File size: 11,161 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
from sympy.core.containers import Tuple
from sympy.core.function import Function
from sympy.core.numbers import oo, Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols, Symbol
from sympy.functions.combinatorial.numbers import tribonacci, fibonacci
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.series import EmptySequence
from sympy.series.sequences import (SeqMul, SeqAdd, SeqPer, SeqFormula,
    sequence)
from sympy.sets.sets import Interval
from sympy.tensor.indexed import Indexed, Idx
from sympy.series.sequences import SeqExpr, SeqExprOp, RecursiveSeq
from sympy.testing.pytest import raises, slow

x, y, z = symbols('x y z')
n, m = symbols('n m')


def test_EmptySequence():
    assert S.EmptySequence is EmptySequence

    assert S.EmptySequence.interval is S.EmptySet
    assert S.EmptySequence.length is S.Zero

    assert list(S.EmptySequence) == []


def test_SeqExpr():
    #SeqExpr is a baseclass and does not take care of
    #ensuring all arguments are Basics hence the use of
    #Tuple(...) here.
    s = SeqExpr(Tuple(1, n, y), Tuple(x, 0, 10))

    assert isinstance(s, SeqExpr)
    assert s.gen == (1, n, y)
    assert s.interval == Interval(0, 10)
    assert s.start == 0
    assert s.stop == 10
    assert s.length == 11
    assert s.variables == (x,)

    assert SeqExpr(Tuple(1, 2, 3), Tuple(x, 0, oo)).length is oo


def test_SeqPer():
    s = SeqPer((1, n, 3), (x, 0, 5))

    assert isinstance(s, SeqPer)
    assert s.periodical == Tuple(1, n, 3)
    assert s.period == 3
    assert s.coeff(3) == 1
    assert s.free_symbols == {n}

    assert list(s) == [1, n, 3, 1, n, 3]
    assert s[:] == [1, n, 3, 1, n, 3]
    assert SeqPer((1, n, 3), (x, -oo, 0))[0:6] == [1, n, 3, 1, n, 3]

    raises(ValueError, lambda: SeqPer((1, 2, 3), (0, 1, 2)))
    raises(ValueError, lambda: SeqPer((1, 2, 3), (x, -oo, oo)))
    raises(ValueError, lambda: SeqPer(n**2, (0, oo)))

    assert SeqPer((n, n**2, n**3), (m, 0, oo))[:6] == \
        [n, n**2, n**3, n, n**2, n**3]
    assert SeqPer((n, n**2, n**3), (n, 0, oo))[:6] == [0, 1, 8, 3, 16, 125]
    assert SeqPer((n, m), (n, 0, oo))[:6] == [0, m, 2, m, 4, m]


def test_SeqFormula():
    s = SeqFormula(n**2, (n, 0, 5))

    assert isinstance(s, SeqFormula)
    assert s.formula == n**2
    assert s.coeff(3) == 9

    assert list(s) == [i**2 for i in range(6)]
    assert s[:] == [i**2 for i in range(6)]
    assert SeqFormula(n**2, (n, -oo, 0))[0:6] == [i**2 for i in range(6)]

    assert SeqFormula(n**2, (0, oo)) == SeqFormula(n**2, (n, 0, oo))

    assert SeqFormula(n**2, (0, m)).subs(m, x) == SeqFormula(n**2, (0, x))
    assert SeqFormula(m*n**2, (n, 0, oo)).subs(m, x) == \
        SeqFormula(x*n**2, (n, 0, oo))

    raises(ValueError, lambda: SeqFormula(n**2, (0, 1, 2)))
    raises(ValueError, lambda: SeqFormula(n**2, (n, -oo, oo)))
    raises(ValueError, lambda: SeqFormula(m*n**2, (0, oo)))

    seq = SeqFormula(x*(y**2 + z), (z, 1, 100))
    assert seq.expand() == SeqFormula(x*y**2 + x*z, (z, 1, 100))
    seq = SeqFormula(sin(x*(y**2 + z)),(z, 1, 100))
    assert seq.expand(trig=True) == SeqFormula(sin(x*y**2)*cos(x*z) + sin(x*z)*cos(x*y**2), (z, 1, 100))
    assert seq.expand() == SeqFormula(sin(x*y**2 + x*z), (z, 1, 100))
    assert seq.expand(trig=False) == SeqFormula(sin(x*y**2 + x*z), (z, 1, 100))
    seq = SeqFormula(exp(x*(y**2 + z)), (z, 1, 100))
    assert seq.expand() == SeqFormula(exp(x*y**2)*exp(x*z), (z, 1, 100))
    assert seq.expand(power_exp=False) == SeqFormula(exp(x*y**2 + x*z), (z, 1, 100))
    assert seq.expand(mul=False, power_exp=False) == SeqFormula(exp(x*(y**2 + z)), (z, 1, 100))

def test_sequence():
    form = SeqFormula(n**2, (n, 0, 5))
    per = SeqPer((1, 2, 3), (n, 0, 5))
    inter = SeqFormula(n**2)

    assert sequence(n**2, (n, 0, 5)) == form
    assert sequence((1, 2, 3), (n, 0, 5)) == per
    assert sequence(n**2) == inter


def test_SeqExprOp():
    form = SeqFormula(n**2, (n, 0, 10))
    per = SeqPer((1, 2, 3), (m, 5, 10))

    s = SeqExprOp(form, per)
    assert s.gen == (n**2, (1, 2, 3))
    assert s.interval == Interval(5, 10)
    assert s.start == 5
    assert s.stop == 10
    assert s.length == 6
    assert s.variables == (n, m)


def test_SeqAdd():
    per = SeqPer((1, 2, 3), (n, 0, oo))
    form = SeqFormula(n**2)

    per_bou = SeqPer((1, 2), (n, 1, 5))
    form_bou = SeqFormula(n**2, (6, 10))
    form_bou2 = SeqFormula(n**2, (1, 5))

    assert SeqAdd() == S.EmptySequence
    assert SeqAdd(S.EmptySequence) == S.EmptySequence
    assert SeqAdd(per) == per
    assert SeqAdd(per, S.EmptySequence) == per
    assert SeqAdd(per_bou, form_bou) == S.EmptySequence

    s = SeqAdd(per_bou, form_bou2, evaluate=False)
    assert s.args == (form_bou2, per_bou)
    assert s[:] == [2, 6, 10, 18, 26]
    assert list(s) == [2, 6, 10, 18, 26]

    assert isinstance(SeqAdd(per, per_bou, evaluate=False), SeqAdd)

    s1 = SeqAdd(per, per_bou)
    assert isinstance(s1, SeqPer)
    assert s1 == SeqPer((2, 4, 4, 3, 3, 5), (n, 1, 5))
    s2 = SeqAdd(form, form_bou)
    assert isinstance(s2, SeqFormula)
    assert s2 == SeqFormula(2*n**2, (6, 10))

    assert SeqAdd(form, form_bou, per) == \
        SeqAdd(per, SeqFormula(2*n**2, (6, 10)))
    assert SeqAdd(form, SeqAdd(form_bou, per)) == \
        SeqAdd(per, SeqFormula(2*n**2, (6, 10)))
    assert SeqAdd(per, SeqAdd(form, form_bou), evaluate=False) == \
        SeqAdd(per, SeqFormula(2*n**2, (6, 10)))

    assert SeqAdd(SeqPer((1, 2), (n, 0, oo)), SeqPer((1, 2), (m, 0, oo))) == \
        SeqPer((2, 4), (n, 0, oo))


def test_SeqMul():
    per = SeqPer((1, 2, 3), (n, 0, oo))
    form = SeqFormula(n**2)

    per_bou = SeqPer((1, 2), (n, 1, 5))
    form_bou = SeqFormula(n**2, (n, 6, 10))
    form_bou2 = SeqFormula(n**2, (1, 5))

    assert SeqMul() == S.EmptySequence
    assert SeqMul(S.EmptySequence) == S.EmptySequence
    assert SeqMul(per) == per
    assert SeqMul(per, S.EmptySequence) == S.EmptySequence
    assert SeqMul(per_bou, form_bou) == S.EmptySequence

    s = SeqMul(per_bou, form_bou2, evaluate=False)
    assert s.args == (form_bou2, per_bou)
    assert s[:] == [1, 8, 9, 32, 25]
    assert list(s) == [1, 8, 9, 32, 25]

    assert isinstance(SeqMul(per, per_bou, evaluate=False), SeqMul)

    s1 = SeqMul(per, per_bou)
    assert isinstance(s1, SeqPer)
    assert s1 == SeqPer((1, 4, 3, 2, 2, 6), (n, 1, 5))
    s2 = SeqMul(form, form_bou)
    assert isinstance(s2, SeqFormula)
    assert s2 == SeqFormula(n**4, (6, 10))

    assert SeqMul(form, form_bou, per) == \
        SeqMul(per, SeqFormula(n**4, (6, 10)))
    assert SeqMul(form, SeqMul(form_bou, per)) == \
        SeqMul(per, SeqFormula(n**4, (6, 10)))
    assert SeqMul(per, SeqMul(form, form_bou2,
                              evaluate=False), evaluate=False) == \
        SeqMul(form, per, form_bou2, evaluate=False)

    assert SeqMul(SeqPer((1, 2), (n, 0, oo)), SeqPer((1, 2), (n, 0, oo))) == \
        SeqPer((1, 4), (n, 0, oo))


def test_add():
    per = SeqPer((1, 2), (n, 0, oo))
    form = SeqFormula(n**2)

    assert per + (SeqPer((2, 3))) == SeqPer((3, 5), (n, 0, oo))
    assert form + SeqFormula(n**3) == SeqFormula(n**2 + n**3)

    assert per + form == SeqAdd(per, form)

    raises(TypeError, lambda: per + n)
    raises(TypeError, lambda: n + per)


def test_sub():
    per = SeqPer((1, 2), (n, 0, oo))
    form = SeqFormula(n**2)

    assert per - (SeqPer((2, 3))) == SeqPer((-1, -1), (n, 0, oo))
    assert form - (SeqFormula(n**3)) == SeqFormula(n**2 - n**3)

    assert per - form == SeqAdd(per, -form)

    raises(TypeError, lambda: per - n)
    raises(TypeError, lambda: n - per)


def test_mul__coeff_mul():
    assert SeqPer((1, 2), (n, 0, oo)).coeff_mul(2) == SeqPer((2, 4), (n, 0, oo))
    assert SeqFormula(n**2).coeff_mul(2) == SeqFormula(2*n**2)
    assert S.EmptySequence.coeff_mul(100) == S.EmptySequence

    assert SeqPer((1, 2), (n, 0, oo)) * (SeqPer((2, 3))) == \
        SeqPer((2, 6), (n, 0, oo))
    assert SeqFormula(n**2) * SeqFormula(n**3) == SeqFormula(n**5)

    assert S.EmptySequence * SeqFormula(n**2) == S.EmptySequence
    assert SeqFormula(n**2) * S.EmptySequence == S.EmptySequence

    raises(TypeError, lambda: sequence(n**2) * n)
    raises(TypeError, lambda: n * sequence(n**2))


def test_neg():
    assert -SeqPer((1, -2), (n, 0, oo)) == SeqPer((-1, 2), (n, 0, oo))
    assert -SeqFormula(n**2) == SeqFormula(-n**2)


def test_operations():
    per = SeqPer((1, 2), (n, 0, oo))
    per2 = SeqPer((2, 4), (n, 0, oo))
    form = SeqFormula(n**2)
    form2 = SeqFormula(n**3)

    assert per + form + form2 == SeqAdd(per, form, form2)
    assert per + form - form2 == SeqAdd(per, form, -form2)
    assert per + form - S.EmptySequence == SeqAdd(per, form)
    assert per + per2 + form == SeqAdd(SeqPer((3, 6), (n, 0, oo)), form)
    assert S.EmptySequence - per == -per
    assert form + form == SeqFormula(2*n**2)

    assert per * form * form2 == SeqMul(per, form, form2)
    assert form * form == SeqFormula(n**4)
    assert form * -form == SeqFormula(-n**4)

    assert form * (per + form2) == SeqMul(form, SeqAdd(per, form2))
    assert form * (per + per) == SeqMul(form, per2)

    assert form.coeff_mul(m) == SeqFormula(m*n**2, (n, 0, oo))
    assert per.coeff_mul(m) == SeqPer((m, 2*m), (n, 0, oo))


def test_Idx_limits():
    i = symbols('i', cls=Idx)
    r = Indexed('r', i)

    assert SeqFormula(r, (i, 0, 5))[:] == [r.subs(i, j) for j in range(6)]
    assert SeqPer((1, 2), (i, 0, 5))[:] == [1, 2, 1, 2, 1, 2]


@slow
def test_find_linear_recurrence():
    assert sequence((0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55), \
    (n, 0, 10)).find_linear_recurrence(11) == [1, 1]
    assert sequence((1, 2, 4, 7, 28, 128, 582, 2745, 13021, 61699, 292521, \
    1387138), (n, 0, 11)).find_linear_recurrence(12) == [5, -2, 6, -11]
    assert sequence(x*n**3+y*n, (n, 0, oo)).find_linear_recurrence(10) \
    == [4, -6, 4, -1]
    assert sequence(x**n, (n,0,20)).find_linear_recurrence(21) == [x]
    assert sequence((1,2,3)).find_linear_recurrence(10, 5) == [0, 0, 1]
    assert sequence(((1 + sqrt(5))/2)**n + \
    (-(1 + sqrt(5))/2)**(-n)).find_linear_recurrence(10) == [1, 1]
    assert sequence(x*((1 + sqrt(5))/2)**n + y*(-(1 + sqrt(5))/2)**(-n), \
    (n,0,oo)).find_linear_recurrence(10) == [1, 1]
    assert sequence((1,2,3,4,6),(n, 0, 4)).find_linear_recurrence(5) == []
    assert sequence((2,3,4,5,6,79),(n, 0, 5)).find_linear_recurrence(6,gfvar=x) \
    == ([], None)
    assert sequence((2,3,4,5,8,30),(n, 0, 5)).find_linear_recurrence(6,gfvar=x) \
    == ([Rational(19, 2), -20, Rational(27, 2)], (-31*x**2 + 32*x - 4)/(27*x**3 - 40*x**2 + 19*x -2))
    assert sequence(fibonacci(n)).find_linear_recurrence(30,gfvar=x) \
    == ([1, 1], -x/(x**2 + x - 1))
    assert sequence(tribonacci(n)).find_linear_recurrence(30,gfvar=x) \
    ==  ([1, 1, 1], -x/(x**3 + x**2 + x - 1))

def test_RecursiveSeq():
    y = Function('y')
    n = Symbol('n')
    fib = RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, [0, 1])
    assert fib.coeff(3) == 2