File size: 16,458 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
from sympy.core.evalf import N
from sympy.core.function import (Derivative, Function, PoleError, Subs)
from sympy.core.numbers import (E, Float, Rational, oo, pi, I)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (atan, cos, sin)
from sympy.functions.special.gamma_functions import gamma
from sympy.integrals.integrals import Integral, integrate
from sympy.series.order import O
from sympy.series.series import series
from sympy.abc import x, y, n, k
from sympy.testing.pytest import raises
from sympy.core import EulerGamma


def test_sin():
    e1 = sin(x).series(x, 0)
    e2 = series(sin(x), x, 0)
    assert e1 == e2


def test_cos():
    e1 = cos(x).series(x, 0)
    e2 = series(cos(x), x, 0)
    assert e1 == e2


def test_exp():
    e1 = exp(x).series(x, 0)
    e2 = series(exp(x), x, 0)
    assert e1 == e2


def test_exp2():
    e1 = exp(cos(x)).series(x, 0)
    e2 = series(exp(cos(x)), x, 0)
    assert e1 == e2


def test_issue_5223():
    assert series(1, x) == 1
    assert next(S.Zero.lseries(x)) == 0
    assert cos(x).series() == cos(x).series(x)
    raises(ValueError, lambda: cos(x + y).series())
    raises(ValueError, lambda: x.series(dir=""))

    assert (cos(x).series(x, 1) -
            cos(x + 1).series(x).subs(x, x - 1)).removeO() == 0
    e = cos(x).series(x, 1, n=None)
    assert [next(e) for i in range(2)] == [cos(1), -((x - 1)*sin(1))]
    e = cos(x).series(x, 1, n=None, dir='-')
    assert [next(e) for i in range(2)] == [cos(1), (1 - x)*sin(1)]
    # the following test is exact so no need for x -> x - 1 replacement
    assert abs(x).series(x, 1, dir='-') == x
    assert exp(x).series(x, 1, dir='-', n=3).removeO() == \
        E - E*(-x + 1) + E*(-x + 1)**2/2

    D = Derivative
    assert D(x**2 + x**3*y**2, x, 2, y, 1).series(x).doit() == 12*x*y
    assert next(D(cos(x), x).lseries()) == D(1, x)
    assert D(
        exp(x), x).series(n=3) == D(1, x) + D(x, x) + D(x**2/2, x) + D(x**3/6, x) + O(x**3)

    assert Integral(x, (x, 1, 3), (y, 1, x)).series(x) == -4 + 4*x

    assert (1 + x + O(x**2)).getn() == 2
    assert (1 + x).getn() is None

    raises(PoleError, lambda: ((1/sin(x))**oo).series())
    logx = Symbol('logx')
    assert ((sin(x))**y).nseries(x, n=1, logx=logx) == \
        exp(y*logx) + O(x*exp(y*logx), x)

    assert sin(1/x).series(x, oo, n=5) == 1/x - 1/(6*x**3) + O(x**(-5), (x, oo))
    assert abs(x).series(x, oo, n=5, dir='+') == x
    assert abs(x).series(x, -oo, n=5, dir='-') == -x
    assert abs(-x).series(x, oo, n=5, dir='+') == x
    assert abs(-x).series(x, -oo, n=5, dir='-') == -x

    assert exp(x*log(x)).series(n=3) == \
        1 + x*log(x) + x**2*log(x)**2/2 + O(x**3*log(x)**3)
    # XXX is this right? If not, fix "ngot > n" handling in expr.
    p = Symbol('p', positive=True)
    assert exp(sqrt(p)**3*log(p)).series(n=3) == \
        1 + p**S('3/2')*log(p) + O(p**3*log(p)**3)

    assert exp(sin(x)*log(x)).series(n=2) == 1 + x*log(x) + O(x**2*log(x)**2)


def test_issue_6350():
    expr = integrate(exp(k*(y**3 - 3*y)), (y, 0, oo), conds='none')
    assert expr.series(k, 0, 3) == -(-1)**(S(2)/3)*sqrt(3)*gamma(S(1)/3)**2*gamma(S(2)/3)/(6*pi*k**(S(1)/3)) - \
        sqrt(3)*k*gamma(-S(2)/3)*gamma(-S(1)/3)/(6*pi) - \
        (-1)**(S(1)/3)*sqrt(3)*k**(S(1)/3)*gamma(-S(1)/3)*gamma(S(1)/3)*gamma(S(2)/3)/(6*pi) - \
        (-1)**(S(2)/3)*sqrt(3)*k**(S(5)/3)*gamma(S(1)/3)**2*gamma(S(2)/3)/(4*pi) - \
        (-1)**(S(1)/3)*sqrt(3)*k**(S(7)/3)*gamma(-S(1)/3)*gamma(S(1)/3)*gamma(S(2)/3)/(8*pi) + O(k**3)


def test_issue_11313():
    assert Integral(cos(x), x).series(x) == sin(x).series(x)
    assert Derivative(sin(x), x).series(x, n=3).doit() == cos(x).series(x, n=3)

    assert Derivative(x**3, x).as_leading_term(x) == 3*x**2
    assert Derivative(x**3, y).as_leading_term(x) == 0
    assert Derivative(sin(x), x).as_leading_term(x) == 1
    assert Derivative(cos(x), x).as_leading_term(x) == -x

    # This result is equivalent to zero, zero is not return because
    # `Expr.series` doesn't currently detect an `x` in its `free_symbol`s.
    assert Derivative(1, x).as_leading_term(x) == Derivative(1, x)

    assert Derivative(exp(x), x).series(x).doit() == exp(x).series(x)
    assert 1 + Integral(exp(x), x).series(x) == exp(x).series(x)

    assert Derivative(log(x), x).series(x).doit() == (1/x).series(x)
    assert Integral(log(x), x).series(x) == Integral(log(x), x).doit().series(x).removeO()


def test_series_of_Subs():
    from sympy.abc import z

    subs1 = Subs(sin(x), x, y)
    subs2 = Subs(sin(x) * cos(z), x, y)
    subs3 = Subs(sin(x * z), (x, z), (y, x))

    assert subs1.series(x) == subs1
    subs1_series = (Subs(x, x, y) + Subs(-x**3/6, x, y) +
        Subs(x**5/120, x, y) + O(y**6))
    assert subs1.series() == subs1_series
    assert subs1.series(y) == subs1_series
    assert subs1.series(z) == subs1
    assert subs2.series(z) == (Subs(z**4*sin(x)/24, x, y) +
        Subs(-z**2*sin(x)/2, x, y) + Subs(sin(x), x, y) + O(z**6))
    assert subs3.series(x).doit() == subs3.doit().series(x)
    assert subs3.series(z).doit() == sin(x*y)

    raises(ValueError, lambda: Subs(x + 2*y, y, z).series())
    assert Subs(x + y, y, z).series(x).doit() == x + z


def test_issue_3978():
    f = Function('f')
    assert f(x).series(x, 0, 3, dir='-') == \
            f(0) + x*Subs(Derivative(f(x), x), x, 0) + \
            x**2*Subs(Derivative(f(x), x, x), x, 0)/2 + O(x**3)
    assert f(x).series(x, 0, 3) == \
            f(0) + x*Subs(Derivative(f(x), x), x, 0) + \
            x**2*Subs(Derivative(f(x), x, x), x, 0)/2 + O(x**3)
    assert f(x**2).series(x, 0, 3) == \
            f(0) + x**2*Subs(Derivative(f(x), x), x, 0) + O(x**3)
    assert f(x**2+1).series(x, 0, 3) == \
            f(1) + x**2*Subs(Derivative(f(x), x), x, 1) + O(x**3)

    class TestF(Function):
        pass

    assert TestF(x).series(x, 0, 3) ==  TestF(0) + \
            x*Subs(Derivative(TestF(x), x), x, 0) + \
            x**2*Subs(Derivative(TestF(x), x, x), x, 0)/2 + O(x**3)

from sympy.series.acceleration import richardson, shanks
from sympy.concrete.summations import Sum
from sympy.core.numbers import Integer


def test_acceleration():
    e = (1 + 1/n)**n
    assert round(richardson(e, n, 10, 20).evalf(), 10) == round(E.evalf(), 10)

    A = Sum(Integer(-1)**(k + 1) / k, (k, 1, n))
    assert round(shanks(A, n, 25).evalf(), 4) == round(log(2).evalf(), 4)
    assert round(shanks(A, n, 25, 5).evalf(), 10) == round(log(2).evalf(), 10)


def test_issue_5852():
    assert series(1/cos(x/log(x)), x, 0) == 1 + x**2/(2*log(x)**2) + \
        5*x**4/(24*log(x)**4) + O(x**6)


def test_issue_4583():
    assert cos(1 + x + x**2).series(x, 0, 5) == cos(1) - x*sin(1) + \
        x**2*(-sin(1) - cos(1)/2) + x**3*(-cos(1) + sin(1)/6) + \
        x**4*(-11*cos(1)/24 + sin(1)/2) + O(x**5)


def test_issue_6318():
    eq = (1/x)**Rational(2, 3)
    assert (eq + 1).as_leading_term(x) == eq


def test_x_is_base_detection():
    eq = (x**2)**Rational(2, 3)
    assert eq.series() == x**Rational(4, 3)


def test_issue_7203():
    assert series(cos(x), x, pi, 3) == \
        -1 + (x - pi)**2/2 + O((x - pi)**3, (x, pi))


def test_exp_product_positive_factors():
    a, b = symbols('a, b', positive=True)
    x = a * b
    assert series(exp(x), x, n=8) == 1 + a*b + a**2*b**2/2 + \
        a**3*b**3/6 + a**4*b**4/24 + a**5*b**5/120 + a**6*b**6/720 + \
        a**7*b**7/5040 + O(a**8*b**8, a, b)


def test_issue_8805():
    assert series(1, n=8) == 1


def test_issue_9549():
    y = (x**2 + x + 1) / (x**3 + x**2)
    assert series(y, x, oo) == x**(-5) - 1/x**4 + x**(-3) + 1/x + O(x**(-6), (x, oo))


def test_issue_10761():
    assert series(1/(x**-2 + x**-3), x, 0) == x**3 - x**4 + x**5 + O(x**6)


def test_issue_12578():
    y = (1 - 1/(x/2 - 1/(2*x))**4)**(S(1)/8)
    assert y.series(x, 0, n=17) == 1 - 2*x**4 - 8*x**6 - 34*x**8 - 152*x**10 - 714*x**12 - \
        3472*x**14 - 17318*x**16 + O(x**17)


def test_issue_12791():
    beta = symbols('beta', positive=True)
    theta, varphi = symbols('theta varphi', real=True)

    expr = (-beta**2*varphi*sin(theta) + beta**2*cos(theta) + \
        beta*varphi*sin(theta) - beta*cos(theta) - beta + 1)/(beta*cos(theta) - 1)**2

    sol = (0.5/(0.5*cos(theta) - 1.0)**2 - 0.25*cos(theta)/(0.5*cos(theta) - 1.0)**2
        + (beta - 0.5)*(-0.25*varphi*sin(2*theta) - 1.5*cos(theta)
        + 0.25*cos(2*theta) + 1.25)/((0.5*cos(theta) - 1.0)**2*(0.5*cos(theta) - 1.0))
        + 0.25*varphi*sin(theta)/(0.5*cos(theta) - 1.0)**2
        + O((beta - S.Half)**2, (beta, S.Half)))

    assert expr.series(beta, 0.5, 2).trigsimp() == sol


def test_issue_14384():
    x, a = symbols('x a')
    assert series(x**a, x) == x**a
    assert series(x**(-2*a), x) == x**(-2*a)
    assert series(exp(a*log(x)), x) == exp(a*log(x))
    raises(PoleError, lambda: series(x**I, x))
    raises(PoleError, lambda: series(x**(I + 1), x))
    raises(PoleError, lambda: series(exp(I*log(x)), x))


def test_issue_14885():
    assert series(x**Rational(-3, 2)*exp(x), x, 0) == (x**Rational(-3, 2) + 1/sqrt(x) +
        sqrt(x)/2 + x**Rational(3, 2)/6 + x**Rational(5, 2)/24 + x**Rational(7, 2)/120 +
        x**Rational(9, 2)/720 + x**Rational(11, 2)/5040 + O(x**6))


def test_issue_15539():
    assert series(atan(x), x, -oo) == (-1/(5*x**5) + 1/(3*x**3) - 1/x - pi/2
        + O(x**(-6), (x, -oo)))
    assert series(atan(x), x, oo) == (-1/(5*x**5) + 1/(3*x**3) - 1/x + pi/2
        + O(x**(-6), (x, oo)))


def test_issue_7259():
    assert series(LambertW(x), x) == x - x**2 + 3*x**3/2 - 8*x**4/3 + 125*x**5/24 + O(x**6)
    assert series(LambertW(x**2), x, n=8) == x**2 - x**4 + 3*x**6/2 + O(x**8)
    assert series(LambertW(sin(x)), x, n=4) == x - x**2 + 4*x**3/3 + O(x**4)

def test_issue_11884():
    assert cos(x).series(x, 1, n=1) == cos(1) + O(x - 1, (x, 1))


def test_issue_18008():
    y = x*(1 + x*(1 - x))/((1 + x*(1 - x)) - (1 - x)*(1 - x))
    assert y.series(x, oo, n=4) == -9/(32*x**3) - 3/(16*x**2) - 1/(8*x) + S(1)/4 + x/2 + \
        O(x**(-4), (x, oo))


def test_issue_18842():
    f = log(x/(1 - x))
    assert f.series(x, 0.491, n=1).removeO().nsimplify() ==  \
        -S(180019443780011)/5000000000000000


def test_issue_19534():
    dt = symbols('dt', real=True)
    expr = 16*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0)/45 + \
            49*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \
            0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
            0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
            0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.96296296296296296296*dt + 1.0) + 0.051640768506639183825*dt + \
            dt*(1/2 - sqrt(21)/14) + 1.0)/180 + 49*dt*(-0.23637909581542530626*dt*(2.0*dt + 1.0) - \
            0.74817562366625959291*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.88085458023927036857*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
            0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.96296296296296296296*dt + 1.0) + \
            2.1165151389911680013*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \
            0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
            0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
            0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) - \
            1.1854881643947648988*dt + dt*(sqrt(21)/14 + 1/2) + 1.0)/180 + \
            dt*(0.66666666666666666667*dt*(2.0*dt + 1.0) + \
            6.0173399699313066769*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
            4.1117044797036320069*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
            0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.96296296296296296296*dt + 1.0) - \
            7.0189140975801991157*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \
            0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
            0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
            0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) + \
            0.94010945196161777522*dt*(-0.23637909581542530626*dt*(2.0*dt + 1.0) - \
            0.74817562366625959291*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.88085458023927036857*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
            0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.96296296296296296296*dt + 1.0) + \
            2.1165151389911680013*dt*(-0.049335189898860408029*dt*(2.0*dt + 1.0) + \
            0.29601113939316244817*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) - \
            0.12564355335492979587*dt*(0.074074074074074074074*dt*(2.0*dt + 1.0) + \
            0.2962962962962962963*dt*(0.125*dt*(2.0*dt + 1.0) + 0.875*dt + 1.0) + \
            0.96296296296296296296*dt + 1.0) + 0.22431393315265061193*dt + 1.0) - \
            0.35816132904077632692*dt + 1.0) + 5.5065024887242400038*dt + 1.0)/20 + dt/20 + 1

    assert N(expr.series(dt, 0, 8), 20) == (
            - Float('0.00092592592592592596126289', precision=70) * dt**7
            + Float('0.0027777777777777783174695', precision=70) * dt**6
            + Float('0.016666666666666656027029', precision=70) * dt**5
            + Float('0.083333333333333300951828', precision=70) * dt**4
            + Float('0.33333333333333337034077', precision=70) * dt**3
            + Float('1.0', precision=70) * dt**2
            + Float('1.0', precision=70) * dt
            + Float('1.0', precision=70)
        )


def test_issue_11407():
    a, b, c, x = symbols('a b c x')
    assert series(sqrt(a + b + c*x), x, 0, 1) == sqrt(a + b) + O(x)
    assert series(sqrt(a + b + c + c*x), x, 0, 1) == sqrt(a + b + c) + O(x)


def test_issue_14037():
    assert (sin(x**50)/x**51).series(x, n=0) == 1/x + O(1, x)


def test_issue_20551():
    expr = (exp(x)/x).series(x, n=None)
    terms = [ next(expr) for i in range(3) ]
    assert terms == [1/x, 1, x/2]


def test_issue_20697():
    p_0, p_1, p_2, p_3, b_0, b_1, b_2 = symbols('p_0 p_1 p_2 p_3 b_0 b_1 b_2')
    Q = (p_0 + (p_1 + (p_2 + p_3/y)/y)/y)/(1 + ((p_3/(b_0*y) + (b_0*p_2\
        - b_1*p_3)/b_0**2)/y + (b_0**2*p_1 - b_0*b_1*p_2 - p_3*(b_0*b_2\
        - b_1**2))/b_0**3)/y)
    assert Q.series(y, n=3).ratsimp() == b_2*y**2 + b_1*y + b_0 + O(y**3)


def test_issue_21245():
    fi = (1 + sqrt(5))/2
    assert (1/(1 - x - x**2)).series(x, 1/fi, 1).factor() == \
        (-4812 - 2152*sqrt(5) + 1686*x + 754*sqrt(5)*x\
        + O((x - 2/(1 + sqrt(5)))**2, (x, 2/(1 + sqrt(5)))))/((1 + sqrt(5))\
        *(20 + 9*sqrt(5))**2*(x + sqrt(5)*x - 2))


def test_issue_21938():
    expr = sin(1/x + exp(-x)) - sin(1/x)
    assert expr.series(x, oo) == (1/(24*x**4) - 1/(2*x**2) + 1 + O(x**(-6), (x, oo)))*exp(-x)


def test_issue_23432():
    expr = 1/sqrt(1 - x**2)
    result = expr.series(x, 0.5)
    assert result.is_Add and len(result.args) == 7


def test_issue_23727():
    res = series(sqrt(1 - x**2), x, 0.1)
    assert res.is_Add == True


def test_issue_24266():
    #type1: exp(f(x))
    assert (exp(-I*pi*(2*x+1))).series(x, 0, 3) == -1 + 2*I*pi*x + 2*pi**2*x**2 + O(x**3)
    assert (exp(-I*pi*(2*x+1))*gamma(1+x)).series(x, 0, 3) == -1 + x*(EulerGamma + 2*I*pi) + \
        x**2*(-EulerGamma**2/2 + 23*pi**2/12 - 2*EulerGamma*I*pi) + O(x**3)

    #type2: c**f(x)
    assert ((2*I)**(-I*pi*(2*x+1))).series(x, 0, 2) == exp(pi**2/2 - I*pi*log(2)) + \
          x*(pi**2*exp(pi**2/2 - I*pi*log(2)) - 2*I*pi*exp(pi**2/2 - I*pi*log(2))*log(2)) + O(x**2)
    assert ((2)**(-I*pi*(2*x+1))).series(x, 0, 2) == exp(-I*pi*log(2)) - 2*I*pi*x*exp(-I*pi*log(2))*log(2) + O(x**2)

    #type3: f(y)**g(x)
    assert ((y)**(I*pi*(2*x+1))).series(x, 0, 2) == exp(I*pi*log(y)) + 2*I*pi*x*exp(I*pi*log(y))*log(y) + O(x**2)
    assert ((I*y)**(I*pi*(2*x+1))).series(x, 0, 2) == exp(I*pi*log(I*y)) + 2*I*pi*x*exp(I*pi*log(I*y))*log(I*y) + O(x**2)