @property
    def _boundary(self):
        return self

    def as_relational(self, x):
        """Rewrite a Range in terms of equalities and logic operators. """
        if self.start.is_infinite:
            assert not self.stop.is_infinite  # by instantiation
            a = self.reversed.start
        else:
            a = self.start
        step = self.step
        in_seq = Eq(Mod(x - a, step), 0)
        ints = And(Eq(Mod(a, 1), 0), Eq(Mod(step, 1), 0))
        n = (self.stop - self.start)/self.step
        if n == 0:
            return S.EmptySet.as_relational(x)
        if n == 1:
            return And(Eq(x, a), ints)
        try:
            a, b = self.inf, self.sup
        except ValueError:
            a = None
        if a is not None:
            range_cond = And(
                x > a if a.is_infinite else x >= a,
                x < b if b.is_infinite else x <= b)
        else:
            a, b = self.start, self.stop - self.step
            range_cond = Or(
                And(self.step >= 1, x > a if a.is_infinite else x >= a,
                x < b if b.is_infinite else x <= b),
                And(self.step <= -1, x < a if a.is_infinite else x <= a,
                x > b if b.is_infinite else x >= b))
        return And(in_seq, ints, range_cond)


_sympy_converter[range] = lambda r: Range(r.start, r.stop, r.step)

def normalize_theta_set(theta):
    r"""
    Normalize a Real Set `theta` in the interval `[0, 2\pi)`. It returns
    a normalized value of theta in the Set. For Interval, a maximum of
    one cycle $[0, 2\pi]$, is returned i.e. for theta equal to $[0, 10\pi]$,
    returned normalized value would be $[0, 2\pi)$. As of now intervals
    with end points as non-multiples of ``pi`` is not supported.

    Raises
    ======

    NotImplementedError
        The algorithms for Normalizing theta Set are not yet
        implemented.
    ValueError
        The input is not valid, i.e. the input is not a real set.
    RuntimeError
        It is a bug, please report to the github issue tracker.

    Examples
    ========

    >>> from sympy.sets.fancysets import normalize_theta_set
    >>> from sympy import Interval, FiniteSet, pi
    >>> normalize_theta_set(Interval(9*pi/2, 5*pi))
    Interval(pi/2, pi)
    >>> normalize_theta_set(Interval(-3*pi/2, pi/2))
    Interval.Ropen(0, 2*pi)
    >>> normalize_theta_set(Interval(-pi/2, pi/2))
    Union(Interval(0, pi/2), Interval.Ropen(3*pi/2, 2*pi))
    >>> normalize_theta_set(Interval(-4*pi, 3*pi))
    Interval.Ropen(0, 2*pi)
    >>> normalize_theta_set(Interval(-3*pi/2, -pi/2))
    Interval(pi/2, 3*pi/2)
    >>> normalize_theta_set(FiniteSet(0, pi, 3*pi))
    {0, pi}

    """
    from sympy.functions.elementary.trigonometric import _pi_coeff

    if theta.is_Interval:
        interval_len = theta.measure
        # one complete circle
        if interval_len >= 2*S.Pi:
            if interval_len == 2*S.Pi and theta.left_open and theta.right_open:
                k = _pi_coeff(theta.start)
                return Union(Interval(0, k*S.Pi, False, True),
                        Interval(k*S.Pi, 2*S.Pi, True, True))
            return Interval(0, 2*S.Pi, False, True)

        k_start, k_end = _pi_coeff(theta.start), _pi_coeff(theta.end)

        if k_start is None or k_end is None:
            raise NotImplementedError("Normalizing theta without pi as coefficient is "
                                    "not yet implemented")
        new_start = k_start*S.Pi
        new_end = k_end*S.Pi

        if new_start > new_end:
            return Union(Interval(S.Zero, new_end, False, theta.right_open),
                         Interval(new_start, 2*S.Pi, theta.left_open, True))
        else:
            return Interval(new_start, new_end, theta.left_open, theta.right_open)

    elif theta.is_FiniteSet:
        new_theta = []
        for element in theta:
            k = _pi_coeff(element)
            if k is None:
                raise NotImplementedError('Normalizing theta without pi as '
                                          'coefficient, is not Implemented.')
            else:
                new_theta.append(k*S.Pi)
        return FiniteSet(*new_theta)

    elif theta.is_Union:
        return Union(*[normalize_theta_set(interval) for interval in theta.args])

    elif theta.is_subset(S.Reals):
        raise NotImplementedError("Normalizing theta when, it is of type %s is not "
                                  "implemented" % type(theta))
    else:
        raise ValueError(" %s is not a real set" % (theta))


class ComplexRegion(Set):
    r"""
    Represents the Set of all Complex Numbers. It can represent a
    region of Complex Plane in both the standard forms Polar and
    Rectangular coordinates.

    * Polar Form
      Input is in the form of the ProductSet or Union of ProductSets
      of the intervals of ``r`` and ``theta``, and use the flag ``polar=True``.

      .. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}

    * Rectangular Form
      Input is in the form of the ProductSet or Union of ProductSets
      of interval of x and y, the real and imaginary parts of the Complex numbers in a plane.
      Default input type is in rectangular form.

    .. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}

    Examples
    ========

    >>> from sympy import ComplexRegion, Interval, S, I, Union
    >>> a = Interval(2, 3)
    >>> b = Interval(4, 6)
    >>> c1 = ComplexRegion(a*b)  # Rectangular Form
    >>> c1
    CartesianComplexRegion(ProductSet(Interval(2, 3), Interval(4, 6)))

    * c1 represents the rectangular region in complex plane
      surrounded by the coordinates (2, 4), (3, 4), (3, 6) and
      (2, 6), of the four vertices.

    >>> c = Interval(1, 8)
    >>> c2 = ComplexRegion(Union(a*b, b*c))
    >>> c2
    CartesianComplexRegion(Union(ProductSet(Interval(2, 3), Interval(4, 6)), ProductSet(Interval(4, 6), Interval(1, 8))))

    * c2 represents the Union of two rectangular regions in complex
      plane. One of them surrounded by the coordinates of c1 and
      other surrounded by the coordinates (4, 1), (6, 1), (6, 8) and
      (4, 8).

    >>> 2.5 + 4.5*I in c1
    True
    >>> 2.5 + 6.5*I in c1
    False

    >>> r = Interval(0, 1)
    >>> theta = Interval(0, 2*S.Pi)
    >>> c2 = ComplexRegion(r*theta, polar=True)  # Polar Form
    >>> c2  # unit Disk
    PolarComplexRegion(ProductSet(Interval(0, 1), Interval.Ropen(0, 2*pi)))

    * c2 represents the region in complex plane inside the
      Unit Disk centered at the origin.

    >>> 0.5 + 0.5*I in c2
    True
    >>> 1 + 2*I in c2
    False

    >>> unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, 2*S.Pi), polar=True)
    >>> upper_half_unit_disk = ComplexRegion(Interval(0, 1)*Interval(0, S.Pi), polar=True)
    >>> intersection = unit_disk.intersect(upper_half_unit_disk)
    >>> intersection
    PolarComplexRegion(ProductSet(Interval(0, 1), Interval(0, pi)))
    >>> intersection == upper_half_unit_disk
    True

    See Also
    ========

    CartesianComplexRegion
    PolarComplexRegion
    Complexes

    """
    is_ComplexRegion = True

    def __new__(cls, sets, polar=False):
        if polar is False:
            return CartesianComplexRegion(sets)
        elif polar is True:
            return PolarComplexRegion(sets)
        else:
            raise ValueError("polar should be either True or False")

    @property
    def sets(self):
        """
        Return raw input sets to the self.

        Examples
        ========

        >>> from sympy import Interval, ComplexRegion, Union
        >>> a = Interval(2, 3)
        >>> b = Interval(4, 5)
        >>> c = Interval(1, 7)
        >>> C1 = ComplexRegion(a*b)
        >>> C1.sets
        ProductSet(Interval(2, 3), Interval(4, 5))
        >>> C2 = ComplexRegion(Union(a*b, b*c))
        >>> C2.sets
        Union(ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))

        """
        return self.args[0]

    @property
    def psets(self):
        """
        Return a tuple of sets (ProductSets) input of the self.

        Examples
        ========

        >>> from sympy import Interval, ComplexRegion, Union
        >>> a = Interval(2, 3)
        >>> b = Interval(4, 5)
        >>> c = Interval(1, 7)
        >>> C1 = ComplexRegion(a*b)
        >>> C1.psets
        (ProductSet(Interval(2, 3), Interval(4, 5)),)
        >>> C2 = ComplexRegion(Union(a*b, b*c))
        >>> C2.psets
        (ProductSet(Interval(2, 3), Interval(4, 5)), ProductSet(Interval(4, 5), Interval(1, 7)))

        """
        if self.sets.is_ProductSet:
            psets = ()
            psets = psets + (self.sets, )
        else:
            psets = self.sets.args
        return psets

    @property
    def a_interval(self):
        """
        Return the union of intervals of `x` when, self is in
        rectangular form, or the union of intervals of `r` when
        self is in polar form.

        Examples
        ========

        >>> from sympy import Interval, ComplexRegion, Union
        >>> a = Interval(2, 3)
        >>> b = Interval(4, 5)
        >>> c = Interval(1, 7)
        >>> C1 = ComplexRegion(a*b)
        >>> C1.a_interval
        Interval(2, 3)
        >>> C2 = ComplexRegion(Union(a*b, b*c))
        >>> C2.a_interval
        Union(Interval(2, 3), Interval(4, 5))

        """
        a_interval = []
        for element in self.psets:
            a_interval.append(element.args[0])

        a_interval = Union(*a_interval)
        return a_interval

    @property
    def b_interval(self):
        """
        Return the union of intervals of `y` when, self is in
        rectangular form, or the union of intervals of `theta`
        when self is in polar form.

        Examples
        ========

        >>> from sympy import Interval, ComplexRegion, Union
        >>> a = Interval(2, 3)
        >>> b = Interval(4, 5)
        >>> c = Interval(1, 7)
        >>> C1 = ComplexRegion(a*b)
        >>> C1.b_interval
        Interval(4, 5)
        >>> C2 = ComplexRegion(Union(a*b, b*c))
        >>> C2.b_interval
        Interval(1, 7)

        """
        b_interval = []
        for element in self.psets:
            b_interval.append(element.args[1])

        b_interval = Union(*b_interval)
        return b_interval

    @property
    def _measure(self):
        """
        The measure of self.sets.

        Examples
        ========

        >>> from sympy import Interval, ComplexRegion, S
        >>> a, b = Interval(2, 5), Interval(4, 8)
        >>> c = Interval(0, 2*S.Pi)
        >>> c1 = ComplexRegion(a*b)
        >>> c1.measure
        12
        >>> c2 = ComplexRegion(a*c, polar=True)
        >>> c2.measure
        6*pi

        """
        return self.sets._measure

    def _kind(self):
        return self.args[0].kind

    @classmethod
    def from_real(cls, sets):
        """
        Converts given subset of real numbers to a complex region.

        Examples
        ========

        >>> from sympy import Interval, ComplexRegion
        >>> unit = Interval(0,1)
        >>> ComplexRegion.from_real(unit)
        CartesianComplexRegion(ProductSet(Interval(0, 1), {0}))

        """
        if not sets.is_subset(S.Reals):
            raise ValueError("sets must be a subset of the real line")

        return CartesianComplexRegion(sets * FiniteSet(0))

    def _contains(self, other):
        from sympy.functions import arg, Abs

        isTuple = isinstance(other, Tuple)
        if isTuple and len(other) != 2:
            raise ValueError('expecting Tuple of length 2')

        # If the other is not an Expression, and neither a Tuple
        if not isinstance(other, (Expr, Tuple)):
            return S.false

        # self in rectangular form
        if not self.polar:
            re, im = other if isTuple else other.as_real_imag()
            return tfn[fuzzy_or(fuzzy_and([
                pset.args[0]._contains(re),
                pset.args[1]._contains(im)])
                for pset in self.psets)]

        # self in polar form
        elif self.polar:
            if other.is_zero:
                # ignore undefined complex argument
                return tfn[fuzzy_or(pset.args[0]._contains(S.Zero)
                    for pset in self.psets)]
            if isTuple:
                r, theta = other
            else:
                r, theta = Abs(other), arg(other)
            if theta.is_real and theta.is_number:
                # angles in psets are normalized to [0, 2pi)
                theta %= 2*S.Pi
                return tfn[fuzzy_or(fuzzy_and([
                    pset.args[0]._contains(r),
                    pset.args[1]._contains(theta)])
                    for pset in self.psets)]


class CartesianComplexRegion(ComplexRegion):
    r"""
    Set representing a square region of the complex plane.

    .. math:: Z = \{z \in \mathbb{C} \mid z = x + Iy, x \in [\operatorname{re}(z)], y \in [\operatorname{im}(z)]\}

    Examples
    ========

    >>> from sympy import ComplexRegion, I, Interval
    >>> region = ComplexRegion(Interval(1, 3) * Interval(4, 6))
    >>> 2 + 5*I in region
    True
    >>> 5*I in region
    False

    See also
    ========

    ComplexRegion
    PolarComplexRegion
    Complexes
    """

    polar = False
    variables = symbols('x, y', cls=Dummy)

    def __new__(cls, sets):

        if sets == S.Reals*S.Reals:
            return S.Complexes

        if all(_a.is_FiniteSet for _a in sets.args) and (len(sets.args) == 2):

            # ** ProductSet of FiniteSets in the Complex Plane. **
            # For Cases like ComplexRegion({2, 4}*{3}), It
            # would return {2 + 3*I, 4 + 3*I}

            # FIXME: This should probably be handled with something like:
            # return ImageSet(Lambda((x, y), x+I*y), sets).rewrite(FiniteSet)
            complex_num = []
            for x in sets.args[0]:
                for y in sets.args[1]:
                    complex_num.append(x + S.ImaginaryUnit*y)
            return FiniteSet(*complex_num)
        else:
            return Set.__new__(cls, sets)

    @property
    def expr(self):
        x, y = self.variables
        return x + S.ImaginaryUnit*y


class PolarComplexRegion(ComplexRegion):
    r"""
    Set representing a polar region of the complex plane.

    .. math:: Z = \{z \in \mathbb{C} \mid z = r\times (\cos(\theta) + I\sin(\theta)), r \in [\texttt{r}], \theta \in [\texttt{theta}]\}

    Examples
    ========

    >>> from sympy import ComplexRegion, Interval, oo, pi, I
    >>> rset = Interval(0, oo)
    >>> thetaset = Interval(0, pi)
    >>> upper_half_plane = ComplexRegion(rset * thetaset, polar=True)
    >>> 1 + I in upper_half_plane
    True
    >>> 1 - I in upper_half_plane
    False

    See also
    ========

    ComplexRegion
    CartesianComplexRegion
    Complexes

    """

    polar = True
    variables = symbols('r, theta', cls=Dummy)

    def __new__(cls, sets):

        new_sets = []
        # sets is Union of ProductSets
        if not sets.is_ProductSet:
            for k in sets.args:
                new_sets.append(k)
        # sets is ProductSets
        else:
            new_sets.append(sets)
        # Normalize input theta
        for k, v in enumerate(new_sets):
            new_sets[k] = ProductSet(v.args[0],
                                     normalize_theta_set(v.args[1]))
        sets = Union(*new_sets)
        return Set.__new__(cls, sets)

    @property
    def expr(self):
        r, theta = self.variables
        return r*(cos(theta) + S.ImaginaryUnit*sin(theta))


class Complexes(CartesianComplexRegion, metaclass=Singleton):
    """
    The :class:`Set` of all complex numbers

    Examples
    ========

    >>> from sympy import S, I
    >>> S.Complexes
    Complexes
    >>> 1 + I in S.Complexes
    True

    See also
    ========

    Reals
    ComplexRegion

    """

    is_empty = False
    is_finite_set = False

    # Override property from superclass since Complexes has no args
    @property
    def sets(self):
        return ProductSet(S.Reals, S.Reals)

    def __new__(cls):
        return Set.__new__(cls)